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An upper bound is given on the number of eigenvalues of a class of infinite dimensional Jacobi 
matrices. The theorem presented is a discrete analog of the celebrated result of V. Bargmann on 
the number of bound states of the Schrodinger equation 

PACS numbers: 02.10.Sp 

1. INTRODUCTION 

Given sequences! a(n) J and! b (n)) with a(n + 1) > 0 
and b (n) real, n;>O, one can construct a sequence of polyno
mials (p(A,n) I satisfying 

a{n + l)p(A,n + 1) + b (n)p(A,n) + a(n)p(A,n - 1) 

= A. p(A.,n), n;;;'O, 

p(A.,O) = 1, pIA, - 1) = O. (1) 

It is known 1 that these polynomials will be orthogonal with 
respect to some (not necessarily unique} distribution func
tion dp(A). If the following limits exist 

bIOI 
ail) 

J= 0 
o 

0(1) 

bP) 

0(2) 
o 

o 
0(2) 
b(2) 

a(3) 

o 
o 

a(3) 
b(3) 

o 
o 
o 

0(4) 

where thea(n)s and b (n)s are those given in (1) satisfy (2) with 
a( 00 1= !, b (00) = O. The intinite dimensional matrixJ can be 
considered a bounded self-adjoint operator acting on 12 and a 
question of interest is to find J/I m E/2 and A m real such that 

JJ/lm =J.mJ/lm· 
Our question now becomes-given J, can one find upper 
bounds on the number of eigenvalues Am where lAm I > I? 
Chihara, ~ with his very nice use of chain sequences, Chi
hara and Nevai,7 and Geronimo and Case8 all deal with this 
question. 

The above problem has an important continuum ana
log: when does the SchrOdinger equation with a central force 
field have only a finite number of bound states? In a spectac
ular paper written in 1952 Bargmann9 gave an upper bound 
on the number of bound states and it is the discrete analog of 
Bargmann's bound that is the main result of this paper. It has 
been noted by Reed and Simon 10 that Bargmann's proof is 
intimately connected with the min-max principle ofWeyl, 
Fisher, and Courant (see Appendix). The proof given here is 
based on Bargmann's. 

2. THE MAIN RESULT 

Theoreml:LetN(I,oo),N( - 00, - I)bethenumberof 
points in the spectrum of p(A ) (the number of eigenvalues of 

lim a(n) = a{ (0) > 0 lim b (n) = b (00), (2) 

then dp(J. ) will be unique and by a theorem of Blumenthal2 

(see also Nevae) the points 

a = b(oo) - 2a(00) and b = b(~) + 20(00) (3) 

are the smallest and largest limit points of the spectrum p(J. ) 
[the support of dp(J. )]. It is without loss of generality that one 
can set a( 00 ) = ! and b ( ~ ) = 0, so a = - 1 and b = 1. 

Since the points in the complement of [ - 1,1] are in the 
point spectrum of p(J. ) it is useful to know when there are 
only a finite number. This question can be reformulated in 
terms of operator theory in the following manner. Let Jbe 
the infinite dimensional Jacobi matrix 

I 
J) for A> 1, J. < - 1 respectively; then 

N(I,ooJ< I i{ II - 4a+WI + 12b +(i - 1)11 (4al 
;=1 

and 

N( - 00, - 11< I i{ 11 - 4a-WI + 12b -Ii - I)/}, 
;=1 

(4b) 

where 

I-4a+W= I-4a-W= - ,- < {
I 4a(i)2 1 4a2( 1) 0 

0, 1 - 4a2(i»0 

and 
b + (i) = {b (i), b (i) > 0 

0, b (11<0, 

b -(i) = {b (i), b (i) < O. 
0, b (i»O 

(4c) 

Before beginning the proof the equations that are to be used 
will be derived. 

It can be seen that given (1) and (2) with a( ~) = ! and 
b ( 00 ) = 0 the polynomials satisfy the following two three
term recursion formulas; 

p(J.,n) = _1_ (r/A..z,n - 1) + [z _ 2b (n _ 1)] p(A,n - 1)), 
2o(n) z 

(5) 
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.IJ ) _ 1 (tP(z,n - 1) 'l'lz,n ---
2a(n) z 

+ I[ 1 - 4o(n)2]z - 2b (n - III p(A,n - 1)). (6) 

t/J(z,O) = p(A,O) = 1, (7) 

with 

A = ~(z + liz). 

Incrementing (5) by one, letting z-+ liz, and then subtracting 
the new equation from the original and multiplying by zn + 1 

yields 

(I-z2)znp
A(A,n) =znt/JA(z,n) -zn+2t/JA(lIz,n). (8) 

Here 

A(A n) = p(A,n) .I,A(Z n) = tP(z,n) 
p, a(n)' 'f/, a(n) , 

with 

n 1 
a(n) = II 2a(.)' a(O) = 1. 

1=1 l 

From (6) it follows that 

znt/JA(z,n) = zmt/JA(z,m) 
n-I 

(9) 

(10) 

+ I I[I-4o(i+ If]z-2b(i))zi+l p A(A,i). 
;=m 

(11) 

Using (11) and its analog for z - nt/JA(lIz,n) in (8) and then 
using (8) with n equal to m gives 

z" pA(A,n) = zm pA(z,m) + zm + 2( 1 ~ ~n~ 2m )t/JA(lIz,m), 

+ nfl [[I_4o(i+ lf]Z2(I-rn-:i

-

2
) 

I=m I-z 

(I_rn
-

2i
)] . 

- 2b (i)z 1 _ r z'pA(A,i). 

Therefore, at z = I, 

pA(I,n) = pA(I,m) + (n - m)t/JA(I,m) 
n-I 

= I ! [l - 4o(i + 1 f](n - i-I) 
;=m 

- 2b (i)(n - i))pA(I,i). (12) 

Another useful equation is 

pA(I,n) _ t/JA(I,n) = 402(n)pA(I,n - I), (13) 

which can be obtained from (5) and (6). Replacing the origi
nal system by the + system, i.e., replacing the coefficients in 
(12) and (13) by those given in (4), yields 

p+(I,n) =p+(l,m) + (n - m)t/J+(I,m) 
n-I - I ! 11 - 4o+(i + WI(n - i-I) 
;=m 

+ 12b +(i)(n - i)) p+(I,i) (14) 

and 

p+(l,n) - t/J+(1,n) = 4o+(nfp+(l,n - 1). (15) 

Using the + system the following will now be proved: 
Theorem 2: Suppose signp+(I,i) = constant for 

m <i <n < 00 andp+(l,n) = 0 or signp+(l,n) 
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= - signp+(l,i). Furthermore supposep+(I,m) = 0 or 
- signp+(I,m - 1) = signp+(I,m) = signp+(l,i) then 

n-I 

1< I (i + III 11 - 4o+(i + 1)21 + 12b +(i)ll. (16) 
;=m 

Proof The proof breaks up into two cases: case 1, 
p+(I,m) = 0; and case 2, signp+(l,m) = 
- signp+(I,m - 1). 

Case 1. Stopping (14) at m + 1 instead of m and dividing 
by p+(l,m + 1) gives 

p+(I,n) = 1 + (n _ m _ 1) t/J+(I,m + 1) 
p+(l,m + 1) p+(I,m + 1) 

n -I 

I ! 11 - 4o+(i + 1)21(n - i-I) 
i=m+ 1 

+ 12b +(i)l(n - i)) p+(1,i) (17) 
p+(l,m + 1) 

Since (17) holds for n > m + 1 andp+(I,i)/p+(I,m + 1) > 0, 
m < i < n, it follows that 

p+(I,i) <1 + (i _ m _ 1) t/J+(I,m + 1), 
p+(I,m + 1) p+(l,m + 1) 

m+l<i<n. (18) 

Furthermore from (15) one finds 

p+(l,m + 1) = t/J+(l,m + 1), (19) 

and this leads to 

p+(l,i). 1 . 
+ <l - m, m + < l < n. 

p (I,m + 1) 
(20) 

Multiplying (17) by - 1 then substituting in (20) yields the 
inequality 

n-I 
(n - m)< I ! 11 - 4o+(i + I)21(n - i-I) 

i=m+ 1 

+ 12b +(lll(n - i)j(i - m), 

where the fact thatp+(I,n)/p+(I,m + 1)<0 has been used. 
From the above equation one finds 

n-I 
(n-m)«n-m) I !11-4o+(i+l)21 

i=rn+l 

+ 12b +(i)ll(i - m), 

which leads to (16). 
Case 2. Dividing (14) by p+(l,m) gives 

p+(I,n) = 1 + (n _ m) t/J+(l,m) 
p+(l,m) p+(I,m) 

n-I 
- I ! 11 - 4o+(i + WI(n - i-I) 

i=m 

(21) 

(22) 

As in the previous case the above equation with n = i> m 

yields the inequality 

p+(l,i) <1 + (i - m) t/J+(l,m), m <i<n. (23) 
p+(l,m) p+(l,m) 

Again from (15) one finds 

t/J+(I,m) 1 > , 
p+(I,m) 

which leads to 
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p+(I,i) «i _ m + 1) "'+(1,m). (24) 
p+(1,m) p+(1,m) 

MUltiplying (22) by - 1, substituting in (24), and using the 
fact thatp+(l,n)/p+(I,m)<O gives 

(n - m) "'21
,m) < ":f {II - 4o+(i + 1)21(n - i-I) 

P (I,m) i=m 

+ 1(2b +(i)l(n - i)}(i + 1 - m) ",+(I,m), 
p+(l,m) 

(25) 

which leads to (16). 
Lemma 1: Suppose signp+(I,i) = const. for m <i and 

lim,,~co [p+(I,n)/nl = O. Furthermore suppose 
p+(l,m) = 0 or - signp+(I,m - 1) = signp+(I,m) 
= signp+(I,,,; then 

1< I (i + 1){ 11 - 4o+(i + lW + 12b +(i)11 (26) 
;=m 

Proof Again the proof involves two cases. Only the case 
p+(l,m)#O will be given here because the other case is 
proved in an analogous manner. 

Dividing (14) by p+(l,m)(n - m) gives 

p+(l,n) = _1_ + "'+(l,m) 
p+(l,m)(n - m) n - m p+(I,m) 

_ ",fl 

{II - 40+(; + I)21(n - ~ - 1) 
I=m n m 

+ 12b +(i)I(~)} p+(l,i) . (27) 
n -m p+(I,m) 

Multiplying (27) by - 1 and then substituting (24) yields 

- p+(I,n) + "'+(l,m) 
p+(l,m)(n - m) p+(l,m) 

< "fl {II - 4o+(i + WI + 12b +(i)1 J(i + 1) ",:(I,m). 
i=m P (I,m) 

(28) 

Now letting n-+oo gives (26). 
We now give the proof of Theorem 1. 
Proof One begins by replacing the original system by 

the + system. It is a consequence of the theory of chain 
sequences4 that N +(1, 00 »N(I, 00). One now counts the 
number of changes in sign ofp+(I,n) as n varies from Oto 00, 
as this number is equal to N +(1, 00). Equation (4a) follows 
from Theorem 2. 

To prove the result for N ( - 00, - 1) note that the dis
tribution dp t(A. )= - dp( - A. ) generates coefficients 
attn) = a(n) and b tIn) = - b (n). Replacing this (t) system 
by the + system and then applying the results above com
plete the proof. 

The above theorem has the following immediate 
corollary: 

Corollary 1: If 

f (i + II{ 11 - 40+(; + 1)/ + 12b +(i)1 J < I, 
;= I 

f (i + 1){ 11 - 4o-(i + 1)j + 12b -(ill J < I, 
;=1 

thenN(I,oo) = 0, N( - 00, - 1) = 0, respectively. 
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3. FURTHER RESULTS 

Consider the systems for which 

In{II-4o(n)21+12b(n-l)II<00. (29) 
,,=1 

Then N (1,00 ) and N ( - 00, - 1) are finite. Furthermore un
der these conditions it is known3

•
8 that the sequence 

{V'tP(z,n) J converges uniformly for Izl < 1 to a function 
z f + (z) and that 

{

of.O )dA., A. = cos 0, 0<8<17', } 

dp(A. ) = itl P i~ (A. - A. i)' A. not as above. 

Here 

(30) 

(31) 

whereA. i are the locations of the zeros off+(z) for Izl < 1 (the 
branchz = A. - (A. 2 - 1)1/2 has been chosen). From (31) one 
finds that under the condition given by (29) 
N(I,oo),N( - 00, - 1) equalthe number of zeros off+(z) for 
o <z < 1,0> z > - I, respectively. Another consequence of 
(29) is thatf+(z) can have a zero on the unit circle only at 
z = 1 and/or z = - 1 and these zeros are simple.8 Let 
N [1,00 ),N ( - 00, - 1] denote the number of zeros of zf + (z) 
forO <z< 1 and 0 > z> - I, respectively. The following theo
rem bounds the number of zeros off + (z). 

Theorem 4: If (29) holds then 

N[I,oo)< I ;{11-4o+WI + 12b+(i-l)IJ, (32a) 
i= 1 

and 

N(-oo,-11< f ;{II-4o-WI+12b-(i-I)IJ· 
i=O 

(32b) 
Proof From the min-max principle and the theory of 

chainsequencesN[1, 00 )<N +[1, 00). Furthermore it has been 
shown by Chihara and Nevai7 thatf+(I) = 0 implies 
limn~co [p+(I,n)/nl = O. Equation (32a) now follows from 
Theorem 1 and Lemma 1. (32b) follows by considering the 
coefficients generated by the distribution 
dpt(A.) = - dp( - A.). 

4. EXAMPLES AND DISCUSSION 

Example 1 (Tchebycheffpolynomials of the first kind): 
Let a(l) = 11v2, a(n) = ~, n > I, and b (n) = O,n>O. These 
are the coefficients associated with the polynomials 
p(A.,O) = l,p(A.,n) = v2 cos nO,n> 1,11. = cos B, which are 
orthonormal with respect to the weight 

dp(A. ) = (1117')( 1 - A. 2)-1/2 dA.. 

One finds that 

f+(z) = -I-~(1-r). 
2v2 z 

ThereforeN [1,00 ) = N ( - 00, - 1] = 1 and the bound given 
by Theorem 4 is saturated. 
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Example 2: a(n) = ~,n> 1,b (0) = E/ 2,b (n) = 0, 
n> l.f+(z) for this system is 

f+(z) = (l/2z)(1 - EZ). 

With E = 1 ( - 1) this system becomes up to normalization 
the Jacobi polynomialsp<-1/2.1/2)(A,n),(p<1/2.-1/2)(A,n)). 

With E = 1 the bound for N [1, (0) is saturated and 
N ( - 00, - 1] = O. For E > 1 there is only one mass point for 
o < z < 1 no matter how large E becomes. 

Example 3: a(n) =~, n> 1,b (n) = O,n#m, b (m)#O. 
Then 

f+(z) = - 1 _ 2b(m)zm + I z -z . 1 [ m+1 -lm+I)] 

2z z - liz 
For b (m) = lI2(m + 1)./+(1) = 0, and for 
b (m) > lI2(m + 1), the zero off + (z) moves into the interior of 
the unit circle along the positive real axis. 

From the examples given above one can make the fol
lowing observations: 

1. As n increases it takes smaller and smaller deviations 
of a+(n) andb +(n) from their asymptotic values to introduce 
mass points. 

2. The bound is a poor bound if the coefficients a+(n) 
and b +(n) deviate strongly from their asymptotic values. 

The above comments hold equally well for a-In) and 
b -In). 
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Note added in proof A discrete analog of the Schwinger 
bound has been obtained. 12 

b(O) 

a(l) - ~ 

JP= 0 

o 

a(l) - ~ 

b (1) 

a(2) - ~ 

o 

o 
a(2) - ~ 

b(2) 

o 
o 

a(3) - ~ 

(note that J is negative and O'ess (J) = [ - 2,0]). Assume 
limn~oo a(n) = ~ and limn~oo b (n) = 0; then An (J + PJP), 
P>O is a monotone nondecreasing continuous function of p. 
Furthermore if An (J + pJ P) > 0 then it is a strictly increasing 
function of p. 

ProoflO: Since O'ess [J + PJP] = [ - 2,0] Theorem Al 
implies An (J + pJ P»O for all n. Therefore 

An = min max max [0, (!,b,(J + PJP)!,b)]. 
.p, • .p, •... ,.p 1/ED IJ)nD (JP) 

111/>11 = 1 (I/>,.p,) =0, i= 1,2, ... ,n 

Since J is negative max! 0, (!,b,(J + BJ P)!,b) J is either zero or 
an increasing straight line for fixed !,b, The result now follows 
by maximizing over the family of lines then minimizing over 

tPi' 
Let N.8 (0, (0) be the number of eigenvalues ofJ + pJPin 
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APPENDIX 

As has been noted by Simon, Bargmann's theorem is 
intimately connected with the min-max principle of Well, 
Fisher, and Courant. Here we use a special case ofthe theo
rem. (For the general case and the proof see Reed and 
Simon, 10) 

Theorem A: Let J be a bounded infinite dimensional 
Jacobi matrix operating on 12 , Define 

UJ (tPl,tP2· .. tPm) = sup(!,b,J!,b) 

1,bED(J);II!,b11 = 1 
(!,b,tPi) = 0, i = 1,2, ... ,m, 

Then 
1. there are n eigenvalues above the top of the essential 

spectrum and An (J) is the nth eigenvalue. 
or 

2. An is the top of the essential spectrum. In that case 
An = An + I = An + 2'" and there are at most n - 1 eigenval
ues above An' 
Here D (J) is the domain of J, and the scalar product and 
norm mentioned above are in the 12 sense. 

The definition of the essential spectrum O'ess (J) can be 
found in Reed and Simon, lip. 236. In most of the cases we 
are interested in 0' ess (J) = 0' Be (J) the absolutely continuous 
part of the spectrum, 

Corollary AI: Let 

- 1 0 0 0 

~ -1 ! 0 0 
J= 0 -1 ! 0 

0 0 

and 

0 0 

0 0 

0 0 

r 
(0,00) then for P > + 1 ,N.8 (0,00 »N I [0,(0). This plus the 
theory of chain sequences imply N + [0, 00 »N [0, 00 ). 

The techniques developed from the min-max theorem 
and from perturbation theory are used in obtaining approxi
mations to the eigenvalues and eigenvectors of the Schro
dinger operator. These techniques should also prove useful 
in obtaining approximations to the eigenvalues and eigen
vectors of Jacobi matrices. This will be discussed at a later 
time . 
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Permutational properties of the generalized Clebsch-Gordan coefficients 
R. Chatterjee and T. Lulek a) 

Departmento/Physics. The Universityo/Calgary, Calgary. AB T2N IN4, Canada 

(Received 22 September 1981; accepted for publication 6 November 1981) 

The properties of the permutational symmetry of the 3rr symbols for an arbitrary compact 
group have been generalized to a multiple Kronecker product of irreducible representations. It 
has been shown that these properties of the corresponding Nrr symbols under a permutation of 
their columns are related to a choice of the coupling schemes for the appropriate polyads 
rl",r N' The simplest permutational symmetry, i.e., associated with a Young diagram for the 
symmetric group ~ N' is, in general, incompatible with schemes having definite intermediate 
representations and, in the case of mixed symmetry, does not preserve the absolute value of a 
Nrrsymbol. The case of N = 4 for SU(2) has been studied in detail. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

Derome and Sharpl and Derome2 generalized the Ra
cah-Wigner angular momentum calculus for the group 
SU(2) to an arbitrary compact group G and provided a meth
od for analyzing the permutational symmetry of Clebsch
Gordan coefficients. They showed that this symmetry has its 
origin in an appropriate choice of the system of repetition 
indices for the resultant representation r 3, which appears 
several times in a Kronecker product r l Xr2• In this paper 
an attempt has been made to generalize the Derome-Sharp 
approach to a multiple Kronecker product. 

The permutational symmetry of the ordinary Clebsch
Gordan coefficients is usually displayed in the three-column 
3rr symbols [3jm Wigner symbols for the case of SU(2)], 
where there is no distinction between the constituent repre
sentations r I and r 2 , and the resultant r 3• The symmetry of 
3rr symbols under a permutation of their columns can be 
described by a set of unitary matrices which we shall refer to 
as the Derome-Sharp matrices. The simplest symmetry cor
responds to the case when all Derome-Sharp matrices are 
diagonal, with eigenvalues ± 1. In general, Derome-Sharp 
matrices depend on both the permutation alB IA ) relating the 
3rrsymbols fortriadsrara.ra" and rbrb·rb " ,and on the 
initial triad rara.ra" , with [aa'a"] and [bb 'b "] being any 
arrangements of the numbers [123].1-4 A concise generaliza
tion of these notions to an arbitrary polyad rl.Hr N can be 
provided using a vocabulary of the theory of permutation 
representations (e.g., Curtis and Reiner,S Wielandt6

), which 
is introduced in Sec. 2. In Sec. 3 we define the Nrr symbols 
and determine their relationship to the generalized Clebsch
Gordan coefficients in an arbitrary coupling scheme. Then 
in Sec. 4 we provide a detailed discussion of the relations 
between the choice of a coupling scheme and the corre
sponding permutational properties of Nrr symbols. In Sec. 
5 we demonstrate the general theory for the case N = 4 iden
tical representationsDUl of the group SU(2), and in Sec. 6 we 
discuss the terminology related to Nrr and nr symbols. 

alPresent address: Instytut Fizyki UAM. Matejki 48/49. 60-769 Poznan. 
Poland. 

2. DEFINITION OF A PERMUTATION 
REPRESENTATION ON THE BLOCK OF POL YADS 

LetA = [a(I)'H.,a(N)] be an arrangement (without rep
etitions) of integers I,H.,N, related to the initial arrangement 
Ao = [l,H.,N] through the permutation 

( 
1 H. N) (a(I) a(N)) (A 0) (A) 

aA = a(I)H.a(N) = 1 HH. N = A = \Ao (1) 

and let 

r A = rall)· .. raIN) , (2) 

rA = rail) "'raiN) (3) 

be the corresponding arrangement of representations of the 
initial polyad rl,H.,r N and their basic functions rl,·H,rN· 
The set of all a A forms the symmetric group ~ N' and the set 
{rA; aA~N I of all polyads obtained from the initial one isa 
carrier block of a transitive permutation representation n of 
this group, defined by 

ll: aDr A = r B
, (4) 

where the polyad r B has to be formed from r A in a way that 
the representation occupying the ith place in rA, i.e., raUl' is 
put under the action of aD into the d (i)th place, whereas the 
ith place is then occupied by raldli)) , i.e., the representation 
from the d(i)th place, i = I,H',N. Consequently, we have 

aD=a(BIA)=ailaA' (5) 

In particular, 

(6) 

In general, not all the representations r i of the polyad 
rl ... r N have to be different. Let this polyad has 11k identical 
representation r lk ), k = I,2, ... ,p so that 

r 1k)....Lr 1k ') ror k ....Lk' d N ~ r l' r an = 2.. 11k' 
k~l 

Let 

The stability group of the initial polyad r A" is 

~(rA,,) =~/L' X",X~/Lp' 

(7) 

(8) 

(9) 
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the simple product of symmetric groups acting on location 
labels of identical representations. Evidently, 

(10) 

so that n is a faithful representation of IN provided the 
polyad rl ... r N possesses at least two distinct 
representations. 

Each distinct polyad r F can be put into a one-to-one 
correspondence with the right cosets of the group IN with 
respect to the stability subgroup I (r Ao

). Let 

(11 ) 
a,.EE 

be the decomposition of IN into these right cosets, where E 
is a set of the representatives. Then for any arrangement B 
we have 

(12) 

so that any permutation of IN can be uniquely expressed by 
those belonging to I (FAo) and E. Evidently, the number of 
elements of I (FAo) is 

p 

II(FAo)1 = ~ Ilk! (13) 
k~1 

and that of the set E 

(14) 

the latter being the number of different polyads generated 
from rAo by means ofEq. (4). 

3. GENERALIZED CLEBSCH-GORDAN COEFFICIENTS 
AND Nry SYMBOLS 

Let 

IrAyA) = lFa(I)Ya(I)"'lra(N)Ya(N) (15) 

be the uncoupled basis of the polyad r A. Then the equation 

r 
Y 

(16) 

defines the generalized Clebsch-Gordan coefficient (the 
symbol in rectangular brackets), associated with the cou
pling of N representation of the polyad r A into the resultant 
representation r of G according to a coupling scheme W. 
Here, w stands for a set of repetition indices, distinguishing 
subspaces with identical r's. For N = 2, Eq. (16) is a defini
tion of the ordinary Clebsch-Gordan coefficient. 

A coupling scheme depending on consecutive couplings 
of pairs of representations into definite intermediate repre
sentations can be presented by means of a treelike diagram, 
introduced by Jucys and others,7.8 with "branches," 
"boughs," and the "trunk" corresponding to constituent, 
intermediate, and resultant representations, respectively (cf. 
an example on Figs. I(a) and I(b), presenting the schemes 
Irlr2(r12WI2), r 3F4(F34 W34), rW 12.34 y) and 
Ir1r 3(r 13W13 ), r2r4(r24W24)' rWI3.24Y), respectively). In 
the following we shall refer to such coupling schemes to as 
treelike ones. 
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"b ,34 "13,24 

(oj 
(bl 

w 12,34 + cJ---!---~(----4>- w 13,24 

1<1 

FIG. I. The graphical representation of some coefficients related to a cou
pling of a tetrad F,F2F3F4, according to conventions ofJucys and Bandzai
tis." (a)-the generalized Clebsch-Gordan coefficient for the coupling 
scheme IF,F2(F'2Wd, F3F4(F34W34)' FW'2.34 r), (b)-the corresponding co
efficient for IF,F3(F13w13). F2F4(F24W24)' FW 13•24 r). (c)-the related Racah 
recoupling matrix (associated with a 9Fsymbol). 

The coupling scheme W does not necessarily have to be 
treelike, since one can use bases (16) with no definite values of 
intermediate representations, the repetition indices w being 
for example the labels of irreducible representations of the 
group IN and of the corresponding basic functions. 

The generalized Clebsch-Gordan coefficient, as de
fined by Eq. (16), can be substituted by a new symbol through 
the equation 

r 
Y 

r*)w. 

-Yw 
, (17) 

where [ - 1] r - Y is the element of the metric tensor, relating 
IFY) to Ir * - Y), the basis of the complex conjugate to r, 
and [r] is the dimension of r. The symbol in parentheses in 
Eq. (17) will be referred hereafter to as the (N + 1 )ry sym
bol, in a close analogy to the well known 3ry symbol related 
to N = 2. All arguments riY;' i = I, ... ,N + 1, with r N + I 

= r*, YN+ I = - y, enter into the (N + I)Fy symbol on 
equal footing, without the distinction between the constitu
ent and resultant representations. 

It is sometimes convenient to interpret Nry symbols in 
terms of the coupling of N representation rl ... r N into the 
resultant unit representation ro of G, putting 

ro)w,. (rAO)w. 
= ,.-4 ,(18) 

Yo w rOw 

where the first equality is a consequence of Eq. (17) and an 
assumption that [ - 1] ro - Yo = 1, whereas the second one 
defines the scheme W of coupling rl ... r N _ I into the resul-
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tantr~ in terms of the scheme W' ofcouplingrl ... r N into 
an arbitrary representation r. Such a definition allows for a 
natural extension of the notion of Nry symbols for N = 2 
and 1, namely 

(~II ~:)=(~II ~: ~:) 
= [- 1] r, - y, D *D 

v' [rll r"r, r" - y,' (19) 

(~=(~ ~: ~:) = Drr"Dyy". (20) 

Such quantities were already used by Jucys et al. (cf. Sec. 11 
of Ref. 7 and Sec. 31 of Ref. 8) in their graphical methods of 
the angular momentum calculus, and are called 2jm and Ijm 
symbols. The 2ry symbols (19) coincide, up to the factor 
[rll- 1/2

, with the Ijm symbols as defined by Butler.3 

4. THE PERMUTATIONAL SYMMETRY 

The basis for the determination of symmetry of Nry 
symbols under a permutation of their columns is provided by 
the invariant summation over the group manifold G, which 
has the form 

1 cl.r, ... rNi (rAo)WO (rAo)W 
IGT k D ~'Yi (g) ... D ~:YN(g) = W.? I yA" w y'Ao w' (21) 

where IG I is the group volume (for continuous compact 
groups the summation has to be replaced by the invariant 
Hapr integral), and c(rl ... r N) is the multiplicity of ro in the 
Kronecker product r l x ... XrN • The left-hand side ofEq. 
(21) is manifestly invariant under any permutation of ~N' 
which implies the in variance of the right-hand side, that is 
the equality 

(22) 

for any polyad r A and r B
, with arbitrary coupling schemes 

Wand X. Equation (22) can be viewed as a scalar product of 
two vectors rAyA andrAy'A (or rByB andrBy'B) with com
ponents labeled by the repetition indices w (or x) in a 
c(r I ... r N )-dimensionallinear space. The invariance of the 
scalar product implies a unitary transformation of vector 
components, i.e., 

(23) 

where m;:(O"(B IA), rA), with x, w = 1, ... ,c(rI ... r N ), form 
a unitary matrix, referred hereafter to as the Derome-Sharp 
matrix. Equation (23) determines the permutational proper
ties of Nry symbols (and, consequently, those of generalized 
Clebsch-Gordan coefficients). It was first given by Derome 
and Sharpl for the caseN = 3. Evidently, the highest permu
tational symmetry is achieved when all Derome-Sharp ma
trices are c(r I ... r N) dimensional unit matrices. 

Using the orthogonality relations for Nry symbols 

~ (~):o (~): = Dww" 
(24) 

we obtain from (23) 
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(25) 

i.e., we explicitly express the elements of Derome-Sharp ma
trices in terms of Nry symbols. 

A change of the coupling scheme W - U for the polyad 
r A can be uniquely determined by a unitary transformation 
of the basis 

w 

[cf. Eq. (18)], and the related transformation of Nrysymbols 

(27) 

implying the following transformation of Derome-Sharp 
matrices 

mYU(O"(B IA), rA) 

= TXY(B )mXW(O"(B IA ), r A )TWU(A it, (28) 

where the dagger denotes the Hermitian conjugate. In gener
al, T XY (B ) =1= T wu (A ), so a change of the coupling scheme is, 
in general, associated with non unitary transformations of 
Derome-Sharp matrices. 

It follows from Eq. (23) that 

m(O"(C IA ), rA) = m(O"(C IB), rB)m(O"(B lA, rA) (29) 

for any A, B, C (the superscripts of coupling schemes are 
dropped). Hence not all Derome-Sharp matrices are mutu
ally independent, but any of them can be expressed by 
matrices 

MB = m(O"i" I, rAo), (30) 

with B varying through all N arrangements, since Eq. (29) 
implies 

m(O"(C IB), rB) = McM1. (31) 

We shall refer hereafter to the M B 's (Eq. 30) as the funda
mental matrices. 

As it was shown by Derome2 for N = 3, the relation 
between the degree of freedom for a choice of fundamental 
matrices, and a choice of coupling systems W for different 
arrangements r A of the initial polyad rA", depends on the 
number of identical representations in this polyad. Let rAo 
be given by Eq. (8). Then for any permutation O"A of identical 
representations in rAo we have 

O"ArAo=r Ao, O"AEI(rAo) (32) 

so the corresponding fundamental matrix 

MA = {m:'::,w" (O"A- t, rAo);w, w'(ranging)} (33) 

is, according to Eq. (25), uniquely determined by the cou
pling scheme Wo for r Au. 

The number of independent fundamental matrices is 
evidently equal to that of different polyads, since for each r F 

one can choose arbitrarily the corresponding coupling 
scheme. Consequently, any fundamental matrix M B' with 
O"B given by Eq. (12), can be written in a form 

MB=MFMA, O"FEE, O"AEI(rAu
), (34) 

where MA is determined by the coupling scheme Wo for the 

R. Chatterjee and T. Lulek 924 



                                                                                                                                    

initial polyad FAo through Eqs. (29) and (33), and MF is an 
arbitrary (unitary) matrix. The choice of M F, U FeE is equiv
alent to the choice of the coupling scheme W for the polyad 
FF. 

The largest degree offreedom in a choice offundamen
tal matrices corresponds to the case when all F(k) are dis
tinct, i.e., when Ilk = 1 for k = 1, ... ,N. One can then choose 
the coupling scheme W for each of N! polyads separately, so 
all fundamental matrices M F , with the exception of 

(3S) 

where I is the c(FI ... r N I-dimensional unit matrix, are arbi
trary. The number of all Derome-Sharp matrices is then 
(N!)2. 

Another extreme case is that of N identical representa
tions, i.e., F; = F for i = 1, ... ,N. Now there is only one po
lyad F ... F, so the total number of Derome-Sharp matrices 
m(u, F. .. F )=m(u) is N L All these matrices are uniquely de
termined by the choice of the coupling scheme W, and form a 
c(F ... F)-dimensional representation of the group ~N' i.e., 

m(uu') = m(u)m(u'). (36) 

This representation is, in general, reducible, and can be de
composed into irreducible representations I A. J. In general, 
the representation m of ~ N contains multidimensional irre
ducible representations (i.e., I A. J different from the com
pletely symmetric representation IN J or the antisymmetric 
11 N J). According to formula (23), one cannot then choose 
such a coupling scheme W, for which the absolute value for 
the NFy symbols would be unchanged. In the next section 
we demonstrate it for the case of 4jm symbols for the polyad 
jjjj of SU(2). 

5. AN EXAMPLE: THE 4jm SYMBOLS FOR IDENTICAL 
REPRESENTATIONS 

NowweconsiderthecaseN = 4, G = SU(2),andp = 1, 
that is, the coupling offour representations D U1 into the re
sultant D (0). Let us choose a treelike coupling scheme W' 
(Fig. 1) determined by the ket IJj(J),Jj(J),OO). Then the 4jm 
symbols [i.e., the 4ry symbols for SU(2)] can be expressed in 
terms of ordinary 3jm Wigner symbols as 

( j j j j)W =(-W-M~2J+l(j j J )(j j MJ), 
m l m 2 m3 m 4 J m l m 2 - M m3 m4 

(37) 

whereM = m l + m 2 = - m3 - m 4 • The elements of the Derome-Sharp matrix are given by 

( )= WW( .... ) = '" (_I)J-M+J"-M' 1(2J+ 1)(2J'+ 1)(j j 
m JJ , U B -m J J' UB,lllJ £.. V m m

2 m 1 ••• m 4 .M,M' 1 

j (J' j j ) ( j j j) (J 
X W ' m3 m 4 mb(l) m b (2) -M M m b (3) 

Let the group ~4 decompose as 

~ 4 = 11..xT 7 T, T = D 2l.JO'sD2l.JO' r:lJ2' D2 = lUI, U 2' U 3' U 4 J , 

where 

j' ) 
-m' 

m~(J (38) 

(39) 

U 1 = (1) (2) (3) (4), U2 = (12) (34), U 3 = (13) (24), U4 = (14) (23), Us = (1) (234), U6 = (1) (243), U 7 = (1324), 

and D2 and T are normal subgroups of ~4' denoted by 
Schoenflies symbols for point groups according to the well
known isomorphism ~4++O. Then we get from (38) 

mJJ,(u;) = ( - l)2JoJJ" for i = 1,2,3,4, (41) 

fF J'} 
mJJ,(us) = mJ'J(0'6) = (- 1 (v'(2J + 1)(2J' + 1) ljjJ ' 

(42) 

(43) 

where the expression in curly brackets in Eq. (42) is the stan
dard 6j Wigner symbol. 

It follows that the mapping m : O'-+m(O') (CTEI4 ) is a ho
momorphism, with 

Ker m = D 2, (44) 

so that the Derome-Sharp matrices m(u) form in this case a 
faithful representation m(1T) of the quotient group 

(4S) 
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Let 

1T2 = 1T3 -1=(123) = 1m O's = 1m 0'6 -I, 

1T4=(1) (23) = 1m U 7 

(40) 

(46) 

by generators of the group ~3. Then the representation m j of 
~ 3 is generated by matrices 

JIJ' 0 1 
m

I/2
(1T2) = 0

1 
- 1/2 - v'3/2 ; 
v'3/2 -1/2 

J J' 0 
mI/2(1T4) = 0 

1 

J J' 
o 

ml(1T2) = 
1 

2 

- 1 0, 
o 
o 

1/3 

-1/v'3 
v'S/3 

1/v'3 
-1/2 

- v'S/2v'3 

(47) 

2 

v'S/2 . 
v'S/2v'3 ' 

1/6 
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o 

o 
o 

o 
-1 
o 

2 

o 
0' 

(48) 

and so on. Equations (47) and (48) are the simplest examples 
of Derome-Sharp matrices for 4jm symbols. It is evident 
that some of these matrices are essentially nondiagonal, for 
reason of appearance of the 6j symbol in Eq. (42), which is 
frequently different from zero for J =/:1' . 

The representation m j of ~3 is, in general, reducible. Its 
decomposition into irreducible representations 13 J, 121 J, 
113} of ~3 can be performed by the character theory. Equa
tions (42) and (43) yield the following formulas for characters 
of~3: 

XjW) = 4i + 1, (49) 

Xj(12) = [1 + ( - 1)2j]!2 

= 1 or 0 for 2j + 1 = lor 0 mod 2, (50) 

Xj(3) = (- ilv3)(aiH 1_ (j)-2j -l) 

= 1 or - 1 or 0 for 4i + 1 = 1 or 2 or 0 mod 3, 
(51) 

where (j) = e21Ti
/

3
• We obtain therefore the decomposition 

mj=kreg+m\ (52) 

where 

2j + 1 = 6k + K; 2K = 0,1,2,3,4; k = 0,1,2, ... , (53) 

mO = 0, m l/2 = /21 J, m l = 13 J + /21 J, 
m

3/2 = 131 + [i3} + /21\. 

m 2 = (3) + 2/21 \. (54) 

and 

(55) 

is the regular representation of ~3' 
It follows from (52) that for eachj =/: 0 the representation 

m j contains the two-dimensional representation (21) of ~3' 
It is therefore impossible to choose such a coupling scheme 
W that the absolute value of any 4jm symbol remains 
unchanged. 

Properties of Derome-Sharp matrices are related 
through Eq. (42) to those of 6j symbols. That is the unitarity 
of mj(as) = mj(1T2) implies a particular case of a standard 
orthogonality relation for 6/s, and the group multiplication 

m j(1T2)m j(1T2) = mj(1T3) (56) 

leads to a particular case of the Racah backcoupling rule. 

The permutational symmetry of the so called "irreduci
ble j tensors" of SU(2) was already investigated by Vanagas 
and Batarunas9 (cf. also Shelepin 10). These quantities are re
lated, in our notation, to (N + 1) jm symbols associated with 
bases I j .. JJwM), i.e., irreducible bases for the carrier space 
for the representation (Djt with a fixed value of the resul
tant angular momentum J. They gave the general formulas 
for characters of the corresponding representations m jT of 
the group ~N' and decompositions of mp·into irreducible 
representations for N = 3,4,5. Our 4jm symbols correspond 
to the case N = 4, T = 0, or to N = 3, T = j. Our formulas for 
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characters [Eqs. (49)-(51)] become, after appropriate substi
tutions, the special cases offormulas of Va nag as and Batar
unas.9 1t is worthwhile to note that the homomorphism 
~4-~3' defined by our Eqs. (44)-(45), holds only for T = 0, 
and for T=/:o the representation of ~ 4 by Derome-Sharp ma
trices m jT becomes a faithful one. 

6. DISCUSSION 

We have shown that the permutational symmetry of the 
3ry symbol of any compact group G can be generalized to 
the case of Nry symbols that are related to a coupling of N 
irreducible representations rl .. .r N into the resultant unit 
representation roo We have pointed out that the symmetry of 
N ry symbols under a permutation of their columns is imme
diately related to a choice of the coupling scheme W, and the 
degree of freedom in a choice of the corresponding Derome
Sharp matrices is strongly dependent on the number ofiden
tical representations for the polyad r I···r N. 

The case of N = 3 has been thoroughly discussed by 
Derome,2 who has shown that if the corresponding represen
tation m of the group ~3 contains an irreducible representa
tion 121}, corresponding to mixed permutational symmetry, 
then it is not possible to choose such a system of repetition 
indices for which the absolute value of any 3ry symbol 
would remain invariant under any permutation of its col
umns. However, there exist numerous simple cases for 
which the representation /21} does not appear, so that one 
can choose symmetrical systems of repetition indices. Such 
cases are usually referred to as simple phase groups (Van 
Zanten and de Vries, II Butler3

), or simple phase triads of 
representations (Butler and King '2). As we have shown in 
the present paper for a relatively simple case of 4jm symbols 
for SU(2), there do not exist analogical simple phase tetrads 
jjjj for j =/: 0, so that the full permutational symmetry of N ry
symbols is, for N> 3 identical representations r with 
[r] > 1, an exceptional case. In general, it can be kept only 
for one-dimensional representations IN J and \1 N }, when 
the coupling scheme is chosen in such a way that the repeti
tion indices w provide a decomposition of the representation 
m of ~ N composed of Derome-Sharp matrices into irreduci
ble representations of ~ N. 

In general, for the poly ad F. .. r of N identical represen
tations r, the Derome-Sharp matrices form a representation 
m of ~ N' with the decomposition 

m = 'iJ(m, IAIlIA} (57) 
1,1 1 

into irreducible representations {A J, with multiplicities 
J(m, IA J), and the sum ranging over all partitions IA) of N 
into [r] orless parts. It is evident thatthe simple phase Nry 
coefficients occur only for the one-dimensional representa
tions {A I = IN I and lIN I, when the assumed system of rep
etition indices w provides an irreducible basis for the repre
sentation m [or, at least, for its symmetric and 
antisymmetricpart,f(m, IN !l{N} andJ(m, [iN j)[iN J, re
spectively]. Therefore, the notion of simple phase groups and 
(or) simple phase polyads has to be constrained, for N> 3, to 
simple phase symmetric and antisymmetric part of the po
lyad F. .. F. Any part related to a multidimensional represen-
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tation I Ii I of.I N is associated with Nry coefficients, which 
unavoidably change their absolute values under some per
mutations of .IN' 

It is worthwhile to make some comments on the termin
ology related to several coefficients of Racah algebra, in a 
light of the permutational symmetry. In this paper we have 
used the notion of Nry symbols, which is a natural general
ization of that for 3jm Wigner symbols, with N being the 
number of pairs of arguments Wi' yJ The presence ofy [or 
m for SU(2)] points out the dependence of the symbols on a 
choice of bases of irreducible representations (in this context 
the frequently used name "3f' for the 3jm symbol is inconsis
tent with a more general notion of 3nj-cf. Butler3). The 
Nry symbol does not always depend on any intermediate 
representation, and even if it does (for treelike coupling 
schemes), it still does not depend on the basis functions of the 
intermediate representations. The name "Nry" does not 
therefore involve the coupling scheme, which has to be speci
fied in each particular case. 

From the permutational symmetry point of view and 
according to Butler's3 suggestions, the Derome-Sharp ma
trices should be called Nr symbols, since they do not depend 
on bases of irreducible representations. So for N = 1 it would 
be 8r for N = 2-the "2r-phase" [ - 1]2r, related to the ro, 
symmetry of the metric tensor [ - 1] r - r, and for N = 3-
the ordinary Derome-Sharp matrix. The names "Nr" and 
"Nry" involve therefore only the constituent and resultant 
representations, omitting the coupling schemes, and in par
ticular, any intermediate representations. Unfortunately, 
such terminology is somehow confusing from the point of 
view of Racah algebra and graphical methods of angular 
momentum theory, with the already established notion of 
3nj symbols, n = 2, 3, .... These methods are based on tree
like coupling schemes, and the transformation between two 
such schemes is realized by an appropriate Racah recoupling 
matrix (or its symmetrical version-a 3nr symbol), the dia
grams of the latter being obtained by the connection of free 
ends of lines of representations with the same label in the 

927 J. Math. Phys., Vol. 23, No.6, June 1982 

corresponding treelike diagrams.7
,g Figures la and Ib pre

sent two treelike coupling schemes for the tetrad r j F 2r3r4 , 

and Fig. 1 c is the diagram of the corresponding Racah recou
pling matrix. Each ofthe schemes l(a) and l(b) is associated 
with a set of 5ry symbols [the four constituent representa
tions r j r 2r 3r 4 and the resultant r -cf. Eq. (18)], and the 
corresponding 5r symbol describing the transformation be
tween these sets of 5ry's can be expressed in terms of a 9r 
Wigner symbol, the "9" being the total number of lines in 
Fig. l(c), including intermediate representations. In general, 
the Derome-Sharp matrix for a treelike coupling scheme 
associated with an Nry symbol is proportional to a Racah 
recoupling matrix associated with a 3nr symbol, n<N - 2, 
and depending transparently on 3n representations: (n + 1) 
constituent, 2(n - 1) intermediate, and 1 resultant one. The 
equality n = N - 2 holds for nontrivial recoupling matrices, 
i.e., for matrices presented by such diagrams which cannot 
be divided into two separate parts by a dissection of one, two, 
or three lines. 
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The new approach to group representation theory (Ref. 1) is applied to the treatment of the 
permutation group. It is shown that obtaining (1) the primary characters and the fractional 
pan:ntage ~oefficien~s, (2) the Yamanouchi bases and the Clebsch-Gordan coefficients, and (3) 
the Irreducible matnx elements of the permutation group S (f), are all simplified to a unified 
proced.ure - ~iagonalizing a certain operator in the corresponding representation. The operator 
to be dla.gon~hzed for th~ ab?ve three problems is (1) the 2-cycle class operator Cf of S (f), (2) an 
app:opnate hnear combmatlOn oftheJ-1 2-cycle class operators Cf , Cf _ 1 ,,,,,C2 of the group 
chamS(f):) S(f - 1):) ... :::) S(2), and (3) an appropriate linear combination of 2/ - 3 2-cycle 
class operators Cf , Cf _ 1 , ... ,C2, C(J f _ 1 'oo., C(J 2' C(J i being the 2-cycle class operator of the 
subgroup Y"( i) of the state permutation group Y"(f), respectively. This method, the 
eigenfunction method, is simpler in concept, yet more powerful in practical calculations. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

In Ref. 1 we put forward a new approach to group re
presentation theory. The purposes of this new approach are 
three fold: (1) to give a simple and unified method for calcu
lating the characters (the term character used in this paper 
always refers to the primary character), the irreducible 
bases, the Clebsch-Gordan coefficients, the isoscalar fac
tors, etc., (2) to give a unified treatment for finite groups, 
compact Lie groups and space groups, and (3) by introducing 
the concept of the complete set of commuting operators 
(CSCO) into group theory and using the CSCO approach of 
quantum mechanics, to make the group representation the
ory more accessible to physicists. In this paper we want to 
apply this approach to the particular case of the permutation 
group. 

The permutation group has important application in 
the physics of many-particle systems. The importance lies in 
the facts that a system of identical particles has permutation 
symmetry and that there exist many deep and delicate inter
relations between the permutation group and the unitary 
group. The representation theory of the permutation group 
is well established through the efforts ofY oung, Frobenious, 
and Yamanouchi et al. 2

,3 This theory has many advantages. 
For example, it gives the branching law for reducing the 
irreducible representations (hitherto referred to as irrep) of 
S (f) into those of S (f - 1), a simple method for constructing 
the irreducible matrix elements of the neighboring permuta
tions, and the intuitive and elegent way oflabelling the irreps 
and the irreducible bases by the Young diagrams and the 
Young tableaux, etc. 

However, from the practical point of view, this theory 
has some serious drawbacks. (1) It is too difficult for physi
cists to grasp quickly. Soklov4 pointed out: "Due to the fact 

alPennanent address. 

that the group theory, especially the theory of representa
tions and characters of the permutation group, is extremely 
difficult even for the specialists, there occured in the history 
the tendency against the use of the so called "group pest" in 
quantum mechanics." (2) When it comes to actual calcula
tion, it is rather tedious to obtain the characters, the Yaman
ouchi bases, the Clebsch-Gordan coefficients, etc. 

The new approach to the permutation group has the 
advantage of being concise in theory and easily manageable 
in practice. A process of reducing a representation into the 
irreducible representations corresponds to a transformation 
from the nondiagonal representation to the diagonal repre
sentation of the CSCO. Thus the calculation of the charac
ters, the irreducible bases, the reduction rules, the Clebsch
Gordan coefficients, the coefficients of fractional parentage 
(cfp), etc., are all reduced to a single recipe: finding the eigen
function of a certain kind of CSCO which consists of only 
one operator. 

The new approach to the permutation group is an inde
pendent theory in the sense that we can obtain, through 
straightforward, standard, and easily programmable calcu
lations, all the results without using the traditional Y oung
Yamanouchi theory. Nevertheless, it has it own drawbacks, 
namely, we cannot get general conclusions about the dimen
sionality of irreps, the branching law, the irreducible matrix 
elements, etc., prior to concrete calculations. 

From the above discussion it is seen that the advantages 
and the disadvantages of the Y oung-Yamanouchi theory 
and the new approach of the permutation group are comple
mentary; one's disadvantage is just the other's advantage. 
Thus, from the practical point of view, we can combine these 
two to give a powerful method for handling the representa
tion of the permutation group. This is the main purpose of 
this paper. 

For easier accessibility and to establish notation, we 
present some important theorems given in Ref. I (a) but omit, 
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except for a few special cases, the proofs. The whole content 
is divided into eleven sections: 

1. Introduction. 
2. CSCO-I and characters. 
3. CSCO-II and the Yarnanouchi bases. 
4. The Clebsch-Gordan coefficients. 
5. The coefficients of fractional parentage. 
6. The intrinsic group. 
7. CSCO-III and irreducible matrix elements. 
8. Reduction of nonregular representations. 
9. The state permutation group. 
10. The quasistandard basis of the permutation group. 
11. Conclusion. 

2. CSCO-I AND CHARACTERS 

Since the concept of the class operator is crucial to the 
developing of this new approach, we begin with a brief re
view of the definition and the properties of the class opera
tors and class space. 

A. Group space 

Let {Ra} = R I' R 2, ... ,Rg or R, S, T, .. be the elements of 
a finite group G of order g. The g dimensional linear vector 
space spanned by the g elements Ra is called the group space 
Va. The metric tensor in the group space is defined as 

(Ra IR/» = Oab' (1) 

B. Class operators and class space 

For a finite group G with N classes, we have N class 
operators. The class operator Ci is equal to the sum of all the 
group elements belonging to the ith class, 

(2) 

with gi the number of elements in the class i. 
The N dimensional linear vector space spanned by the N 

class operators C I , C2"",CN is called the class space. 
From Eqs. (1) and (2), the metric tensor in the class 

space is seen to be 

(3) 

The class operators have three important properties5
: 

(a) They commute with each other, 

[Co Cj ] = O. 

(b) They commute with any element of the group G, 

(c) They are closed under multiplication, 

CiCj = rCZCk' 
k 

(4) 

(5) 

(6) 

The coefficients C Z are called the structure constant of the 
finite group G. Therefore, the N class operators constitute an 
algebra - the class algebra. 

From Eq. (6) we know that the N "basis vectors" C I , 

C2, ... ,C N of the class space carry a representation of the class 
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algebra, 

(7a) 

The matrix representative g (Ci ) of the class operator Ci in 
the class space is equal to the structure constants, 

(7b) 

C.CSCO-I 

Definition 1: A set of / operators C I , C2"",C1 picked out 
of the N class operators of a group G is called the CSCO-I of 
G, or simply the CSCO of G, if the set is a complete set of 
commuting operators in the class space, denoted as 

(8) 

We use the term complete set of commuting operators 
(CSCO) in the same sense as used by Dirac,6 i.e., a set of 
commuting operators C = (C I , C2 ... ) is called a CSCO of a 
space if, in that space, all the eigenvalues of Care nondegen
erate. It must be emphasized that a CSCO is related to a 
particular space. 

In Ref. l(b) it was shown that the CSCO defined above 
is a generalization of the Casimir operators of Lie groups. 

It can be proved that the set of theN class operators ofG 
is certainly a CSCO in the N-dimensional class space. The 
next question is can we constuct a CSCO of G out of fewer, 
say / (/ < N), class operators? From the practical point of 
view, we wish the number of operators contained in the 
CSCO of G as small as possible. The CSCO of G can be found 
in the following way. 

Pick up some class operator Co and seek its "eigenvec
tor" Q in the class space. Any "vector" in the class space can 
be expressed as a linear combination of the basis vectors, 
therefore 

Q= rqjCj• 

CiQ=AiQ, 

(9a) 

(lOa) 

where qj are coefficients and Ai are eigenvalues. With the 
help of Eq. (6), the eigenequation (lOa) becomes 

(11a) 

From 

(Ub) 

we can obtain the eigenvalues A Iv) and the corresponding 
degeneracy mv' If all the eigenvalues A Iv) are nondegenerate, 
i.e., mv = 1, for v = 1,2, ... ,N, then the single class operator 
Ci constitute the CSCO of G. It is easy to show that the 
eigenvectors Q (v) of this class operator Ci are also the simul
taneous eigenvectors of all the class operators. 

If there is any degeneracy in some eigenvalues A Iv), then 
Ci is not a CSCO of G. We have to add another class opera
tor, for example Cj • and seek the simultaneous eigenvectors 
ofCi and Cj • 

(lOb) 
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If all the sets of the eigenvalues (Ai' Aj) are nondegenerate, 
then (Ci , Cj ) will be the CSCO of G. Otherwise we have to 
add more class operators, until all the degeneracies of the set 
of eigenvalues are reduced to one. The choice of the CSCO of 
G is, of course, not unique. 

For finite groups with known characters, it is very easy 
to find their CSCO without any need of the above proce
dure.7 We have already found the CSCO for commonly used 
finite groups [see Tables 1 and 2 of Ref. 1 (a)]. The number / of 
the operators contained in the CSCO of those groups is equal 
to one, two, or at most three. In other words, / is much less 
than the class number N. It is precisely this fact that makes 
the eigenfunction method valuable in practical calculation. 
The CSCO for the permutation group S (f) is equal to 

C(f) = C(2) (f) = Cf = I{(ij) for/<5 and/= 7, 
i<j 

C(f) = (C(2) (f), C(3)(f)) for/= 6 and Sq<14, 

C(3) (f) = I{ [(ijk) + (ikj)] , (12) 
i<i<k 

Ci (f) being the i-cycle class operator of S (f). 

D. Theorem 1 

In the class space the eigenoperator Q Iv) of the CSCO of 
G is essentially the projection operator on to the irrep (v) of 
G. 

Proof Attach superscripts to the symbols Q and q in Eq. 
(9a), 

(9b) 

The eigenvector QIV) of the CSCO satisfies the following set 
of eigenequations: 

(lOc) 

Equation (lOc) can be written more concisely as 

(lOd) 

with 

(13) 

qj") satisfy a set of linear algebraic equations: 

N 

I(C~ -AIV)8jk )qj") =0, k= 1, .. N, i= 1,2, ... /, 
j~l 

(14) 

or written in the form of matrix equations, 

(ISb) 

q~ 
From quantum mechanics we know that the simultaneous 
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eigenvectors qlV) of a CSCO must satisfy the orthonormality 
and completeness condition with the metric tensor gi as 
weights: 

'" g.qI.V)·qI.IL) = 8 L I I I VI-L' 

'" g.ql.v).q(v) = 8 .. 
~ I I J '1. 

Using Eqs. (4), (9b), and (lOd) we have 

(16a) 

(16b) 

CQ (v)Q (IL) = A IV)Q IV)Q I IL) = A I IL)Q (v)Q (IL). (17) 

Equation (17) shows that Q IV)Q I IL) is an eigenoperator of C 
with eigenvalue A Iv) or A I IL). According to the definition of 
the CSCO of G, the eigenvalues of Care nondegenerate, 
therefore 

Qlv)QIIL) = 8vIL 1/vQlv), (IS) 

where 1/v is a constant depending only on v. Letting 

plv) = 1/:: lQlv), (19) 

we have 

p(v)pIIL) = 8vIL PIV). (20) 

In other words Ply) are idempotents. 
From (16b), we get the inverse expansion ofEq. (9b), 

N 
Ci = I giqIV)·Qlv). (21) 

v=l 

Multiplying Eq. (21) from right with QIIL) and usings Eqs. 
(lOc) and (IS), 

(22) 

Combining Eqs. (19), (21), and (22), 
N 

Ci = I AIV)PIV). (23) 
v=1 

Letting Ci = e (identity) and noting that its eigenvalue 
A ~V)= 1, we finally get 

N 
e = I plv). (24) 

v=l 

This is the decomposition theorem for the identity element 
of the group G. Thus the operator P Iv) is the projection oper
ator on to the irrep (v) of G, and Theorem 1 is proved. 

E. Theorem 2 

The relations between the eigenvector qIV), the eigenval
ue A ~v), and the character X IV) can be shown to be7 

X~V) = (vg)qIV)., xIV) = (hJg;0IV). (25) 

Therefore, the orthonomality and completeness condi
tions, Eq. (16), are just the first and second orthogonality 
theorem of the characters 

(26a) 

(26b) 

From Eqs. (15) and (25) one has 
Theorem 2: The eigenvectors of the CSCO of G in the 

class space are proportional to the complex conjugate of the 

Jin-Quan Chen and Mei-Juan Gao 930 



                                                                                                                                    

characters: 

iiJ(C;)X(v)*=A\v)X(V)*, i= 1,2, ... ,/, 

X~v 

(v) 
N 

(27) 

Therefore a simultaneous diagonalization of the / matrices 
iiJ(C.) ... iiJ(C[) with the normalization condition (26a) gives 
all the characters. 

F. The labeling of inequivalent irreps 

The CSCO of G must have N different sets of eigenval
ues A (v), v = 1,2, ... ,N, since it is a CSCO in the class space. 
Corresponding to each A (v), there is only a unique projection 
operator P (v). Therefor, one can use the eigenvalue v to label 
the nonequivalent irreps. 

For the permutation group S (f), the relation between 
the new label A (v) = (A ~~:, Am) and the old label, the parti
tion [v] = [VI' v2, ••• v[], iss 

A :~: = f + !2::V/(v/ - 2/), 
2 / 

A ~~: = +( 2f - ~f2 + ~::V+1- (3/ - ~ )v/ + 3/(/ - I)]} 

(28) 

The relations between the eigenvalues of the conjugated ir
reps (interchange rows and columns in Young diagrams) are 

1 IvJ 'IvJ A [vi - A Iv) (29) 
/\, (2) = - /\, (2) , (3) - (3)' 

For self-conjugate representations [v] = [V], one has 

llvl_O 
/\,(2) - • (30) 

The eigenvalue A (I~I has a simple meaning9: it equals the 
difference between the numbers of the symmetric bonds and 
antisymmetric bonds in any irreducible basis vector of [v], 

1 (vi - (31) 
/\,(2) -ns-na' 

A I~I can be calculated directly in the following way9: One 

ascribes symmetric bonds to all the boxes in the same row of 
a Young diagram ylvl and antisymmetric bonds to boxes in 
the same column, while boxes that are neither in the same 
row nor the same column are counted as half-symmetric and 
half-antisymmetric, and therefore do not contribute to A I~I; 
the self-conjugate diagram in Y [vI also does not contribute to 
1 [vi 

/\, 2 • 

Example: 

flPTITI3'l1. 1 2 I2J .J..g221 = 0 + 3 + 4 + 1 - 2 = 6. 

The hatched diagram contributes zero, adding successively 
box 1 and box 2 gives three and four symmetric bonds, while 
adding box 3 gives 1 symmetric and 2 antisymmetric bonds. 

In Table I, we list the new and old labels for those irreps, 
whose row length is greater or equal to the column length, of 
the permutation groupS (2) - S(8).A 1;,1 are listed only when 
A m are degenerate. 

G. Another form of the CSCO 

From relation (28), we can easily find a suitable linear 
combination of the 2- and 3-cycle class operator 

(32) 

where a [ and b [ are coefficients, such that the single operator 
C (f) has N different eigenvalues 

1 (v) 1 (v) + b ' (vi - 1 2 N /\, =a[/\,(2) f/\,(31' v- , , .... (33) 

Therefore, the single operator C (f) ofEq. (32) constitute the 
CSCO of S(f) withf<14. For example, S(6) hasN = 11 
classes. Using relation (28), we obtained the eigenvalues A l~: 
and A ~~: listed in Table II. The single operator 

(34) 

has 11 different eigenValUes, as can be seen from Table II. 
Thus C (6) is the CSCO of S (6). Obviously, there are infinite 
ways of contructing such a linear combination. 

TABLE I. The new and old labeling of IRREPS of the pennutation group S(fl withf<;8. 

S2 S3 S. S3 
[v] [2] [3] [21] [4] [31] [221 [5] [41] [32] [312] 

A(2) 3 0 6 2 0 10 5 2 0 

S6 S7 
[v] [6] [51] [42] [412] [33] [321] [7] [61] [52] [512] [43] [421] [321] [41 3] 

A12) 15 9 5 3 3 0 21 14 9 7 6 3 0 

A. (3) 4 -8 

S. 
[v] [8] [71] [62] [612] [53] [521] [513] W] [431] [422] [4211] [J22] 

A12) 28 20 14 12 10 7 4 8 4 2 0 0 
A(3) 16 -8 0 -16 
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TABLE II. The eigenvalues of two kinds ofCSCO-I, (CI21 , Cm) and 3C13) + C12), of S(6). 

[6] [51} [42] [411} [33] [321] 

Aill 15 9 5 3 3 0 

A(3 ) 40 16 0 4 -8 -5 

HI31 +A(l] \35 57 5 15 -21 -15 

From now on, the CSCO of S (f) can be understood as 
either a set of class operators ofEq. (8) or a single operator of 
Eq. (32). Likewise, the eigenvalue A (vi can be understood as 
either a set of eigenvalues or just a single eigenvalue of Eq. 
(33). 

H. Calculation of characters 

As mentioned before, to obtain the charaters one has to 
diagonalize simultaneously the matrix representatives of the 
class operators (C(2» C(3»"')' which constitute the CSCO of 
S (f). However, if we use the known result of the dimensiona
lity of the irreps from the traditional theory of the permuta
tion group, we can still obtain the characters by diagonaliz
ing only the matrix .@(C(2)) of the two-cycle class operator. It 
can be done in the following way. 

Supposing the eigenvalue A Ivl has twofold degeneracy, 
in other words there are two partitions, say [v] and [Vi], cor
responding to the same eigenvalue A (v). For example, 
[v] = [411] and [33] correspond to the same eigenvalue 
A:;: = 3. For this eigenvalue A lvi, one gets two independent 
solutions from Eq. (14), which can be orthonormalized ac
cording to (16a). Let these two orthonormalized eigenvector 
be q(vl and q(yr. According to Eq. (25), the character X [vI can 
be expressed as 

(35) 

where a and b are coefficients and satisfy the condition 

(36) 

From Eq. (35) one has 

hy = X ~YJ = (V g) (aq~1 + bq~yr). (37) 

From the known dimension hy , and Eqs. (36) and (37), we 
can calculate the coefficients a and b. Due to the orthogona
lity property, the other character vector must be 

x[Y'] = a(Vg)(bqlyl- aq(v)'), 

where 

(7 = sign (bq~Y) - aq~Y)'). 

(38a) 

(38b) 

It is easy to generalize this procedure to the case when 
the degeneracy of A(2) is greater than 2. By this method we 
calculate all the characters of the group S II' The essential 
difference between the eigenfunction method and the Jones' 
method 10 or Boemer'ss method for calculation of characters 
is that we introduced the CSCO of G and thus it is much 
simpler. In fact their methods are of prohibitory difficulty 
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[222} [WI [21 121 [214] [1 61 

-3 -3 -5 -9 -IS 
-8 4 0 16 40 

- 27 9 -5 39 105 

for use in calculating characters of high-order finite groups. 

I. Example_ Group 5(3) 

S(3) has three classes, C l = e, C2 = (12) + (23) + (13), 
C3 = (123) + (132). 
From the multiplication table 

C2C2 = 3(C! + C3), C2C3 = 2C2 (39) 

and Eq. (7a), we obtain the matrix representative of C2: 

g{C,) ~ a ~ D (40) 

Diagonalizing .@(C2 ), one gets three different eigenvalues: 
A(2) = 3,0, - 3. Therefore C2 is a CSCO of S (3). The three 
eigenvectors of .@(C2 ), normalized according to Eq. (26a), 
give the three character vectors 

3 0 -3 
partition [3] [21] [1 3

] 

~genv_n m u) (~1) (41) 

If we at first pick out the opera tore C3 and diagonalize 
the matrix 

o 
2 

o 
(42) 

we would find the eigenvalue A13) = 2, - 1, 2. There is a 
twofold degeneracy in A13) = 2, therefore C3 is not a CSCO of 
S(3). 

3. CSCO-U AND THE YAMANOUCHI BASES 

A. Theorems 3 and 4 

Theorem 3: A necessary and sufficient condition for f/JV) 
to belong to the irrep (v) of a group G is that I/fv) is an eigen
function of the CSCO-I of G: 

(43) 

Hereafter, we use v to denote both the eigenvalue and the 
label ofthe irrep. (Sometimes we also use the partition [v] as 
the irrep label). A generalization of Theorem 3 is 

Theorem 4: A necessary and sufficient condition for 
"';,1-','" to belong to the irreps v,iLl,iL2"" of the group chain 
G ::::> GI ::::> G2• .. is that f/J;;I-"'" satisfies the following 
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eigenequations: 

C 

C(I) 

C(2) 

v 

III 

Ilz f/J;:~I""" (44) 

where C (i) is the CSCO of Gi, Ili is its eigenvalue. Equation 
(44) can be written more compactly as 

(c~s)tP,;;) = (:)f/J,;;), Cis) = (C(I), C(2), ... ), (45) 

m = (PI' Ilz,"')' 

C (s) will be called the CSCO of the subgroup chain 
G (s) = GI:J Gz:J .... tP';;)will be called the irreducible basis in 
the G :J G (s) classification. 

B. Definition 2 

If( C, C (s)) is a CSCO in each irreducible space of G, then 
(C, C (s)) will be called CSCO-II of G. (It should be remem
bered that CSCO-I is a CSCO in the class space.) 

C. CSCO-IJ of S( f) 

Since the group chain S (f) :J S (f - I):J ... :J S (2) is a 
canonical subgroup chain (i.e., the irreps of the group chain 
provide a complete solution to the labeling problem), the set 
of operatorsM = (C(f), C(f - I), ... , C(2)) is a CSCO-II of 
the group S (f), C (i), being the CSCO of S (i). From Theorem 
4, we know that the simultaneous eigenfunctions of Mare 
the Yamanouchi bases. 

Now we want to prove that the set of the operators (C (f) 
... C(2)) is overcomplete, i.e., the number of the operators 
contained in it is more than enough to make it a CSCO in 
each irreducible space of S (f). In fact we have 

Theorem 5: The (f - I) 2-cycle class operators 
(Cf , Cf~ I , ... ,Cz) of the group chainS(f) :J S(f - IP 
... :J S (2) constitute a CSCO-II of the group S (f). 

Proof To prove the theorem is equivalent to prove that 
a Yamanouchi basis of S (f) can be labeled uniquely by the 
eigenvalues Af ... Az [Notice that we changed from the nota
tion ,.1,(2) (f) to Af for the eigenvalue of 2-cycle class operator 
Cf ]. From Table I we know that for f < 5, a single operator 
Cf constitutes the CSCO of S (f), in other words, C (fl = Cf ; 

so the theorem is trivial forf<5. Now supposing it holds for 
S (f), we want to prove it also holds for S (f + I). According 
to the relationship (28) between the Young diagram and the 
eigenvalueAf , and the branching law, this in tum amounts to 
proving that if there are I Young diagrams [VI] ... [ VI] of 
S (f + I) corresponding to the same eigenvalue Af + I and 
supposing [?] be the Young diagram resulting from remov
ing one box from the Young diagram [,I] (see schematic 
diagram below), then [?] i' [iI] for i i' j. 

S(f + 1) [Vi) ... [,I ) S(f+ 1) [Ill) [Ill'] 

Af + I'" Af + 1 A}+I Ay+, 

! ! 

" / S(f) [VI] [VI), S(f) [ v) 
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It again amounts to proving that all the eigenvalues 
A f + I corresponding to the Young diagrams [Ili] which 
result from adding one box to the same Young diagram [V] of 

S(f)aredifferent.Let [Ili] = [/1' fz'''·!..~ l,fi + 1,1r+ I'''] 
be the Young diagram resulting from adding one box in the 
ith row of the Young diagram [v] = [/1"'" Ir ~ I Ir Ir + I ... ]. 
From (28) one has 

A}+, =f+ 1 +!.LLft +O/i)(.!t +O/i -21). (46) 
2 I 

If A} + I = A j + lone gets 

(47) 

from (46). Supposing i <j, it must havelr > jj due to the rule 
for the Young diagrams, and thus (47) holds only when i = j. 
The theorem is proved. 

Therefore one can label a Yamanouchi basis of S (f) ei
ther by thef - 1 Yamanouchi symbols 
(rf , rf~ I .... ,rz, rl==l) or by thef - 1 eigenvalues (Af ... A2 ). 

They have one to one correspondence. This correspondence 
can be seen more clearly from the branching diagram. Figure 
1 gives the branching rule for S (f) withf<6. The numbers 
below each partitions are the eigenvalues Af . Starting from 
each partition of S (f), each route along the arrows corre
sponds to a Yamanouchi basis vector of S(f). We can use 
either a string of partitions or a string of eigenvalues through 
which the route passes to label a Yamanouchi basis vector. 
For example, 

F2 4 5 [411]-+[41)-+[31]-+[21]-+[2] 

3 (3,5.2.0.1) 

6 

[IJT14l [33J-+{32J-+[3IJ-+(2IJ-+[2J 

CIII:ill (3, 2, 2, 0, I) . 

From the above example one can see that although both the 
irreps [411] and [33] correspond to the same eigenvalue 3 of 
C6, their reduction routes are different. The possible degen
eracy in the eigenvalue ,.1,6 does not prevent us from labeling 
the Yamanouchi basis uniquely by the set of eigenvalues (,.1,6' 

,.1,5 .. ·,.1,2)' 
According to the branching diagram, like Fig. 1, by 

taking a suitable linear combination ofthef - 1 2-cycle 

FIG. I. The branching diagram of S If),J<6. The numbers below each parti· 
tion are the eigenvalues Af . 
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TABLE III. The one-to-one correspondence between the Young tableaux. and the eigenvalues of two kinds of CSCO-II of S (5). i.e .• (,1.3' ,1.4' ,1.3' ,1.2) and 
l:! ~ 2n,1. •. 

1234 1235 1245 
Ytableau 12345 5 4 3 

(,1.~4,1.~2) (10.6.3.1) (5.6.3.1) (5.2.3.1) (5.2.0.1) 
A. 85 60 44 35 

125 135 123 124 
Y tableau 34 24 4 3 

5 5 

(,1.~4,1.3,1.2) (2.0.0.1) (2.0.0. -1) (0.2.3.1) (0.2.0.1) 
A. 12 8 19 10 

class operators, one can easily construct a single operator, 

(48) 

such that A is a CSCO-II ofS(f). To this end, we only need to 
choose the coefficients k n properly so as to make the eigen
values A. of the operator A all different for each Yamanouchi 
basis vector of S (f), 

(49) 

For example, 

A = ± nCn (SO) 
n=2 

is a CSCO-II ofS(f) for 2 <f < 5. The eigenvalues A. forS(5) 
are listed in Table III, along with (11.1 "'11. 2 ) and the Young 
tableaux. There is a one to one correspondence between 
them. 

D_ Eigenfunction method for finding the Yamanouchi 
basis 

The eigenfunction method for finding the Yamanouchi 
basis can be described as follows: Suppose there are N orth
onormalized (it is trivial to extend to the nonorthonorma
lized cases by introducing the so-called dual basis. If-particle 
wave functions 

(51) 

carrying a reducible representation of S (f). We take a linear 
combination of CPa to form a Yamanouchi basis, 

,. 
l/J). = 2: U).aCPa· (52) 

a=l 

According to Theorems 4 and 5, the Yamanouchi bases are 
eigenfunctions of the CSCO-II of the permutation group, 
i.e., l/J). satisfy the following simultaneous eigenequations: 

Cnl/J).=Anl/J)., n=J,f-l •...• 2. (53) 
or 

(C~s)l/J~) = (:)l/J~), 
(C; C(s)) = (CI ; CI _ p""C2), 

Cn = 2:7W). (54) 
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1345 123 124 134 
2 45 35 25 

(5.2.0.-1) (2.2.3.1) (2.2.0.1) (2.2.0. -1) 
31 29 20 16 

134 125 135 145 
2 3 2 2 
5 4 4 3 

(0.2.0. -1) (0. - 2.0.1) (0. - 2.0. - 1) (0. - 2. - 3. - 1) 
6 -6 -10 -19 

The expansion coefficients U).a can be found by solving the 
following eigenequations: 

2: [(CPa ICn ICPb) - AnOab ] U)'b = 0, n = J, .. ·,2. (55) 
b 

The matrix of Cn is a symmetric matrix. 
Ifwe choose a single operator A ofEq. (48) as the CSCO

II of S (f), then the set of eigenequations (53) or (55) is re
placed by a single eigenequation 

Al/J). =A.l/J)., 

2: [(CPa IA ICPb) - A.0ab ] U)'b = O. (56) 
b 

The problem of simultaneously diagonalizingf - 1 matrices 
is thus reduced to that of diagonalizing a single matrix. For 
computer calculation, it greatly simplifes the problem. How
ever, for hand calculation, it is preferable to use Eq. (53). 
Because we can start with n = 2, and successively use the 
eigenequation of Cn _ I to eliminate the unknown variables 
in the eigenequation of Cn • 

In many cases we can know beforehand which irreps 
the given reducible representation will decompose into. In 
such cases, the task of finding the eigenvalues from Eqs. (55) 
or (56) can be skipped. According to the known decomposi
tion rule, and the correspondence between the eigenvalue 
and the Young tableau, like Table III, we can write down the 
eigenvalue and substitute it into Eqs. (55) or (56), then solve 
the resulting algebraic equations. 

a. Multiplicity free case 

If the eigenvalue A. is nondegenerate, it means that the 
corresponding irrep [v] occurs only once in the given reduc
ible representation. From Eq. (56), we can obtain the Ya
manouchi basis except for a possible difference in the relative 
phase. The Young-Y amanouchi phase convention stipu
lates that the off diagonal matrix elements of the neighboring 
permutation must be positive. Using this condition the rela
tive phases of the eigenfunctions l/J~) belonging to the same 
irrep [v] can be determined. Other ways for obtaining the 
eigenfunctions with the Yamanouchi phase convention are 
given in the following Sub Sec. (b) and Sec. 7. 

b. General case 

If an eigenvalue A. has 'Tv-fold degeneracy, it implies 
that the corresponding irrep v occurs 'Tv times in the given 
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reducible representation. For the eigenvalue A = (v, m), we 
can get 7 v linearly independent solutions 

.r 
.I,T _ ./JV)T - ~ U(T)m - I 2 "'" 
'f/A - rpm - ~ ..taTa' T- , '···"v· (57) 

a=1 

Apart from the requirement that Tf;~ be orthogonal on the 
multiplicity label 7, 

(Tf;r, lTf;n = 8TT,8,u' , (58) 

we are free to choose the 7 v solutions. However, it must 
emphasized that these randomly chosen eigensolutions with 
the same (v) and (1") but different (m) will in general not span 
an irrep, since the label 1" is chosen arbitrarily for each (v,m). 
This problem can be solved in the following way. 

We know that once a certain component Tf;~) of an irrep 
(v) is known, all the other components of the irrep (v) can be 
deduced by the action of an appropriate element, denoted as 
F~)'m (R ), of the group algebra, 

tf}:;/ = F~)'m(R )Tf;~), (59a) 

The explicit form of F~~m (R ) is easy to find out for each 
group. The Y oung-Yamanouchi matrix elements of the 
neighboring permutation has the following properties: 

D !:.~(i - I,i) = (a2 - 1)1/2/10'1, for Y!;) = (i - l,i)y!;J 
{

I/O', m' = m 

0, otherwise (60) 

where 0' is the axial distance2 from the ordinal i to i-I in the 
Young tableau y!;l. Therefore, for the permutation group, 
Eq. (59a) takes the form 

Tf;!:.Jr = {fPii-1 - D !;~(i - I, i))/D !:.~(i - I, i)}T/J!;JT, 
(59b) 

where the Young diagram y!;.1 is obtained from y!;l by 
interchanging the number i with i-I. Thus the finding of 
the Yamanouchi bases can proceed in the following way. 

For a certain component, say the one with the maxi
mum Yamanouchi symbol2 [which we call the first (m = I) 
components-the label m can be regarded as the set of quan
tum numbers (A f _ 1 ••• A2 ) of the Yamanouchi symbol, or the 
index specifying the order of the Yamanouchi bases with 
decreasing page-order convention for the Yamanouchi sym
bol] of each irrep (v), find the 7 v orthogonal eigensolutions 
tf}:;,) from Eq. (56). Choosing appropriate neighboring permu
tations and using Eqs. (60) and (59b), we can get all the other 
components tf}:;,), successively. For example, for the irrep [32] 
of S5' from the Yamanouchi basis 1!;3 we can obtain all the 
other components by applying the neighboring permutation 
in the following way: 

1
123) -: 1124) :1

134
) : 1

135
) 

(45) 35 25 24 

! (45) 

113
2
;) 

The advantages of this procedure are twofold. (1) For 
each irrep (v) one only needs to solve Eq. (56) once instead of 
hv times. (2) Using the Yamanouchi's matrix elements, Eq. 
(60), ensures that our solutions are consistent with the 
Y oung-Yamanouchi phase convention. 
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Equation (59b) is, of course, also applicable to the multi
plicity free case. 

For another way of handling the multiplicity problem 
see Sec. 7. 

4. THE CLEBSCH-GORDAN COEFFICIENTS 

Supposing tf}:;,:)(x) and tf}:;,:)(s ) are the two wave func
tions of the samefparticles in the x- and t-space, and they 
are the Yamanouchi bases of the permutation group S x(f) 
and S5(f), respectively, where SX(f) (S5(f)) is the permu
tation group in the x-Ito) space. 

The product wave functions rp~:)(x)Tf;~:)(t) carry a re
ducible representation, the uncoupled representation, of the 
permutation group S q(f) with q = (x,t). By means of the 
Clebsch-Gordan coefficients (CGC), C ~)':;::'v.m.' of S (f), they 
can be linearly combined into Yamanouchi bases of sq(f): 

(61) 

where 1" is a multiplicity label. The CGC satisfy the unitarity 
condition: 

~ c(v)T,m C(V)T,:" ,= 8 ,8 .. 
~ v.rn.,v1m1 vtm"vJ;m1 mimi m1ml 
vmT 

(62a) 

(62b) 

From Eq. (54), we obtain the eigenequations satisfied by 
theCGC. 

~ [(m·m·1 C 1m m ) - (v)8 8 c(v)T,m ] 
m'7;:" 1 2 C (s) 12m m,m; m.m; v,.m"v.m. 

=0. (63) 

Using 
n-I 

Cn = Cn - 1 + L (in), (64) 
i~1 

the matrix elements of Cn can be calculated by the following 
recursive formula: 

(m;mi ICn Im 1m2 ) 

n -I 

= (m; mi ICn --I Im 1m2 ) + L D~;)m, (in)D~rm,!in). 
i~ 1 

(65) 

It is readily seen that the matrix (m; mi I Cn Im 1m2 ) is a 
real symmetric matrix. 

The following two important facts should be 
mentioned. 

(I) The operator C2 = (12) of sq(f) is diagonalized in 
the uncoupled representation. 

Proof Since rp:::, and Tf;'::.. are Yamanouchi bases, we 
have 

A ~1 = ± 1, i = 1,2. 

From Eq. (66), it follows immediately that 

C2 1m 1m2 ) = A2 Im 1m2)' 

A2 = A ~I)A ~). 
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TABLE IV. The eigenvalues f3 of the quasi-CSCO-II. I-; ~ 3nC •• of S(() for the first Yamanouchi basis vector of each irrep.I<6. 

[v] [3] [21] [1 3
] [4] [31] [22] [211] 

f3 9 0 -9 33 17 0 -8 
[v] [6] [51] [42] [411] [33] [321] [31 3

] 

f3 173 137 88 76 45 27 -1 

For later convenience, A,2 will be referred to as the (permuta
tion) parity. 

Therefore, to obtain CGC we only need to diagonalize 
the/-2 class operator Cf ,,,C3 

(2) If we divided the product bases Im.m 2 ) according to 
theA,2= ± 1 into the two groups Im.m2) 1+1 and 
Im.m2)1 _ I' then 

1+I(mi m; ICn Im.m2)1_1=0. (68) 

This can be easily proved by using the fact that 
[Cn. C2 ] = O. 

The property Eq. (68) greatly simplifies both the calcu
lation and the tabulation of the CGc. Each CGC table can 
be decomposed into two subtables, one corresponding to 
A,2 = 1, and the other corresponding to A,2 = - 1. (See the 
Tables of the CGC of permutation groups in Ref. 11) 

From the discussion in Sec. 3, it is known that we only 
need to calculate the first component C ~I:;;.'::,,:: of CGC 
from Eq. (63). Since the first components ofYamanouchi 
bases of all the irreps, except the totally antysymmetric irrep, 
have A,2 = 1, and the CGC for the totally antisymmetric ir
rep are very simple, we can always restrict ourselves to dia
gonalize thef - 2 operators Cf ' Cf _ • "",C3 in the positive 
parity space. To facilitate computer calculation, in analogy 
with Eq. (48) we can introduce a single operator 

(69) 

and require that its eigenvalue corresponding to the first 
component of each irrep be unique, i.e., no eigenvalues cor
responding to any other Yamanouchi bases of S (f) are identi
cal to it. 

The difference between the operator A [Eq. (48)] and B 
should be noted. A is a CSCO-II of S (f), while B is not. The 
eigenvalues of B corresponding to the nonfirst components 
ofYamanouchi bases may be identical. For simplicity, we 
call B the quasi-CSCO-II of S (f). For example, 

B= i nCn (70) 
n~3 

is a quasi CSCO-II for Sf withf.;;;; 6. The eigenvalues of B for 
the first Yamanouchi basis vector of each irrep are listed in 
Table IV. 

In summary, the steps for calculating CGC of the per
mutation group are 

(1) Using the following eigenequation to calculate the 
first component CGC: 

=0. (71) 

If /3 is a 1" v - fold root of the secular equation, it means that the 
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W] [5] [41] [32] [311] [221] [21 3
] [1 '] 

- 33 83 58 27 17 -10 - 33 - 83 
[23

] [2212] [214] [16] 
- 28 -40 - 87 - 173 

irrep [v] occur Tv times in the product representation 
[v.] X [v2]. There are 1"v independent eigenvectors 
{C~I:;;::,v;': },T = 1,2, ... ,1"v (with m l, m2 as the row label). 
They are to be made orthogonal with respect to the label T 

[see Eq. (62a)]. 
From the known results of the Clebsch-Gordan series 

of the permutation group given by Itzykson and Nauen
berg,·2 the task of finding the eigenvalues can again be 
skipped. We just substitute the known eigenvalue /3 into Eq. 
(71), and solve a set of linear homogeneous algebraic 
equations. 

(2) Having obtained the first component solution, we 
use Eq. (59b) to find other components. Substitute (jI~IT and 
IJI~!T for t/J~IT and t/J~!7 in Eq. (59b), respectively, and multi
plying from left with i + I (m.m 2 1 we have 

CivI7 ,m' = [Dlv) (i-l i)]-· 
l'.m;.t'lml m m , 

X '" [D v" (i - 1. i)D v,. (i - 1, i) 
~ mimi m2ml 

m.m1 

-D';"m(i-l,i)Dm'm Dm'm ]C~I:;;"'vm' • I 1 1 I l' 1 l 
(72) 

Using this method we have calculated the CGC of the per
mutation group Sf withf.;;;; 6. The numerical tables have 
been published .• 2 All coefficients are expressed in the form 
of square roots of rationals. An alternative, and incidently, 
better way of calculating the CG coefficients of the permuta
tion group is given in Ref. 19. 

5. THE COEFFICIENTS OF FRACTIONAL PARENTAGE 

Let t/J( [ v 1 ) be a Yamanouchi basis [v]m of S (f) 
m,aAM 

and an irreducible basis of the group chain SU (n) ::> G ::> 
G (s), where G (s), is a subgroup chain of G, [v], A, and Mare 
the irrep labels for SU(n), G, and G (s), respectively, a is a 
mUltiplicity label taking care of possible multiplicities in the 
reduction from [v] to A. The wave function of anf-particle 
system can be expressed in terms of that for f - 1 particles 
and thefparticle in the same group theoretical classification; 

t/J( [v
A
l
M

) = I C !~~i~~A"[.)A,, [t/J( [v.l
A 

)t/J~.}(f)]A , 
m,a aA m.,a. • M 

, , (73) 

where C !~~i~~A" [.),10 is the one particle CFP[or SU(n) ::> G 
isoscalar factor) which is independent of m •. ([ v]m) and 
([vl]m l) are labels for the Yamanouchi bases of S(f) and 
S (f - 1), respectively, the square bracket indicated that the 
product bases are to be combined into the irrep AM of the 
group chain G ::> G (s) by the CGC of the group G, Ao is the 
irrep label of G for the defining representation· ofSU(n). 

Since the right-hand side ofEq. (73) is already Yaman
ouchi bases [v .]m. of S (f - I), the requirement thatthe left
hand side ofEq. (73) be a Yamanouchi basis [v1m amounts to 
the requirement that it be an eigenfunction of the 2-cycle 
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class operator Cf of S (f). Using Eq. (64) one has 

ff(if)tft( [v] ) = (2jvI -2j~\ )tft(VI( [v] ), (74) 
i = I m,aAM m,aAM 

namely, a diagonalization of the operator l'.{:: (if) in the 
bases with fixed [vtlml' 

la 14 I ):,m, =[tft( [VI]A )tft~l}if)]A , (75) 
ml,a l I M 

gives the one-particle CFP: 

a~J (alAI r~:(if)la02r, 
- Oa,a,OA,A, (2 jvl - 2 j~11 )]c 1~~j~~A,.(IIA" = O. (76) 

If 2 jvl is a Tv-fold root of the secular equation, there are Tv 
independent eigenvectors {C 1~~j~~A"(IIA,, },a = I,2, ... ,Tv ' 

They can always be chosen to be orthogonal with respect to 
the indexa. 

The matrix element in Eq. (76) can be calculated by the 
following formula: 

(a lA {~: (if) I a2A 2 r, 
f-I A 

=-h-I(aIAII(JJ-I)la02)v,m" (77) 
VI m l 

hv, being the dimension of the irrep [VI] ofS (f - 1). In deriv
ing Eq. (77) we have used the fact that the left-hand side of 
Eq. (77) is independent ofrow label mI' The matrix element 

I 

Only if the individual integral in the above equation were 
independent of r(1) (in our notation, m d, the above equation 
would have reduced to their equation (13). However, the in
tegral does depends on r(l), as explained before.] 

6. THE INTRINSIC GROUP 

As mentioned before, if the set of eigenvalues (v,m) of 
the CSCO-II of Gin Eq. (45) is degenerate with degeneracy 
Tv, for this (v,m) there will be Tv independent solutions 
tftt;;.)1···tft~)T,. In the above discussion, these Tv solutions are 
chosen arbitrarily. In order to determine them uniquely, one 
has to seek new operators which commute with the CSCO
II. The eigenvalues of such operators can be used to distin
guish these Tv sets of irreducible bases which have exactly 
the same transformation properties under the group G. Ob
viously it is impossible to find such operators from the group 
G but, as will be seen below, one can find them from the so 
called "intrinsic group" a. 

For any group element R, we can define a correspond
ing operator R in the group space VG by the following 
equation: 

RS=SR foranySE VG • (81) 

In other words, the action of the operator R on any "vector" 
Sin VG is changing it into another vector SR. It must be 
emphasized that Eq. (SI) is a defining equation for the opera-
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of the permutation (J,f - 1) can be calculated by the same 
method as used by J ahn, 13 

(a IA I J(J,f-I)la2A 2):,m, 

- ~ C (v,).a,A, C (v,),a,A, 
- ~ (v'la'A ',(11..1" (v'la'A ',(11..1 0 

a'A' 

X (A 'AI A 1(J,f - I)IA 'A0 ), (7S) 

where C I~II:X~A~:( I lAo' etc., are the CFP for the (f - I)-particle 
system and [v'] is the irrep of S (f - 2). [v'] is determined by 
the Young diagram left after deleting the boxf - I in the 
Young tableau Y!.:': I. Therefore, the left-hand side ofEq. (7S) 
depends on m I' though the left-hand side of Eq. (77) is inde
pendent of mI' The factors (A 'AlA 1(J,f-I)IA 'A 2A) are 
essentially the Racah coefficients of the group G. For exam
ple, for the group G = S03 it reads 

(L 'LIL 1(J,f - I)IL 'L2L) 

= ( - W' + L + L, + L'U(IL 'Ll;L IL 2), 

and for G = SU3 it reads 

(79) 

(SO) 

This technique for calculating the CFP is simpler than 
the one used by Jahn.13 So and Strottman 14 used a similar 
method to calculate the SU (6) ~ SU (3)XSU (2) isoscalar 
factor (ISF). [Their Eq. (13) is not correct. It should read as 

I 
tor R, rather than an identity relation of operators. There
fore, it is not permissible to multiply Eq. (SI) from the right 
by another vector T of V G' i.e., 

RST¥=SRT. (S2) 

Instead, ST must be considered as a new vector in V G' then 
using definition Eq. (81), one gets 

RST= R (ST) = STR. (83) 

Weare going to prove that the totality of the operators 
R constitute a group a-the intrinsic group. Suppose for 
group G we have the multiplication relation 

RI R2 = R3. (84) 

From Eqs. (81) and (84) one has 

R2R IS = R2SR I = SR IR2 = SR 3 = R3S, (85) 

Since S is an arbitrary vector in V G' therefore, 

R2RI = R 3• (86) 

It means that there is a one to one correspondence between 
the operator Rand R. Equations (84) and (86) show that the 
totality of R does constitute a group which is anti-isomor
phic to the original group G. The group a is called the intrin
sic group of G, or simply the intrinsic group, if no confusion 
will arise. The reason for naming it the intrinsic group was 
explained in Ref. I(b). 
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Equation (81) gives a representation of the intrinsic 
group a in the group space, 

(87) 
a 

Boerner called D (Rb) the inverted representation of G. We 
prefer to call it the representation of the intrinsic group a in 
the group space V G' Our main interest is the operator group 
a and its representations in various spaces, e.g., the group 
space, configuration space, the space of functions on group 
manifold, etc. 

A few more points worth mentioning are 
(1) R is not the conjugate element of the group element 

R. From Eq. (81), we obtain the relation between Rand R: 

R = SRS ~I when R acts on S. (88) 

It must be emphasized that the equality holds only when R 
acts on S. When R acts on another element T, R would be 
equal to TR T ~ I. Therefore, although at first sight R in Eq. 
(88) looks like a conjugate element of R, in fact the meaning is 
absolutely different. 

(2) It is important to distinguish between the subgroup 
a l of the intrinsic group a of G, and the intrinsic group a;, 
of the subgroup G1 ofG. a l is defined in the group space ofG, 
and commutes with the whole group G (see below), while a ; 
is defined in the group space of G1 and commutes only with 
the subgroup G I' 

The intrinsic group a has many important properties. 
(1) The groups G and G are anti-isomorphic [See Eqs. 

(84) and (86)]. 
(2) The elements ofG commute with those of G. 
Proof: From Eq. (81), one has 

SRT=STR. (89) 

Comparing Eq. (89) with (83), and noting that Tis an arbi
trary element in VG' one has 

RS=SR (90a) 
or 

[R, S] = o. (90b) 

Therefore the property is proved. 
Note the significant difference between Eqs. (81) and 

(90a). In Eq. (81) S is a basis, while in Eq. (90a), S is an opera
tor. The rule for determining whether a group element S is to 
be regarded as a basis or as an operator is very simple: If Sis 
the last one behind an intrinsic group element, then S should 
be regarded as a basis; if there are other group elements of G 
behind S, then S should be regarded as an operator. 

(3)Sincea = (R] isanti-isomorphicwithG = (R ], the 
group a is isomorphic with the group (R ~ 1 ]. Furthermore, 
the group (R ~ I] is essentially the group G; the only differ
ence is in the name of each group element. Therefore, the 
intrinsic group G is essentially isomorphic to the group G. 
Thus all the conclusions we obtained in the above sections 
also hold for the intrinsic group G. For example, if G has a 
group chain G :::) G1 :::) G2 :::) ... , a has the corresponding 
group chain G :::) a l :::) a2 :::) .... if G :::) G (s) is a canonical 
subgroup chain, G :::) G (s) must be also a canonical subgroup 
chain. If C = 'i.jkjCj is the CSCO-I of G, C = 'i.jkjCj must 
be the CSCO-I ofG. If(C, CIs)) is theCSCO-II ofG, then (C, 
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C (s)) is the CSCO-II of a, etc. 
(4) The CSCO of G and G are equal. 

C=C. (91) 

Proof To prove Eq. (91), we only need to prove that the 
class operator ofG and a are equal. From Eq. (81), one has 

CjR = RCj . (92a) 

From the property of the class operator, Eq. (5), one has 

CjR = RCj . (92b) 

Comparing Eq. (92a) with (92b), and noting that R is an arbi
trary vector in V G' we arrive at 

Cj=Cj. (93) 

According to Theorem 3 and Eq. (93), we know that if 
t/J(VI belongs to an irrep (v) ofG, it must also belong to the irrep 
(v)ofG. 

(5) If G1 is a subgroup of G, and correspondingly a l is 
the subgroup of a, then G1 and a l have the same structure 
constant. 

Let Cel , Ctl '''' and Ca , Ctl '''' be the class operatorsofG1 

and G1, respectively. The above property means that corre
sponding to 

(94) 
)' 

we have 

(95) 
)' 

Equation (95) can be easily proved by multiplying it from the 
left by an arbitrary vector R in VG' 

It must be pointed out that although the class operators 
of G and a are equal, the class operators of the subgroup G 1 

and a l are not equal. This is readily seen from the fact that 
Cel commutes with the whole group G, while Ca commutes 
only with the subgroup G I' From Eq. (11 b) we know that the 
possible eigenvalues (or the eigenvalue spectrum) of a class 
operator are determined by the structure constant of the 
group. G I and G 1 have the same structure constant, therefore 
C (1) and C (1) have the same eigenvalue spectrum. Similarly, 
the set of operators CIs) = (C(l), C(2), ... ) and CIs) = (C(l) 
C (2), ... ) have the same eigenvalue spectrum. C (s) commutes 
with CSCO-II of G, thus C (s) is the set of new operators 
which we are looking for. 

7. CSCO-lll AND THE IRREDUCIBLE MATRIX 
ELEMENTS 

Definition: If the set of operators K = (C, C (s), C (s)) is a 
CSCO in the group space, then K is called the CSCO-III of 
the group G. 

It is easy to prove that if (C, C (s)) is the CSCO-II of G, 
then (C, C (s), C (s:)) must be a CSCO-III of G. 

Theorem 6: In the group space, the orthonormalized 
eigenoperatorofthe CSCO-III is the normalized generalized 
projection operator P\;;lk. 

(~~S)\D\;;lk = (:\D\;;I\ 
CIS)! k! 

(96a) 
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p(v)k _ J!i-v f.. (v). v = 1,2, ... ,N, 
m - - L D mk(Ra)Ra, k _ . (96b) 

g a= I m, - ml···mhv 

(P~:)k'IP~)k) = Dvv,Dmm,Dkk' , (96c) 

whereD ~~ (R ) are the irreducible matix elements in the G :J 
G (s) classification. 

C has N different sets of eigenvalues. In the eigenspace 
ofC, which is a s~bspace of the group space, with the eigen
value v, C (s) and C (s) both have hv different eigenvalues. The 
total number of eigenoperators P ~)k is 

(97) 

From Theorem 4 and Eq, (96a), we know that P ~)k is G 
:J G (s) irreducible basis (v)m and G :J G (s) irreducible basis 
(v)k. It can be proved that P ~)k has the following transforma
tion properties 7 : 

and 

RP (v)k = "D (v) (R )P' (v)k 
m ~ m'm m" 

m' 

RP(v)k = "D(v) (R)P(v)k' 
m ~ k'k m' 

k' 

D~lk(R) = D~k,(R). 

(98a) 

(98b) 

(99) 

It is seen that R only changes the "external quantum 
number" m and the intrinsic group element R only changes 
the "intrinsic quantum number" k. The hv irreducible bases 
./Jv)1 .I.(v)hv h tl th fi' 'I'm "''I'm ave exac Y e same trans ormatIOn property 
under the group G. Hence the intrinsic quantum number k 
provides the additional quantum number to distinguish the 
hv equivalent irreps which occur in the reduction of the regu
lar representation of G. 

Theorem 7: In the group space, the eigenvectors of the 
CSCO-III are proportional to the complex conjugate of the 
irreducible matrix elements. 

~[(R" ~::: R,)-(;)8+~;(R'H (100) 

Therefore, from Eq. (100) and the normalization condition,2 

h 
_v IID~URaW = 1, (101) 
g a 

we can calculate all the irreducible matrix elements in the G 
:J G (s) classification. 

Equation (100) can be generalized to calculate the ma
trix elements of the group operators between two irreducible 
bases which are classified according to different subgroup 
chains. 

Suppose !/J~) is a G:J G (s) irreducible basis, rp~) is a 
G:J G (s)'irreducible basis, and C (s)' is the CSCO of the sub
group chain G (s)'; then the matrix elements' 

§~)k(Ra) = (!/J~)IRa Irp~) (102) 

satisfy the following eigenequations: 

(~~S)\~~~(Ra) =(:\~~~(Ra). 
C(s)'r kr 

(103) 

From Eqs. (101) and (103), we can calculate §~URa)' 
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Since (Cfoo, Cf _ I ) is a CSCO-II of S (f), the 2f - 3 operators 

(Cf'Cf - p ... ,C2,Cf - I ••• ( 2 ) (104) 

constituted a CSCO-III of S (f), where 

Cn = I~(ljj, (105) 
i<j 

(ljj being a permutation operator of the intrinsic group S (f). 
We can also choose a single operator 

/... f-I 
K = 2.. an Cn + I bn Cn (106) 

k=2 n=2 
as a CSCO-III of S (f), The coefficients an and bn are chosen 
so that the operator K has g different eigenvalues, 

~ f-I-
/-L = 2.. an An + I bnAn' (107) 

n=2 n=2 

With the help of~he branching diagram, like Fig. 1, and the 
fact that Cn and Cn have the same eigenvalue spectrum, it is 
easy to find the coefficients an and bn for a givenf(there are 
infinite ways to do this). 

With K as CSCO-III, Eq, (100) now becomes 

I[ (Ra IK IR b ) - /-LDab]D :(Rb) = 0. (108) 
b 

Again, the eigenvalues /-L can be known beforehand, thus one 
merely needs to solve a set of g linear homogeneous algebraic 
equations to obtain the irreducible matrix elements. The 
only remaining freedom is the choice of phase. It can be 
shown 7 that to obtain the Y oung-Yamanouchi irreducible 
matrix elements one only need use the following rule. 

(a) From the quantum number /-L, trace back to the 
quantum numbers (v, m, k). Find the corresponding Young 
tableaux y!;1 and Y Lvi. There is one and only one group 
element, say R a, which transfers the Young tableau y Lv) to 
y;:l, i.e., 

(109) 

(b) The absolute phase of the eigenvector 
{D~URa)} = (Dp(RI)' Dp(R 2)···) is dictated by the require
ment that its component D p (Ro) must be positive. 

Example: Group S (3) 
From Fig. 1, it is seen that (v, m) has four sets of values 

(3, 1), (0, 1), (0, - 1), and ( - 3, - 1). Since the possible 
values of k are the same as those of m, the CSCO-III has six 
setsofeigenvalues(v,m,k) =(3,1,1),(0,1,1),(0, -1,1),(0, 
1, - 1), (0, - 1, - 1), (- 3, - 1, - 1). We can choose 

K = 3C3 + 2C2 + C2 (110) 

as a CSCO-III. K has six different eigenvalues, 

/-L = 3v + 2m + k = 12,3, 1, - 1, - 3, - 12. (111) 

It is easy to construct the representative matrix of K in the six 
dimensional group space of S (3) with basis vectors ordered as 
e, (12), (13), (23), (123), and (132): 

° 6 3 3 ° ° 
6 ° 0 0 3 3 

K= 
3 ° 0 ° 4 5 

3 ° ° 0 5 4 
(112) 

° 3 4 5 0 ° 
° 3 5 4 ° ° 

Jin-Quan Chen and Mei-Juan Gao 939 



                                                                                                                                    

Using the known eigenvalues Eq. (111) and the normaliza
tion Eq. (101), we can calculate the six eigenvectors of K: 

1 1 

1 

0 13) - 0 10) -
- ('\1'3)/2 

II - , 11-
- ('\1'3)12 ' 

- ('\1'3)12 

- ('\1'3)/2 
0 

0 

0 10) - '\1'3 -1 
-II -

2 

- 1 

(113) 

0 

0 - 1 

0 10) - '\1'3 -1 0(0) - ('\1'3)/2 
I-I -

2 
-1-1 -

('\1'3)/2 

- ('\1'3)/2 

-1 - ('\1'3)/2 

- 1 

0 1- 31 -
-1 

-1-1 - -1 

The phases are determined by the rule giillJ above. For ex

ample, (v, m) ~ (0, - 1) corresponds to~ . (v,k) = (0, 1) 

corresponds tol
ill 

According to Eq. (109), Ro = (23), there-,31 
fore the absolute phase of the eigenvector D I~ II is dictated 
by the requirement that the component D I~ II (23) must be 
positive. 

8. REDUCTION OF NONREGULAR REPRESENTATIONS 
A. Intrinsic state regular representation case 

Equation (81) defines the action of the intrinsic group 
elements in the group space. We now address ourselves to 
the question of defining the action of the intrinsic group ele
ments in the configuration space. The action of the group 
element R of G on the configuration wave function cP (X) is 
usually defined as 

R(/>(X) = CP(R -IX). (114) 

To define the action of the intrinsic group element on cP (X) is 
more complicated. Let us first discuss the case of the regular 
representation. Suppose there are g functions cP I (X ) ... cP g (X) 
which carry a regular representation of G. Among them we 
pick out anyone, say cP; ==.cPo, and define the action of the 
intrinsic group element R on CPo to be equal to that of the 
group element R, 

iiCPo(X) = RcPo(X) for REG. (115) 
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We call the state CPo(X) which satisfies Eq. (115) the intrinsic 
state of the group G. 

We now want to show that Eq. (lIS) suffices to define 
the action of the intrinsic group elements on any other func
tion CPa (X). CPa (X) can be obtained from the chosen intrinsic 
state cPo(X) through the action of a certain element Ra of G. 

<l>a (X) = Ra <l>o(X). (116) 

From Eqs. (115) and (81), we getthe operation of the intrinsic 
group element ii on any function <l>a (X): 

( 117) 

The physical meaning of Eq. (117) can be seen more 
clearly by rewriting it in the following form: 

( 118) 

It is seen that the action of the intrinsic group element ii on 
<I> u (X )can be carried out in three steps. (a) Through theoper
ation R a-I, bring the state <I> a (X) to the intrinsic state CPo. (b) 
Perform the operation R on the intrinsic state CPo. (c) through 
the operation Ra, bring the system back to the original 
"orientation. " 

The remaining question is which state should be chosen 
as the intrinsic state. In principle one can choose any state 
from <I> 1 .. ·<1> g as the intrinsic state, therefore one can choose 
the one that is most suitable for a given physical problem. 

Having defined the action of the intrinsic group element 
in the configuration space, we can carry out the reduction of 
the regular representation in the configuration space just as 
we have done in the group space. After the substitutions 

R -.cP (X) pl,')k .,,(V)'(X) (1l9) a a , m ~'f'm , 

all the formulas in Sec. 7 are valid in the configuration space. 
The relation between the orthonormalized irreducible wave 
function ¢~Jk(X) and the generalized projection operator 
Po \vlk ' 

m IS 

¢~lk(X) = I' ~)k<l>O(X), (120) 

where <l>o(X) is the chosen intrinsic state, 

B. Intrinsic state nonregular representation case 

In reducing a regular representation, the h" sets of the 
intrinsic quantum number k provide just enough labels to 
distinguish the hv equivalent irreps (v). While in reducing a 
nonregular representation, an irrep (v) may occur only 
Tv < h" times, In such a case there are too many intrinsic 
quantum numbers. The question is, can we still use the in
trinsic quantum number to distinguish the T" equivalent ir
reps? The answer is that, if we can find an intrinsic state <1>0 
such that any other state rpa in this reducible representation 
can be generated from <1>0 through the action of appropriate 
group elements (i.e., rpa can be written as rpa = Ra <1>0)' then 
after slight modification we can still use the intrinsic quan
tum numbers, Otherwise the intrinsic quantum number is 
meaningless, 

We now proceed to justify this assertion. Suppose {rp a}, 
a = 1, 2, .. ~;JI, carry a nonregular representation. Pick up 
anyone, say rpl' as the intrinsic state <1>0' We assume that the 
action of a group element on <1>0 either leaves CPo unchanged 
or transforms CPo to another function in the set {rpa}. The 
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totality of the operators Ta which leaves <Po unchanged 
forms a group H which is a subgroup of G. 

Ta <Po = <Po, a = 1,2, ... ,m, TaE H. (121) 

The order m of the subgroup H is equal to 

m =g/JV. (122) 

H will be called the symmetry group of the intrinsic state <Po. 
If an operator Ra transforms <Po into epa' there must be m 
operators that transform <Po into the same epa: 

<f'a(X) = Ra<Po(X) = RaTa<PO(X), a = 1,2, ... ,m. 
(123) 

Therefore applying g group elements to <Po, we can get only 
JV functions {epa}. 

Now let us look at the action of the intrinsic group ele
ments on the basis vector epa of the reducible representation. 
According to Eqs. (123) and (115), 

Repa(X) = RRa<Po(X) = RaR<PO(X). (124) 

Using Eq. (121), on the other hand, one has 

Repa(X) = RRa Ta<Po(X) = Ra TaR<Po(X). (125) 

Since RaR<Po(X)-=I=Ra TaR<Po(X), unless R E H (in such a 
case R is equivalent to the identity), Eqs. (124) and (125) tell 
us that the intrinsic group elements R, generally speaking, 
have no definite meaning in the nonregular configuration 
space, except those belonging to the symmetric group H. 
Now the question is raised: Can we find some operators out 
of G which have a definite meaning? The answer is that if the 
CSCO C (i) of a subgroup Gj of G commutes with the sym
metric group H, i.e., [C (i), Ta] = 0, Ta = 1,2, ... ,m, then 
the corresponding intrinsic operator C (i) has a definite 
meaning. 

Proof 

C (i)epa (X) = C(i)Ra<Po(X) = RaC(i)<Po(X), (126a) 

C(i)epa(X) = C(i)Ra Ta<Po(X) = Ra TaC(i)<Po(X) 

= RaC(i)Ta<Po(X) = RaC(i)<PO(X). (126b) 

In deriving the second equation, the condition 
[C (i), Ta ] = 0 has been used. Equation (126) shows that the 
action of C (i) on epa (X) always leads to Ra C (i)<Po(X), there
fore C (i) has a definite meaning. 

For example, for an intrinsic state 

<Po(X) = tPa(xl)tP/3(X2)tP/3(X3)tPy(x4)=laPPr) (127) 

of the permutation group S (4), the symmetry group of the 
intrinsic state is H = Ie, (23) j. Since the CSCO of S (3) com
mutes with H, C (3) has a definite meaning, while the CSCO 
of S(2), i.e., the permutation (12), has no definite meaning, as 
can be seen clearly in the following equations: 

( 12)<Po = ( 12)laPPr> = IpaPr>, 

( 12)<Po = ( 12)(23)<Po = (23)(12)<Po = IPPar). (128) 

In the case when a single group element of the intrinsic 
group has no definite meaning, the ordinary definition of the 
irreducible representation-the minimum invariant sub
space under the action of the group--Ioses its meaning. Due 
to the fact that the CSCO of G along with those of certain 
subgroups Gj of G do still have a definite meaning, we might 
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as well call the simultaneous eigenfunctions of the set of op
erators (C, C(I)) the irreducible bases in the G ::) OJ 
classification. 

Summary: For a nonregular reducible space, not every 
C (i) in the set of operators C (s) = (C (1), C (2), ... ) has a definite 
meaning, but only the CSCO of some particular intrinsic 
subgroups determined by the symmetry property of the in
trinsic state have a definite meaning. The remaining opera
tor set after discarding the meaningless operators in C (s) will 
be denoted by C (s'). The eigenequations satisfied by the irre
dubible bases, instead of Eq. (96a), should be modified to 

(~~S)t'~IK=(:t'~I\ (129a) 
C(S,)r Kr 

.1 

,t,lmVIK = '" U 1vlK m 
If L m,aTa' (129b) 

a=l 

( ,t,IV1KI,t,IV)K') = 8 8 ,8, 
'f'm 'f'm vv' mm KK' (129c) 

where K = K P K2· ... KT ,. again serves as the additional quan
tum number to distinguish the 1 < Tv < hv equivalent irreps. 

9. THE STATE PERMUTATION GROUP 

We adopt the definition of the state permutation group 
Y f given by Bohr and Mottelson.9 For a configuration 

(a 1Y'(a2Y' ... (an (n, withfl + f2 + .. fn = J, the n single parti
cle states a l,a2, ••• ,an are assigned to the state indices i l i2oo.if 
in the following way: 

i l = ... = i[, = ai' 

i[,+1 = ... =i[,+h =a2,···if-fn+1 =oo.=if=an • 

The permutation operator,h of the group Y(f) is defined as 
[It differs from the definition given by Hamermesh (Ref. 2, 
Sec. 10-2). What Hamermesh defined as the so-called per
mutation operator on state indices is in fact the inverse oper
ator of the permutation operator on coordinate indices.] 

,hli t i2• •• if ) = lipIII'~2I"··ip{fl)' (130) 

where lil i2 ••• if ) is anI-particle product state [similar to Eq. 
(127)]. In other words, the permutation operator,h permutes 
the state indices, in contrast to the permutation operator p of 
S(f), which permutes the coordinate indices. 

It is straightforward to prove that the state permutation 
group has the properties: 

(a) Y(f) and S (f) are commutative, 
(b) Y(f) and S (f) are isomorphic. 
Thef-particle product state, 

(131) 

will be called the "normal order state." It is convenient to 
choose the normal order state as the intrinsic state of the 
permutation group S (f), since under such a choice, the in
trinsic permutation operator is equal to the inverse operator 
of the state permutaion. 

Proof Let epa be a state resulting from applying an arbi
trary permutationpa of S(f) to IlUo), 

epa=PallUo)· (132) 
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TABLE V. The SU(3) wave functions of the elementary particles in the flavor space. 

v,m,k 

3,1,1 11 2 3,l:*') 

0,1,1 I! 2,r) 

0,-1,1 I~ 3,r) 

0,1,-1 I! 2,A') 
0,-1,-1 I~ 3,A') 

-3,-1,-1 1~'[OI) 

Applying an intrinsic permutation operator p to CPa' one has 

PCPa = PPa lcuo) = Paplcuo) 
=p"fi-llcuo) =jl-Ipalcuo ) =jl-Icpa, (133) 

where we used Eq. (115) and the relationplcuo) =jl-llcuo)' 
Since CPa is arbitrary, from Eq. (133) it follows that 

p=jl-I. (134) 

Therefore, the state permutation group Y(f) is a realization 
of the intrinsic permutation group S(f). In thef-particle 
product function space, it is more convenient to use the state 
permutation group than to use the intrinsic permutation 
group, since the operator jl is easier to manipulate than the 
operator p. 

From Eq. (134), we know that the class operators of 
YIn) and those of SIn) are equal, therefore 

CG'(s) = CIs), 

CG' (s) = (CG' 1- I ,.", CG' 2)' 

where CG'i is the 2-cycle class operator of Y(i). 

(135a) 

(135b) 

All the formulas in Sec. 7 are valid after the following 
substitution: 

(136) 

C(s)-CG' (s), 

and Eq. (98b) is changed into 

jlt/lt;,lk = ID\;'!dp)t/lt;,lk·. (137) 
k' 

Example: Consider a 3-quark system with three flavor 
states U, d,s. The order of the states is taken as i l = U, i2 = d, 
and i3 = s. This corresponds to the so-called I-spin represen
tation. By diagonalizing the operator K = 3C3 + 2C2 + CG' 2 

in the regular representation spanned by \p Iuds) l, we obtain 
the six irreducible bases listed in Table V. The values of the 
coefficients in Table V are of course identical to the eigenvec
tors D in Eq. (113), except for the factor (hJg), 1/2 as can be 
seen from Eqs. (120) and (96b). 

10. THE QUASISTANDARD BASIS OF THE 
PERMUTATION GROUP 

In Sec. 8 we showed that for nonregular representa
tions, the single intrinsic group element lost meaning, but 
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Iuds) Idus) Isdu) lusd) Isud) Idsu) 

I I I I I I 

\1'6 \1'6 \1'6 \1'6 \1'6 \1'6 
I I I I I I ---

\1'3 \1'3 \1'12 \1'12 \1'12 \1'12 

0 0 -! -! 

0 0 -! -! 
I I I I I I 

\1'3 \1'3 \1'12 \1'12 \1'12 \1'12 

I I I I I I -- - -
\1'6 \1'6 \1'6 \1'6 \1'6 \1'6 

under the condition imposed by Eq. (123), the CSCO of cer
tain intrinsic subgroup still have a definite meaning. Since 
the non regular representation spanned by thef-particle 
product wave functions \plcuo) 1 in the configuration 
(ad·'(a 2Y' .. ·(an f" satisfy this condition, furthermore the in
trinsic permutation group and the state permutation group 
are anti-isomorphic, thus a single elementjl of the state per
mutation group also has no definite meaning, but the CSCO 
of the subgroups contained in the group chain 

Y(fpY(f - fnp .. ·-::JY(fI) 

have a definite meaning. The set of these meaningful CSCO 
will be denoted as 

(CG', CG'(s')) = (CG'(f), CG'(f - fn )"'" CG'(2)), (138) 

CG' (i) being the CSCO-I of Y (i). In other words, the result of 
the action of these operators is independent of which a l is 
assigned as i p '" which a l is assigned as ii,' and which a2 is 
assigned as ii, + I'''' whicha2 is assigned as ii, +1, , ... etc. (there 
are/; particles in the single partitle state aJ For example, 
for the afj3 )2 y configuration (a = a I' {3 = a2' Y = a 3), 

CG'(3)I{3a{3y) = CG'(3)1i2i l ii4) = CG'(3)li3i l i2i4 ) 

= 1{3{3ay) + l{3a{3y) + la{3{3y). (139) 

Equation (139) shows that the action of CG' (3) is independent 
of which {3 is assigned as i2 or i3 · 

Definition: The simultaneous eigenfunction t/lt;1 of the 
set of operators (CG' (f), CG' (s')) is called the quasistandard basis 
of the permutation group. 

(
CG' (f)).,,(VI = (v).,,(VI 
CG'(s') 'f'K \x 'f'K' 

t/lt;lbelongs to the irrepA. (f), A. (f - fn)""'A. (fl) of the group 
chain Y(fpY(f - fnp ... -::JY(fd, in contrast to the 
standard (i.e., Yamanouchi) basis I/J::,l which belongs to the 
irrep A. (f), A. (f - 1), ... ), (2) of the canonical group chain 
Y(fPY(f- Ip ... -::JY(2). 

It was proved in Ref. 15 that the quasistandard bases of 
the permutation group are just the Gel'fand bases of the uni-
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tary group. For example, 

Weyl tableau l6 Gel'fand symbol 17 

C20)) aa (J 1 

)~ \Y belongs to (J(J8 

yo 

Y(9) ::J Y(7) ::J Y(5) ::J Y(2) 

SU(4) ::J SU(3) ::J SU(2) ::J U(l) 

[432] [421 ] [32] [2] . 

Therefore, the eigenfunction method can be used to calcu
late the Gel'fand bases of the unitary group. 

When all the single particle states in a Weyl tableau are 
different, the Gel'fand basis becomes the special Gel'fand 
basis, and the quasistandard basis becomes the Yamanouchi 
basis. It means that the Yamanouchi basis of the permuta
tion group is just the special Gel'fand basis of the unitary 
group, a fact proved by Moshinskyl8 in 1966. 

11. CONCLUSIONS 

Using the new approach to the permutation group re
presentation, the calculation of characters CFP, CGC, the 
Yamanouchi basis, and irreducible matrix elements of the 
permutation group, and the Gel'fand bases of the unitary 
group, etc., are all reduced to the problem of solving the 
eigenequation of a certain single operator. With the help of 
the traditional theory of the permutation group, we can 
know the eigenvalues of these operators prior to the concrete 
calculation. Therefore, all one has to do is to solve a set of 
linerly homogeneous algebraic equations, which is very easy 
to calculate. 

The eigenfunction methods for calculating the 
SU(mn)::JSU(m)XSU(n) isoscalar factors, SU(m + n)::J 
SU(m) ® SU(n) isoscalar factors, and the transformation co
efficients from the Yamanouchi basis of S (I) to the 
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S (lP S (.ft) X S (12) basis withl = II + 12 are discussed sepa
rately in Refs. 19-21. 
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Structure and representations of the symmetry group of the four
dimensional cube 
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In this paper we give, explicitly, the description of the structure, the characters, and the 
complete system of irreducible representations of the hyperoctahedral group in four dimensions, 
which we call W 4 (from the German "Wiirfel"). In a second step, we do the same for the 
subgroup SW 4' which is formed by all pure rotations contained in W 4' 

PACS numbers: 02.20.Qs, 02.20.Rt 

INTRODUCTION 

In the last years a lot of work has been done on four
dimensional lattices in order to get discrete approximations 
of the continuous case. It is an important problem to find all 
symmetries of the regarded lattices, the complete system of 
all irreducible representations of the appropriate symmetry 
groups, and their classification. For the connection between 
abstract groups and the symmetries of (discrete) point sets, 
especially lattices, see Chap. 1.4 of Miller. 1 

In our case we will consider the hypercubicallattice, 
generated by 

Every point of the lattice can be expressed as an integral 
linear combination of these four vectors. We shall restrict 
ourselves to the symmetry transformations of the lattice 
which leave the origin 0 = (0, 0, 0, 0)' fixed. It should be not
ed that unlike the three-dimensional case the hypercubical 
lattice does not have the largest symmetry of all possible 
lattices in four dimensions. The interested reader is referred 
to Chen and Birman.2 In spite of this fact we confine our
selves to the symmetry group of the hypercubicallattice, 
because the symmetry group of the "larger" lattice is just an 
extension of the group mentioned here. The "larger" lattice 
is generated by 

e l , e2' e3' and f = (112, 112, 112, 112)'. 

It turns out that the symmetry group of the four-dimen
Sional cube W 4' which is obviously a subgroup of 0(4), is the 
"largest" crystallographic point group of the hypercubical 
lattice at the point O. Therefore, W 4 is called the hypercubi
cal holohedry at the point 0 (cf. Chap. 2.7 of Miller l

). Clear
ly, W 4 has been well known for many years and has frequent
ly been discussed by several authors. Some of them mention 
W4 while classifying crystallographic point groups in four 
dimensions (Goursat/ Hurley,4 and Chen and Birman

2
). 

Others found W 4 by working on wreath products and 

generalized symmetric groups (Young, 5 Robinson,6 Frame, 7 

Kerber,8.9 Maier,IO·11 and Osima 12.13). However, none of 
them gives an explicit description of group characters and 
irreducible representations; only Chen and Birman give the 
character table ofW4 obtained by a computational method. 
The subgroup SW4 is a crystallographic point group, too, 
and therefore mentioned by Hurley,4 but there is no com
ment on its structure. As SW 4 cannot be regarded as a gener
alized symmetric group, it does not appear in papers about 
this subject. Our main results are listed in several tables at 
the end of this paper. The relation between the irreducible 
representations of W 4' resp. SW 4' and those of the full Or
thogonal group 0(4), resp. the special orthogonal group 
SO(4), will be given in another paper together with an ele
mentary classification of the representations of 0(4) and 
SO(4) (Baake, Gemiinden, and Oedingen I4

). 

Obviously, quite a lot of our results are already known. 
Especially, some of them can be found in the paper of Chen 
and Birman,2 too. But there is a remarkable difference be
tween the methods used. First of all, our method can easily 
be generalized for the analogous symmetry observations in n 
dimensions and, for example, the description of the symme
try group of the three-dimensional cube, Oh a: W 3' becomes 
very elementary. 

Then, by the connections ofW 4 to the symmetric group 
S8' which are pointed out in Sec. II and can also be general
ized for arbitrary dimensions, it is very simple to apply this 
group to special symmetry problems, using a computer. 

Last but not least, by our considerations we straightfor
wardly obtain minimal systems of generators for W 4 and 
SW 4' i.e., we get three generators for W 4 (Chen and Birman2 

use nine of them) and two generators for SW4• 

I. PRELIMINARIES 

In our notation we fOllow Miller. 1 Especially, we denote 
the symmetric group of degree n by Sn , and the cyclic group 
of order two by Z2 together with the symbol" + 2" for addi
tion modulo 2. Furthermore, we use Zi = Z2 ® 22 ® Z2 ® Z2 
in the form 
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Finally, if the symbol" = " is used for representations, this 

We call two elements x, y opposite, if 

y= -x. 

In this paper we consider the group W 4 of permutations of 
the elements of L4, which leave opposite elements opposite. 
This group turns out to be the symmetry group of the four
dimensional cube. This can be seen if one regards the ele
ments of L4 as the centers of the eight faces of the four
dimensional cube. This group is identical with that one 
formed by permutations of the diagram of Fig. 1, which obey 
the two following rules: (1) Two elements of the same row 
may be interchanged; (2) only complete rows may be 
permuted. 

From these considerations we conclude that W 4 ap
pears to be the wreath product Z2-S4' Therefore, we 
consider 

W 4 = {(a, TT) I aEZ~, 1TES4} 

TABLE I. Classes of conjugate elements of W •. 

58 -cycles ll':z 1'4 
• 2 

12 l6 ~~4 Ii 1~ 8 
2 

2'4 4 

S, -cycles l' l' l2 l2 l' 13 f2 l2 1t 13 4 4 l i f2 
order 1 4 12 12 6 32 24 24 L. 32 48 48 12 24 12 
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only means the equivalence of the representations and not 
actual identity. 

II. STRUCTURE OF W4 

Let us consider the following discrete subset L4 of the 
four-dimensional Euclidean space R4: 

together with the multiplication rule 

(a, TT)·(b, u): = (a" + 2 b, TTOU) 

with 

(au)k: = aajk) (kth component of a,,). 

This multiplication rule produces the wreath product struc
ture (for details see Kerber8

,9 and Marcu, Regev, and Ritten
berg IS

). It is easy to check that W 4 is a finite group of order 
384. Direct calculation shows that 

c, ~ {(O. idl.(l. idl}; 0, ~ @ ; 1 ~ () 

is the center ofW4. 

Since L4 consists of eight elements, it is obvious that W 4 is 

21 l 
13 l 112 l' 
32 12 12 1 

Baake, GemOnden, and Oedingen 945 



                                                                                                                                    

TABLE II. Number of elements of a given order for the group W 4' 

isomorphic with a subgroup of Ss. If we label the squares of 
Fig. 1 as shown in Fig. 2, and admit the same manipulations 
as explained for Fig. 1, we get the following subgroup ofS8 : 

P4={llessl A Ill(k+4)-ll(k}I=4}. 
l<k<4 

P 4 is a subgroup ofS8 of order 384. By means of the mapping 

4'>:W4-+P4, 

{ 
1T(k) + 4a k 

4'>arrk'-(, )( ).- 1T(k- 41+4(1-a
k

_
4

} 

if 1 <;k<4, 

if 5<;k<8. 

one can prove W 4 and P 4 to be isomorphic. P 4 can be thought 
of as a representation ofW4 by permutations. We now have 
all information to obtain the classes of conjugate elements. 
W 4 contains 20 classes which are uniquely determined in the 
following way: 

Let (a, rr), (b, u)eW4. Then (a, rr),-w, (b, u) if and only 
if rr and u have the same cycle structure in S4 and 4'> (a, rr) and 
4'> (b, u) have the same cycle structure in S8' Calculating, 
moreover, the order of the classes ofW 4' one obtains Table I. 
For a permutation 1TESg with cycle structure 

(mf',···,mf'), A J.Lk #0, you have 
l<k<1 

ordrr= lcm{ml, ... ,m/j, 

i.e., 

A 11"" # id, rr"rdrr = id. 
I < ",Ord1T 

Since conjugate elements have the same order, we obtain 
Table II. containing the numbers of elements of W 4 of a 
given order. Table II contains the special result that there is 
no element of an order higher than 8. With the aid of Table II 
one can easily compute the number of unequal cyclic sub
groups of W 4 (see Table III). 

Generalizing the geometrical concept of "axes" in three 
dimensions, we now define axes as maximal cyclic sub
groups. i.e., all those cyclic subgroups that are not contained 
in any larger one. After the calculation of their numbers we 
obtain Table IV. 

III. REPRESENTATIONS OF W 4 

The wreath product structure ofW 4 implies the follow
ing definition of a four-dimensional representation: 

T: W 4-+autR4 

where 

TABLE III. Number of cyclic subgroups of a given order for the group W •. 
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TABLE IV. Number ofaxes ofa given order for the group W •. 

The representation property is evident: 

T(a, rr)·T(b, u)e; = T(a, rrH - 1)b'eO('1 

= ( - 1 )b, + ,a""lenjO('1) 

= T(au + 2 b,1Tu)e; 

= T [(a, rr)·(b, u)]e;; 

furthermore, 

T(O, idle; = (- l}Oe; = e;~T(O, id) = IdR,. 

This representation is faithful, orthogonal, and irreducible. 
It is obvious that W 4 is isomorphic with a finite subgroup of 
0(4). Especially, the corresponding matrices of Tare ele
ments of 0(4). From T(a,1T)e; = I.;~ I Tij (a,rr)ej , we obtain 

1j; (a,1T) = ( - 1 t'Oj,nj'1' 

Since the matrix elements are all integers, it is clear that W 4 
is isomorphic with a subgroup of 

0(4,Z): = I AeO(4) I A AreZj. 
l<.i,j<.4 !l 

As ord(0(4.Z)) = 384. we obtain W45;!f0(4.l). 
It is possible to extend the irreducible representations of 

S4 onto W 4' The multiplication rule in W 4 yields that the 
mapping S: W4-+S4, S (a,rr): = rr defines a group homomor
phism. Therefore. if V is a representation of S4' VoS is a 
representation of W 4' This definition yields an algorithm to 
transfer the S4-characters to the character table of W 4' The 
classes ofW4 with the same cycle structure relative to S4 get 
the appropriate S4-character. The irreducible characters of 
S4 are given in Table V. 

The following one-dimensional representations are 
obtained: 

the trivial representation ("identity"), 

(a,rr)f--+sgnrr ("signum S4"), 

(a.rr)r-+det[ T(a.1T)] ("determinant"). 

We state the following properties: 

sgn [ 4'> (a,1T)] = ( _ 1 )l:~ 0 ,a,. 

det[T(a.1T)] = (- 1(~ ,G'.sgn1T 

= sgn [ 4'> (a, rr)) ·sgn1T. 

At this point we know eight of 20 irreducible representa-

TABLE V. Characters ofS •. 

l' 122 2] 13 4 

6 3 8 6 
1 1 

1 -1 1 1 -1 

2 0 2 -1 0 
-

3 1 -1 0 -1 

3 -1 -1 0 
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TABLE VI. Characters of W 4' 

144 1
i
2

Z 
1
2
6 224 l1i {j 2 i4 S-8-cyc/es 18 162 8 4 26 

-- - --~--- Czp- 1/2 122 14 i 2 
1'2 l 7' 

2 
13 4 4 2 13 5-4- cycles 12 12 7 13 

f---~----- -- - --- c-I--- ~ 

48112 order 7 4 12 121 6 32 24 24 4 32 48 24 72 32 

XI1l 1 7 1 1 t 1 ~ 1 

Jl 
7 1 1 : 1 1 1 1 

=xt=_~ c- ~-- 1---- --l---

1 -1 -1 1 - -1 1 1 -1 1 i 1 -:~~ _1 c- ,.L I---- 1----- t-- :-- ---l---

t--x.'t--- 1 1 -1 ~7l1 1 -1 -1 1 1 -1 -1 i 1 1 - -1 1 
t- -- I---- c-----~--

XI,J 1 -1 1 -1 i 1 -7 -1 1 -1 1 1 -1 I 1 -1: 1 1 
--- X&------- 1---- I--t-- --ro --+------1--+----

2 -?.. 0 o i 2 -1 O. 2 -1 0 o --l-.2 2 i 0 -1 f- L _____ -+ - -i- I---
~2T-o -1 X~l 1---2 -2 0 0!2 1 0 o -2 -1 0 0'2 

f-------------- .- ---+--- f-- .-+-- 1---- f------+--- 1-----+-- .. 

xt31 3 3 7 1 i 3 c.Q. 1 1 3 0 -1 -1 i -1 ~1JJ _0_ c--- L _____ 
7lJ 

1-- ~11~-1 X/31 3 -3 -7 0 1 -1 -3 0 1 7 ; -7 0 
f-----'t - ---- - r--

1 ! -1 1-----1---

I---- :>::91 ___ J 3 -1 -7 3 0 -7 -7 3 0 7 -7 -7 0 

-71 3 
- - +- -- - ~-

f- 'Xl 3 -3 7 0 -7 1 1 -3 0 -1 1~-1 1 7 0 
- f--

X~41 4 2 2 20 7 0 

~41 
1 0 01 0 o ,-2 -7 

--I-- +-- 1---- -- --- t-- -t--_. - -j----c-
--x-r-~ 

" -2 -2 2 0 -1 0 1 0 0'0 012 -1 
1------ - 1------ -- I---- 1---- ---'r-- --~-f--

I----- X~ .:. 2 -2 -2 0 1 0 o -2 1 0 9J.Q 0: 2 -1 
- -- -- at 2 

~-- -

x1 " -2 2 -2 0 -1 0 1 0 OiO o -2 -1 
f-------- -- f- --- 0"2-

f--,------ ---
x~(J 6 0 2 0 -2 0 0 -2 0 0 0 0' 2 0 

-- I-- - ~lo-t-- 161 6 0 -2 o -2 0 0 2 0 0 0 o 2 ~XL __ c-- -- - -- - --r-- -xl6\ 
1--
6 0 0 2 -2 0 -2 0 0 0 0 o -2 010 0 

f------3---__ --L - '-- 1--
;11 6 0 0 -2 -2 0 2 0 0 0 0 o -2 010 0 

1----- ----- t-- --1---- 1--- -- --- f- -
Xliii 8 4 0 o 0 -1 0 o -4 -1 0 o 0 o i 0 1 

1-------, --- -- I-- - --

xf' 8 -4 0 o 0 7 0 o 4 -1 0 o 0 o 0 1 

tions. We calculate their characters and, furthermore, the 
characters of the Kronecker products of all possible pairs of 
representations. 

Besides reducible representations one obtains eight 
characters of irreducible representations which are inequi
valent to all those that are already known. Their dimensions 
are 

2 (single); 3 (two times); 4 (three times); 8 (two times). 

Four representations are still missing; they can be obtained 
by reducing the twofold Kronecker product of the four-di
mensional canonical representation T. By this method we 
get two inequivalent six-dimensional representations, one 
three-dimensional and one one-dimensional representation, 
the last two representations being already known. The two 
representations still missing are obtained by multiplication 
of the six-dimensional representations with the one-dimen
sional ones. Now we have all data for the character table 
(Table VI). 

Obviously, this character table is, except for arrange
ment, identical with Table III of Chen and Birman,2 but, for 
a complete presentation, we give this table once more in our 
notation. Last but not least, this table is the straightforward 
consequence of the method described above. 

In the following we list and explain the symbols of the 
character table, and state some properties of the characters. 

The characters are denoted by % k (n) where the upper 
index, n, indicates the degree ofthe appropriate representa
tion and the lower one, k, enumerates the characters of dif
ferent representations of the same degree. 

947 

%
(1). 

I . "iden ti ty," 
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2 
23 l 

l 122 4 
13 1 

32 12 12 1 

1 1 1 1 

-1 1 . 1 1 

1 , 1-1 ,-1 1 

-1 1 -1 1 

2 1 0 2 -1 
- --+ --f--
1 ~o 2 c--

=1+1-1i 0 c--
0 -11 1 3 

*ty 0 
0 -7 I -1 i 3 

o L2f=4 -7 +- ;---
1 0-+---2 !~ 

-1 Cll1 f4 

1 o i 2 -4 

0 ~2fo ; 6 
1--- f-
0 -21016 

22 16 0 I 

2 t.=.2 .E_ 0 
1 ~h~~ t--

-1 o 0 -8 

%2(1): "signum S8'" 

X3(1): "signum S4'" 

X4(1): "determinant," 
%4(1) = %2(1)'%3(1). 

Note: The characters of the one-dimensional representations 
are the representations themselves: 

% 1 (2), % 1 (3), and %3(3) are deduced from the character table 
ofS4; 

X3(3) = %1(3)'%3(1); 

%1(4) = trT; 

%1(8) = %1(4)'%1(2). 

All other characters of degree 2, 3, 4, and 8 can be received 
by the multiplication rule 

%k (n) = %t)'%k (I): 

% 1 (6) is deduced from the Kronecker product T ® T 
(skew-symmetric part); 

X2(6) = X 1(6)'%2(1); 

%3(6) is also deduced from T® T(symmetric part); 

%4(6) = %3(6)'%4(1). 

IV. KRONECKER PRODUCTS 

We label the representation belonging to the character 
%k (I) (which is uniquely determined, except for equivalence) 
as Tk (I). In this notation the four-dimensional representation 
T is labeled as T 1 (4). With the aid of the character table we can 
decide all four-dimensional and eight-dimensional represen
tations-and only these--to be faithful. 
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TABLE VII. Multiplicity of irreducible representations in n-fold Kronecker products of Twith itself, 1 <;;n <;; 10, for the 
group W4 . 

(1) (1) (1) (1) (1, (2) (3) (3) (3) (3J (4) (4) 
T T T T T T T T T T T T 

1 2 3 4 1 2 1 2 3 4 1 2 

T(;i=T 0 0 0 0 0 0 0 0 0 0 1 0 

,i T 1 0 0 0 0 0 1 0 0 0 0 0 
3 T 0 0 0 0 0 0 0 0 0 0 4 1 ~ 

@4 T " 1 0 1 3 2 7 3 3 3 0 0 

@5 T 0 0 0 0 0 0 0 0 0 0 31 20 
~--

@6 T 31 20 15 20 45 40 76 60 60 60 0 0 

,j 
---t---

T 0 0 0 0 0 0 0 0 0 0 379 116 

@8 T 379 336 315 116 693 612 1072 1008 1008 1008 0 0 

~9 
--r------

T 0 0 0 0 0 0 0 0 0 0 5611 5440 

~10 T ~611 5440 535' 5440 ~5 ~IBJ 6576 16120 16320 1633) 0 0 

By a theorem of Bumside and Brauer (see Isaacs l6
) it is 

possible to obtain all irreducible representations by decom
posing multiple Kronecker products of an arbitrary faithful 
representation with itself. We have done this with the ca
nonical representation T = '7' I (4) by means of the characters. 
The result is listed in Table VII. 

Additionally, we give decomposition rules for the re
duction of twofold Kronecker products of arbitrary irredu
cible representations: 

(4) 
T 

3 

0 

0 

0 

0 

15 

0 

315 

0 

5351 

0 

14) (6) (6) (6) (6) (8) (8) 
T T T T T T T 

4 1 2 3 4 1 2 

0 0 0 0 0 0 0 

0 1 0 1 0 0 0 

I 0 0 0 0 3 2 

0 10 6 10 6 0 0 

20 0 0 0 0 45 40 

0 136 120 136 120 0 0 

336 0 0 0 0 693 672 

0 

544( 

0 

20W! 2016 lOtI) 2U16 0 0 

0 0 0 0 Q965 10M 

I<~ I~~ R'~ 26/1, 0 0 

'7' I (I) ® l' k (n) = l' k (n) for all possible n,k; 

1'k (I) ® 1'k (I) = '7'/1), 1.;;;;k.;;;;4; 

1'2(1) ® 1'3(1) = 1'3(1) ® 1'2(1) = 1'4(1); 

'7'2(1) ® 1'4(1) = '7'4(1) ® '7'2(1) = 1'3(1); 

1'3(1) ® 1'4(1) = '7'4(1) ® 1'3(1) = 1'2(1). 

We know that 

l' k (n) = 1'
l
ln) ® '7' k (I) for n =1= 6, 

TABLE VIII. Decomposition of mixed Kronecker products for the group W 4' 
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TABLE IXA. Connections between different generators of W •. 

Presentation as Representation 
Generator- Wreath Product Matrix 
Product 

( a ) [~ 
a 

a OJ 2 a 1234 1 a a 
0. ( g '~234)) a 1 a 

a a 1 

( , ) [-' a a 01 4 1 1234 a -1 a a 
I~Y) ( ~ '(1234)) a a -1 a 

a a a -1 

I( I )- (g~) ) [' a a oJ 2 2 a -1 a a 
I~y) ~ a a -1 a 

a a a 1 n [' a a OJ 1 1234 a -1 a a 2 2 

( ~ '(1234)) ly~}iPY) a a 1 a 
a a a -1 

I( H (gl~)) [' a a OJ 2 2 a a a -1 
I~y} ~ CJ.~ a -1 a a 

a a 1 a 

a ; [~ 
a a 01 

2 a 1234 a -1 a 
py Il3oc) ( b '(1324)) 1 0 0 

o a 1 

TO a -'] ( ( g) (1234)) 2 a 0 -1 0 
oc Iy PI oc 1 '\4321 o 1 0 0 

1 1 000 

( 1 ) [a a , 01 2 o 1234 a 0 o -1 
'l3y) ( ~ '(3412)) -1 a o 0 

a 1 o 0 

( ( b) (1234)) [-' a 
a 

~l o 1 0 
y o ' 1234 o 0 1 

0 o 0 a 

( ( g) (1234)) [a , 0 

~l 1 0 0 
0. a ' 2134 o a 1 

0 a a a 

(") [~ 
0 

a '] o 1234 0 o a 
J3 ( g '(2341)) 1 o a 

a 1 a 

I ( &) ('23')) r-' a a ~l a 1 a 
y a ' 1234 a a 1 a a a a 

Genera tors in the 
Notation of 
Chen & Birman 

/ 

.-

J' 

T 

R , 

5 

W 

------ --

A 

B 

Y 

WSBAY 

5WAYTR 

y 

TABLE IXB. Representation matrices of W •. 

CJ. J3 y 

54-cycles 122 4 f 
Ss-cycles 1"22 42 f2 

iss -permutltial 21346578 23415678 52341678 

l'l) 1 1 1 
1 

l(1) 
2 1 1 -1 

ill 
3 -1 -1 1 

l'l) 
4 -1 -1 -1 

l(2) 
1 [~ -~ ] [- 112 -1/312 

-1/312 112 ] [~ ~J 
"t121 

2 [b 0
1 

] [ - 112 -1/312 
-Y312 112 ] [cJ ~J 

[g 0 

~l [ -113 VBI3 a 1 [g a n "t(3) 1 -'12/3 -116 v312 1 
1 0 -V613.J/3t6 -112 0 

[g 0 

~l [ -113 V8/3 0 1 [¥ 
0 

~l t(3) 1 -'12/3 -116 V312 -1 
2 0 -Y6/3-v3/6 -112 0 

[~ 
0 

~l [ 10483 a 1 [~ 
a 

~] "t(3) 
-1 '12/3 116-v3/2 1 

3 a Y6/3 V316 112 a 

[-i 
a 

~l [ 1I3-V1i3 a 1 [g a 

~1l "t(3) -1 V2!3 116U2 -1 
4 a Y613 l/3i6 1/2 a 

[~ 
1 a gl [~ 

a a 

~l [~ 
a a 

~l "t (4) 
a a 0 a 1 a 

1 a 1 
~J 

1 0 a 1 
a a a 1 a a 

[~ 
1 a 

~l [~ 
a a !l [~ 

a a 

!l i 4J a a 0 a -1 0 
z a 1 1 0 0 -1 

a a a 1 a a 

[~ 
-1 a 

!l r~ 
a a 

~l [~ 
a a 

~l "t'41 
0 a a a 1 a 

3 a -1 -1 a a 1 
a a La a -1 a a 

[~ 
-1 a 

!l 
r~ 

0 0 !l U 
a 0 !l lllJ 

0 0 a 0 -1 a 
4 0 -1 19 -1 a a -1 

0 0 0 -1 a a 



                                                                                                                                    

a c:,.- 'I j 

, j 
r------~ 

- '" <::> CO> _ ' I , 
j i ,- , C:>~~~ 

C)a~ OO~ aa""l 
~~-C;) c::.~'"Ic 

a O~OI a a "7" a a O~O a a~a a a 
~~c:::.c:;, c::."7<:::><:) 

'"ICC) i ~OO 
i 

~ao ~OO ~c:::.a<:) _c:::.<:::r.c 
;>- ! 

aa~ OO~ i ao'" OO~ ~e:. c::.>:- c:::.c:;.c::.~ 

c~o 
, 

0'10 a o~o 
Oc) ..... c:::. C) c::. '"1- C;\ a I o~o a a a a 

~oC) 
, 

~oo 
c:::.-c::.c:::. cic::.o 

i ~oo "100 
j j , i j i i ----" -;'c:::.c:::.<::) '-'cc:::.c:::.. 

~ i i j 
~ ~~ -~ - - -, 

"-J ~-----, 
j , j ----, j i ,--~-----, ~CJc:::.c:::.~c::.c:::.c:::. I~<;:) <:)C) ~<:::r.oc:::.<:::> I 

000 ~C)a 000 ,,",00 OOO~OO 000";'00 
Q,<:::::. C')~ c:::. c:::. <::::. ~ ~ c::. Q~ c::::. <:)t:)~ 

0"0000 a 'I a a a a O~OOOO 0";'0000 " ' 0.. '0 Cl~ c::. <:"', c:::. ~ <:::> C)C~~Ct:lo~1C:) 
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I I'"j, ~ 
~c:::.c:::.c:::.~t::.c:::,<:) 

0000 ..... 0 OOOO~O 
~e::.~~c:::.c::.~~ ~ c:::. c::. ~ ~ c:::. C)~ 

0..' 
~c::. ~ c::. c:::. c:::.1M c:::. C) c:::. ~ c:::. c:::. c:::.~ ~ 

00 ..... 000 OO~ 000 oo~ooo 00,";,000 ~ I {'."j '7 0..' '" 
I;:)~c:::.c:::.c:::.~(.::;:,c:::. C,;) ~ c:::. c:. c:::.~d<::::. j j j , , 

-J ' ---' 
L--- j j j 

-~ 

r--- -"---' , , j , j , j 
c:::.c:::.~ 

, 
c:::. c::.<:::> "I i 

OO~ OO~ 00 ..... OO'tj'" 
c:::.c::.~c::. c:::.<:::>"'";"c 

a ..... 00 a ..... 00 a ..... 00 a ~C)C) a <:::> 
.... cc::.<:) ~<::::acC) 

0 ..... 0 0-0 0-0 0,";" a c::,,,,;"<:::><:) c::."jC(;) 

0 
C)~C) cc:::.c:::.- <:)1;;:::,<:::>-0 ..... 0 0 ..... 0 0-0 

aC)~ 
c::.<::>.-.c:::. cc_c:::. 

00 ..... a 00- a 00 ..... a a a a 
~<:) <:;)c _ace 

~OC) ~C)O -00 ~OO 
j , j , i j , I <:)_<:)0 C) .... c:. «:) 

I I j I 

:s.~_ ~o.. ~,., ~~ ~- iil -'" ..., 
'"' 

'T
2 

(6) = 'T ((6) ® 'T2 (I) 

'T4(6) = 'T
3

(6) ® 'T4(1). 

For example, we get 

'T
3

(4) ® 'T
4

(6) 

= 'T((4) ® 'T
3

(1) ® 'T
3

(6) ® 'T4(1) 

= 'T
3

(1) ® 'T4(1) ® 'T/4 ) ® 'T
3

(6) 

= 'T2(1) ® 'T((4) ® 'T
3

(6) 

= 'T
2

(4) ® 'T
3

(6) = 'T( (4) ® 'T
3

(6). 

..., ..., 

As all irreducible representations can be formed by multipli
cation of 'T( (2), 'T( (3), 'T/

4
), 'T/6), 'T3(6l, and 'T( (8) with one-dimen

sional representations, it is sufficient to look at Kronecker 
products of some so-called "fundamental" representations 
with one another. The result is listed in Table VIII. 

V. THE MATRIX REPRESENTATIONS 

It is convenient to select a sufficiently small number of 
elements which generate the whole group. It is evident that 
we have to list the matrix representations only for these ele
ments. It is not difficult to prove that W 4 is generated by the 
following three elements: 

950 

3 

3 

2 

3 

J. Math. Phys., Vol. 23, No.6, June 1982 

3 

4 ~)), 

..., 

Furthermore, these three elements form a minimal system of 
generators. The connections to the nine generators used by 
Chen and Birman2 are listed in Table IX A. 

Since W4~0(4,l) and 0(4,l)CO(4), every representa
tion ofW 4 is equivalent to an orthogonal one. Thus we chose 
orthogonal representation matrices. The matrices for 'T ((2) 
and 'T ((3) come from the S4 representations (ofHamermesh (7). 
The construction rules for the matrices of 'T ((4), 'T( (6), and'T3 (6) 

are explained above, and for 'T ((8) they are received by 
'T ((8) = 'T ((2) ® 'T ((4). The rest, again, is obtained by multiplica

tion with one-dimensional representations (see Tables 
IXB,IXC). 

VI. STRUCTURE OF SW4 

Let us now consider the following subgroup ofW4: 

SW4: = !(a,1T)EW4Idet(a,1T) = + 1}, 

where 

det(a,1T): = det(T(a,1T)) = ( - 1)l:i~ ,a, sgn1T. 

SW 4 is a normal subgroup ofW 4 of order 192. Simultaneous
ly we have SW4~SO(4,l) with SO(4,Z) = 0(4,l)nS04· 

Restricting the conjugacy classes ofW 4 to the subgroup 
SW 4-in doing so one has to take eleven classes of W 4 into 
consideration--one finds that two classes decompose, each 
of them in two parts of equal order. Thus we get 13 conju
gacy classes in SW 4 (see Table X). 

As we did for W 4' we list the number of elements ofSW 4 
of a given order (Table XI), the number of unequal cyclic 
subgroups of SW 4 (Table XII), and the number of axes of 
SW 4 (Table XIII). 
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TABLE X. Classes of conjugate elements of SW •. 

58 -cycles t 144 f1 fi 11 8 47 14 26 l 
54 -cycles I' t2 I' f2 13 4 4 1 27 f2 13 1 I' 

order 1 12 6 24 32 24 24 6 6 12 32 12 1 

TABLE XI. Number of elements of a given order for the group SW •. 

TABLE XIV. Characters of SW 4' 

B 4 42 2 J 22 2 2 4 

TABLE XII. Number of cyclic subgroups of a given order for the group 
SW •. 

TABLE XIII. Number of axes ofa given order for the group SW •. 

~-cycles 1 14 12 12 13 8 4 24 26 2 
4 2 4 2 2 2 2 2 4 

~ -cycles 1 12 1 12 13 4 4 2 2 12 13 2 1 

order 1 12 6 24 32 24 24 6 6 12 32 12 1 

s )(;11 1 1 1 1 1 1 1 1 1 1 1 1 1 

s x1' 1 -1 1 -1 1 -1 -1 1 1 -1 1 1 1 
s )(12) 2 a 2 a -1 a 0 2 2 a -1 2 2 
s )(;) 3 1 3 1 a -1 -1 -1 -1 1 0 -1 3 

s )(~) 3 -1 3 -1 a 1 1 -1 -1 -1 a -1 3 

* s x.7' 3 1 -1 -1 a 1 -1 3 -1 1 0 -1 3 

* S )(?' 3 1 -1 -1 0 -1 1 -1 3 1 a -1 3 

* S x.~' 3 -1 -1 1 a -1 1 3 -1 -1 0 -1 3 

* 5 )(~' 3 -1 -1 1 a 1 -1 -1 3 -1 0 -1 3 

s x.1;' 4 2 a a 1 a a 0 a -2 -1 0 -4 
5 x.~) 4 -2 0 0 1 0 0 0 0 2 -1 0 -4 

5 X16
' 6 0 -2 0 0 0 a -2 -2 0 0 2 6 

S XIBJ 8 0 0 0 -1 0 a 0 0 0 1 0 -8 

TABLE XV. Multiplicity of irreducible representations in n-fold Kronecker products of Twith itself, I <n< 10, for the 
group SW4 • 

s (1) ~ (1) 5 (2) s (3) 5 (3) 5 (3) 5 (3) 5 (3) 5 (3) 5 (4) 

T T T T T T T ,. T ,. 
1 2 1 2 3 ~ 5 6 1 

5 T~4J= T 0 0 0 0 0 0 0 0 0 1 

®l T 1 0 0 1 0 1 1 0 0 0 

~/ T 0 0 0 0 0 0 0 o i 0 5 

®4 T 5 1 5 10 6 10 10 6 J 
I 

6 0 

®5 T 0 0 f) 0 0 0 0 0 1 0 51 
"-

181 6 T 51 35 85 136 120 136 136 720 720 0 
--r --- I-

®7 T 0 0 0 0 0 0 0 0 0 715 
c------- r-----

181 8 T 715 651 7365 lOBO 2016 2080 2080 2016 2016 0 

181
9 T 0 0 0 0 0 0 0 0 0 11057 

®10 T 11051 t:J795 21845 .i?8l1S Ilfl.O 3Jj% 3Jj96 32640 32640 0 

VII. REPRESENTATIONS OF SW4 

Since SW 4 is a normal subgroup ofW 4 of index 2, we get 
the complete system ofirreducible representations ofSW 4 by 
application of Clifford's theorem. 
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5 IIj) s (6) 5 (8) 
T T T 

2 

0 0 0 

0 1 0 

1 0 5 

0 16 0 
-- r----

35 0 85 
t---

0 256 0 
f----

657 0 1365 

0 4096 0 

10795 0 27845 

0 65SlS 0 

Except for X(6), and X2(6) all irreducible W4 representa
tions stay irreducible after restriction to SW 4' The W 4 repre
sentations 7/

6
) and 7 2(6) split, respectively, into two three

dimensional representations. It should be noted that all re
presentations ofSW 4 are equivalent to orthogonal ones. The 
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isomorphism between SW 4 and SO(4,Z) is still yielded by the 
restriction of the canonical W 4 representation T. Thus we 
have all information needed for the character table (see Table 
XIV). Note that all representations and characters of SW 4 

are marked with the left upper index "s". 
Let us shortly explain the character table: 

Sx (1) - X (1)1 
I - 1 sw4 ' 

Sx (I) - X (1)1 
2 - 2 sw4 ' 

sX(2) = X (2)1 • 
1 sw4 ' 

Sx (3) -X (3)1 • 
t - 1 sw4 ' 

Sx (3) - Sx (3) Sx (1) - X (3)1 • 
2 - 1 • 2 - 2 sw4 ' 

"identity"; 

"signum S8 "; 

SX3(3),Sxl) are irreducible parts of the restriction 
of the W4-character XI(6); 

sX5(3),sX6(3) are irreducible parts of the restriction 

ofthe W4 character X2(6); 

Sx (4) =X (4)1 • 
2 2 sw,,' 

Sx (6) = X (6) I . 3 sw4 , 

Sx (8) = X (8) I 
I sw4 ' 

TABLE XVI. Decomposition of mixed Kronecker products for the group 

5T 121 ®s-I21 

sT I2J",sf;1 

S;~2J0'-I/ 

SW4 • 

sTil) 0
s -I:) 0 0 

sPJiIlI'fii 0 0 

iT
12) 0' /61 0 0 

sT1213sl~ 0 0 

5-11)0'1/ 1 0 
s-IJ) ~S,t'l 

, J J 0 
ST?),;:'!.'I 0 0 

Sf} XSf,:'; 0 0 

Sf1i-r 6i 0 , 0 
s;;r®s/8 -0 " 0 
5 -r]J s I<} 
'3 0 T] 1 0 

'-I: 0'-r/! 0 0 

sT~J ®s-r;' 0 0 

s-It ~,sT6, 0 0 

S-fJ'®,;1i 0 0 

S;'{'",'<'l 1 0 

o 0 

000 

000 

o tOO 

1 11 1 
o I 0 0 

o 0 0 

o 
o 
o 

o 
o 

0)0 

~I~ 
o 0 
1 r 0 
o 0 

o 0 

S-I~~T'" 0 0 
o ' 0 

o 
o 5';:'",sT'61 0 

s';,'~5T~ 0 
ST(6i ~5,{6! 1 

5~I6'eT'P) 0 

S-rEi®TFI 1 

o 

o 

o 

o 
o 
o 
o 
o 

o 
o 
o 
o 

o 0 

o 
i 

o L 0 

o 0 

o 0 

o 
o 0 

o 0 

o 
o 0 

o 

o 0 

o 0 

o 0 

o 0', 0 
t o I 0 0 

o I 1 ~ 1 
+ 

o I, 0 0 

o 0 0 

000 

o 0 

o 0 

o 
000 

000 

010 

o 0 

o 

o 0 

o 
o 0 

o 

o 0 

o 
o o 

o 0 o 0 

o 0 
I 

0'0 
r 

o o 
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o 
o 
o 
2 

o 
o 

o 

o 
o 

o 

o 
o 

o 
o 
o 

o 
1 

o 
o 
o 

o 
2 

o 
J 

o 
2 

o 
o 1 

o 
o 2 

o 

TABLE XVIIA. Representation matrices of SW 4' 

S.-cycles 

S (11 
'1 

0.'( Ill' 
4 

8 

61342578 63412785 

-1 -1 

[ 0
1 0 ] [-'12 - '1312 ] 

-1 -V3J2 112 

[ 00' ~ g] [-~ ~~ vi2 ] 
o -1 -Y6t3-V36 -12 

-1 0 0 
o 0 1 0 
o -1 0 

o 1 0 
o -1 0 0 

o 0 1 

000 
o 0 0 
-1 0 0 
a 0 0 
o -1 0 
a a 1 H il 

TABLE XVIIB. Representation matrices of SW 4' 

a.y (ly 

0 1 0 0 0 a 0-112 a a a-.jizl 
-1 a 0 0 0 

112 0 0 013/2 0 0 0 i 

a 0 1 0 o -112 0 0 0 - &2 0 0 I 
\I~) 

0 0 0 1 o 0 - 112 0 0 o-lIi 2 0 

0 -1 0 0 o 0 :J-vY2 0 a 0 1/2 

0 
1 0 0 a &2 0 0 0 -112 0 D C j 
C 0 _1 0 O-v"fi2 0 0 0 fl2 0 0 

0 0 a -1 o O-,§'2 0 0 0 112 0 
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Representations that result from the split of a W 4 representa
tion are marked with an asterisk in the character table. 

VIII. KRONECKER PRODUCTS 

Once more, we can obtain all irreducible representa
tions of SW 4 by decomposition of the multiple Kronecker 
product of the canonical representation T = sr. (4) with itself. 
This is done in Table XV. 

For the purpose of decomposition of an arbitrary Kron
ecker product of irreducible representations, we have to 
know the decomposition numbers for the twofold Kron
ecker products of sr(2), sr.(3), Sr

3
(3), sr

4
(3), sr/4 ), sr(6), and sr(8) 

with each other. These numbers are given in Table XVI. All 
other products shall be considered with the aid of the follow
ing rules: 

sr/ ll ®sr.(I) = sr.(I); 

sr. (I) ® sr2(1) = sr
2

(1); 

sr
2

(1) ® sr
2

(1) = sr.(I); 

sr
2

(1) ® sr.(3) = sr2(3); 

'r2(I)®sr
3

(3) = sr5(3); 

sr
2

(1) ® sr
4

(3) = sr
6

(3); 

sr
2

(1) ® sr.(4) = sr2(4). 

IX. MATRIX REPRESENTATIONS 

and 

It is easy to check that two elements 

2 

2 

3 

3 

3 

3 
4 

generate the whole group SW 4' Thus we list the representa
tion matrices of these two elements. In order to obtain the 
representation matrices of r.(6) and r2(6) in block-diagonal 
form, we use the unitary transformation matrix 

u= 

953 

o 0 

o 0 
o o 

2./2 0 o 
010 

o 0 

o 
o 
-1 

o 
o 

o 

o 
o 
-1 

o 

-1 

o 
o 
o 
o 
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Through this matrix we get the three-dimensional irre
ducible constituents of the reducible representations r 1 (6) I.w. 
and r2(6)lsw. by means of a similarity transformation. The 
representation matrices are given in the Tables XVIIA and 
XVIIB. 
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Infinite-dimensional representations of the graded Lie algebra (Sp(4):4). 
Representation of the para-Bose operators with real order of quantization 

I. Inaba, T. Maekawa, and T. Yamamoto 
DepartmentojPhysics. Kumamoto University. Kumamoto. Japan 

(Received 25 September 1981; accepted for publication 18 December 1981) 

Infinite-dimensional representations for the system of the two para-Bose operators, which 
generate the graded Lie algebra (GLA) (Sp(4):4), are constructed by using the irreducible 
representations (discrete series) of the Lie algebra Sp(4);:::: SO(3,2). It is shown that there are four 
kinds of the irreducible representations of the GLA's (Sp(4):4), i.e., cases (I), (II), (III), and (IV). 
Case (I) is described by the three irreducible representations ofSp(4) and corresponds to the para
Bose quantization with real order of the quantization greater than 1 and case (IV) corresponding 
to the ordinary Bose quantization by the two irreducible representations ofSp(4). Cases (II) and 
(III), which are described by the four and two irreducible representations ofSp(4), respectively, 
and cannot be obtained by the method of Fock space, express the representations of the graded 
Lie algebra (Sp(4):4). 

PACS numbers: 02.20.Sv, 02.20.Qs 

I. INTRODUCTION 

Explicit construction of the irreducible representations 
of the graded Lie algebra has been studied by many authors. 1 

It, however, seems that this is restricted to the simple cases 
and finite-dimensional representation 1 or the special case 
which uses the method of Fock space with the assumption of 
the vacuum state.2 1t will, therefore, be important to give a 
nontrivial example of the graded Lie algebra (GLA) and then 
to find the infinite-dimensional irreducible representations 
ofthe GLA in order to obtain a more general result. 

In Sec. II, the discrete series ofthe irreducible represen
tations of SO(3,2);:::: Sp(4), 10 which are necessary for our dis
cussion, are summarized. In Sec. III, the matrix elements of 
the generators of the graded Lie algebra (Sp(4):4), which con
sists of the para-Bose operators, are explicitly constructed 
for all classes. Section IV is devoted to a discussion of the 
result. 

Parafield quantization due to Green3 is fruitful, and 
various properties are made clear.4 Among these, it is inter
esting to note that the system offparafield operators is con
nected with the orthogonal group SO(2f + I) 5 ofthe sym
pletic group Sp(2f,R ) 6 according to the para-Fermi or the 
para-Bose operators, respectively. It is also known that the 
group Sp(2f) together with thefpara-Bose operators be
comes the graded Lie algebra (Sp(4):4). Through the connec
tion, the representation of the para-Fermi operators is con
structed, and the order of the quantization becomes positive 
integer,I.7 which may be considered to result from the com
pactness of the orthogonal group. On the other hand, as is 
well known, the sympletic group is noncom pact, and explicit 
construction of the unitary irreducible representations 
seems lacking except for the simple cases.8 Of course, the 
representation of Sp(2f) is studied by the method of Fock 
space,2 which assumes the vacuum state together with the 
integer order of the quantization. However, it seems that 
there is a possibility ofthe para-Bose quantization with real 
order ofthe quantization for finitef, because we know the 
real order of the quantization in the case off = 1.9 

The purpose of this article is to construct explicitly 
some infinite-dimensional irreducible representations of the 
graded Lie algebra (Sp(4):4) generated by the two para-Bose 
operators and to show that the order of the para-Bose quan
tization is also characterized by a real number greater than 
one in the case off = 2. 

II. SUMMARY OF 50(3,2) 

We summarize the results of the discrete series of the 
irreducible representation of SO(3,2), 10 which are necessary 
for our discussion. 

The Hermitian generators (Jij = - ~l' iJ = 1,2, ... ,5) of 
SO(3,2) satisfy the commutation relations 

where the metric tensor gjk takes the values 
gll=g22= -g33= -g44 = -g55=landgjk =Ofor 
i=j=k. The Casimir operators ofSO(3,2) 11 are given by 

G = (Cd2 + (C2f - (C3)2 - (C4)2 - (CS)2, 

where 

C1 = J23J45 + J4~35 + J25J 34 , 

C2 = J 31J45 + J43J 15 + J35J 14, 

C3 = Jl~45 + J41J25 + J24J 15, 

C4 = J 21J 3S + J 13J25 + J3~15' 
C5 = J23J 14 + J31J24 + J1~34" 
We define the quantities 

J\I) = ~(J23 + J I4 ), J/2) = !(J23 - J I4 ), 

J~I) = !(J31 + J24 ), J2(2) = !(J31 - J24 ), 

J~I) = ~(J12 - J34), J3(2) = !(JI2 + J34). 

(2.2) 

(2.3) 
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Then they satisfy the commutation relations 

[J Vl Jlkl] - -;8 JVl 
I' 2 - jk 3, 

[JVl Jlkl] -;8 JVl 
3' I - jk 2' (2.4) 

[J Vl Jlkl] - ,'£ JVl 
2' 3 - Ujk I' 

It follows from (2.4) that the quantities defined in (2.3) are 
generators of SO(2, 1). The irreducible representations of 
SO(2, 1) are well known 12 and characterized by the eigenval
ue of the Casimir operator of SO(2, 1): 

(2.5) 

The unitary irreducible representations ofSO(3,2) (dis
crete series) can be constructed on the product space of the 
bases ofSO(2, 1) X SO(2, 1) \0; that is, the following bases can 

be used: 

F ~q:jlmIJ2m2> = [p(p - 3) + q(q + 1)] ~q:jlmIJ2m2>' 

G ~q:jlmIJ2m2> = - (p - l)(p - 2)q(q + 1)~q:jlmIJ2m2>' 

IYq:jlm lJ2m2 =]; j - IYq:jlm lJ2m2 . J(.121 ... · . > . U 1)1 ... · . >} (2.6) 
(, = 12) 

J31'1~q:jlmIJ2m2) = mj~q:jlmIJ2m2) , , 

where the numbers p and q specifying the eigenvalues of F 
and G characterize the irreducible representation ofSO(3,2). 
The numbersjj and mj ( = 1,2) are related to the representa
tion ofSO(2,1). We restrict the eigenvalue mj of J~l to the 
postivie-definite value, because only the case is needed for us 
in the following.j j is the minimum value of mj' 

The matrix elements of the generators with respect to 
the bases (2.6) are given as follows \0: 

(p ." m' ., m' J(4) I .... ' m . m ) _ (r(m; + u;r(m; - j; + 1))1I2( r(m2 + j2)F(m2 - j2 + 1) )112(p ." .. IIJ 14111 .... ' . ) 
q:jl I J2 21 + IYq:j1 IJ2 2 - r( . )r( _. 1) r(' .' )r( , _ .. 1) qilt12 + IYqi/lh 

m l +11 m l 11 + m2 +12 m2 12 + 

(p :' +1' +11IJ (3) II ... :' ')= ((u+ q)(U- q -1)(U- P +1)(U+ P -2))1I2 
q:jl 212 2 + IYq:jV2 2jl(2j1 _ 1)2j2(2j2 _ 1) , 

(pq:jl + !j2 - !IIJI~ l~q:jJ2) = ((q + 8 + l)(q - 8)(p - 8 - 2)(p + 8 - 1) )112, 
2j1(2jl - 1)(2j2 - 1)(2j2 - 2) 

(Pq:jJ21IJI~ I~q:jl - !j;) = (pq:jl - !j;IIJI~ l~q:jJ2) forj; =j2 ± !, 

where 

JI~ = Jill ± iJyl 

JI~ = J I5 ± iJ25 , 

o-==jl + j2' 

(j = 1,2), 

JI~ = - J35 + iJ45 , 

8 ifl -j2' 

and r (x) denotes a gamma function with an argument x. The 
expressions for J I~ are obvious from those for J 11 ' 

The irreducible unitary representations ofSO(3,2) (dis
crete series) are classified in terms of p and q as follows \0: 

(a) p>q +! (q = O,!) andp>q + 1 (q = 1,p,. .. ): 

j] = (p + n + 8)/2, j2 = (p + n - 8)12, 

8= -q,-q+1, ... q-1,q; n=0,1,2,.· .. 
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(b) P = q + 1 (q = q,2, ... ): 

j] = (p + 8 )12, j2 = (p - 8)/2, 

8 = - q, - q + 1, ... ,q - 1,q; 

j]=(p+n-q)!2, j2=(p+n+q)l2 

or 

jl=(p+n+q)l2, j2=(p+n-q)l2, 

n = 1,2, .... 

(c) p = q +! (q = 0): 

j] =j2 =! or jl =j2 = l 

(d) P = q + !(q = ~): 

jl =~, j2 =! or jl = 1, j2 = a· 
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m;,ofcourse, takes the valuesj;j; + !,j; + 1,. .. in all classes. 
In the next section, we construct the irreducible repre

sentations for the system consisting of the two para-Bose 
operators by using the above result. 

III. REPRESENTATIONS OF PARA-BOSE OPERATORS 

The para-Bose operators satisfy the following 
relations3: 

[la;,aj j,a!] = 'M;kaj + 'Mjka;. 

[I a;.aIl ,a! ] = 'M;kaJ, 

[la;,aj l,ak ] = 0, 

(3.1) 

where aJ is the Hermitian conjugate of aj and 
[A,B] =AB - BA, IA,B I =AB +BA. The HamiltonianH 
and the number operator N of the system are defined by 

(3.2) 

where 2p is order of the para-Bose quantization defined in 
terms of the vacuum state 10) by3 

ak 10) = 0, ajar 10) = 'MjkPIO). (3.3) 

We define the operators XI'Y in terms of aj and aJ as 
follows: 

Xj _ k = X _ kj = !(aJak + aka]), 

Xjk = Xkj = !(aJa! + ala]), 

X_ j _ k =X_ k_j =!(ajak +akaj ). 

(3.4) 

Then if follows from (3.1) that they satisfy the commutation 
relation of Sp(2J,R) 6: 

[Xl'y,xpu] = t!'8 v _ pXl'u + €"8 v _ uXI'P + t!'81' _pXyU 
(3.5) 

where /-l,V,p,CT take ± j (j = 1,2, ... /) and t!' takes + 1 for 
p > 0 and - 1 for p < O. We, then, see that the operators (3.4) 
together with aj and aJ generate a graded Lie algebra. I In 
what follows, we restrict our discussion to the case of Sp(4) 
(i.e.,J = 2), and then show that the representation of the 
graded Lie algebra is determined by that of the Lie algebra of 
Sp(4). 

As is well known, the group Sp(4), is isomorphic to 
SO(3,2).13 Explicitly writing the relation in terms ofthe gen
erators between Sp(4) and SO(3,2), we get 

J I2 - J34 = XI -I' J23 + J I4 + i(J31 + J24 ) = XII' 

J23 + J I4 - i(J31 + J24) = X_I -I' 

J 12 + J34 = X2 -2' J23 - J I4 + i(J31 - J24) = X 22, 

(3.6) 

J23 - J I4 - i(J31 - J24) =X_2 -2' 

J I5 + il25 = X 12, J I5 - iJ25 = X -I -2' 

- J35 - il45 = XI -2' - J35 + iJ45 = X2 -I' 

where the same symbol as in Sec. II, -0k' for the generators of 
SO(3,2) is used. Therefore, we can use the result in Sec. II for 
our discussion. It is convenient for us to express J I~ defined 
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in (2.3) and below (2.6) in terms of aj and aJ: 

J~1 = MaTa; + a;aT) } 
JIl1 = Iatat JIl1 _ I Ii = 1,2), 

+ :2 i;, - - 2Q;Q; 

(3.7) 

J (3) I( t t + t t) JI3_) __ JI3+)t, + = 2 a l a2 a2al , 

J (4) I( t + t) JI4_) -_ JI4+)t. + =2ala2 a2al , 

It follows from (3.1) that the following and their Hermitian 
conjugate relations hold: 

[aj,J~k)] = !8jkaj } 

[aj,]I:) ] = 8jk aJ (j,k = 1,2), 

[aj,JI~) ] = 0 

[al,JI~ ] = aL [al,JI~] = a2, 

[al,JI~ ] = [aJI~ ] = 0, 

[a2,JI~ ] = aT. [a2,JI~] = aI' 

[a2,JI~ ] = [a2,JI~ ] = o. 

(3.8) 

Before solving our problem, let us explain the simple 
case ofSp(2);::;SO(2,1), which is well known.9 That is, we 
consider the quantities 

J3 = A(aat + ata), J + = !atat, J _ = Jt+ . 
(3.9) 

[a,J3 ] = !a, [a,J +] = at, [a,J _] = O. 

As the first three operators correspond to those of SO(2, 1) 
and the eigenvalues of J3 must be positive as is seen from the 
expression of J3 , we can adopt the following bases9

: 

J2 V,m) = j(j - lW,m), 
(3.10) 

J3V,m) = mli,m), 

where .112 means the Casimir operator (2.4) of SO(2, 1 ),j char
acterizes the irreducible representation of SO(2, 1), and m 
takes the valuesjj + 1,.··. 

The action of J + on the bases is given by 

J + V,m) = [(m + j)(m - j + 1)]I12li,m + 1). (3.11) 

Let us now determine the action of a(a t ) on the bases. 
We get from [J3,a] = - a/2 and [J3,at ] = at /2 

Um'lalim) #0 for m' = m -!, 
(3.12) 

Um'latlim) #0 for m' = m +~. 

Taking the matrix elements of[a,J _] = [at,J +] = 0, we get 

U m - ~Ialim) 

= ( F(m - j + l)r(m + j) )1/2 Ullalli), 
r(m - }' + 1)r (m + }' - !) 

U m + ~Iatlim) 
_ (r(m -}' + ~)r(m +}' + !))1I2 ., at . 
- rIm _ j + l)r(m + j) () II II), 

(3.13) 

where Ullallj) denotes the reduced matrix elements of a. 
Similarly, taking the matrix elements of [a,J +] = at and 
[at, J _] = - a and taking into account (3.13), we obtain 
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the following relation: 

(/ -) - ~)(}' -} + !)(}' +} - !)(}' +} - ~)UllaIV) = 0, 
(3.14) 

and the same relation for at. Thus it is sufficient for us to 
consider the cases of}' =} ± ! for which the reduced matrix 
elements UllalV) and UllatlV) are not zero. It, then, fol
lows from [a,J +1 = at together with (3.13) that the following 
relation holds: 

UllalV) = Ullatlli) = (jllatlli/) )* for}' =} ± !. (3.15) 

Thus we see that the action of a on the base lim) gives 
the bases with}' =} ± !. As the number} takes a positive
definite value (trivial representation for) = ° is omitted), it 
may be assumed that there exists a minimum. Then we can 
write the action of a on the bases as follows: 

aVm) = (m - ))1/2li +! m -!) (j + !lIaIV), (3.16) 

ali + ~ m +!) = (m - })1/2li + 1 m)(} + 111alli + P 
+ (m + )) 1/2 lim) (}llaIV + !), 

and it is obvious for at. Because the relation (3.11) must hold 
for any}, we get 

(j + !llalli) (}llaIV + !) = 2, 

(j + !llaIV) (j + liialli + !) = 0, 

(j + !llalV + 1) () + IilalV + !> = 0, 

(j + ~llalV + 1) (j + 111alV + !) = 0. 

The third relation together with (3.15) gives 

(3.17) 

(j + lila IV + P = 0, and we obtain from the first relation 

(j + !lIaIV) = 21/2e j
{j, (jllalV +!) = 21/2r j{j, (3.18) 

where 8 denotes a phase factor which may be fixed to zero 
without loss of generality. In this way, we could determine 
the action of a on the bases as follows: 

aVm) = [2(m - i)] 1/21} +! m - !), 

aV + ! m + P = [2(m + i)] 1/2lim), 
(3.19) 

and obvious for at. We, therefore, see that two irreducible 
representations ofSO(2, 1) are needed in order to describe the 
representation of the graded Lie algebra GLA(Sp(2):2). 

It is obvious that the vacuum state 10) defined in (3.3) is 
I 

given by liJ) and the following relation holds: 

aatlim) = 2(m + l!Vm). (3.20) 

Thus the order of quantization is given by 4j( = 2p). We find 
the eigenvalue of the number operator N = 213 - 2}: 

N lim) = 2(m - }!Vm), 

N li + ! m + !) = 2(m -}W + ! m + !), 
which agree with the known result.4

•
9 

(3.21) 

Let us now consider the case a l,a2 and their Hermitian 
conjugates. The bases (2.6) may be used for our purpose. It 
follows from the above discussion for a and (3.8) that the 
matrix elements for a j are expressed as follows: 

(p/q/jl +! m l - !j2m2IallPqjlmlj2m2) 

= (m l - },)1/2(p'q'jl + !)2I1a./lPqjJ2)' 
(3.22) 

(p/q/jl -! m l - !j2m2IallPqjlml,}2m2) 

= (m l +}I - 1)1/2(p'q'jl - !}2I1allPqjJ2)' 

The expressions for aT are obvious and those for a2(aI ) are 
obtained by interchanging the role of}"m l and}2,m2' We get 
from the second relation of(3.8), i.e., [al,JI~ ] = aT, togeth
er with (3.22) 

(p'q'j\J2I1aT IlPqjJ2) = (P'q'j\J2I1a l llPqjJ2) 

= (pqjJ2I1a l llP'q'j;}2)* for}; =}I ±!, (3.23) 

and the corresponding relations for az and aI. Thus we see 
that the equality of the reduced matrix elements given in the 
last row in (2.7) is obvious, and it is sufficient for us to consid
er the matrix elements for one of J I~ and J I~ . We, also, see 
from (3.8) that a l (a2 ) commutes with J~i and JI~ (J~1i and 
J(~ ,and thus the matrix elements of a I (a2 ) are diagonal with 
respect to}2 and m z UI and ml)' 

In order to obtain the} land} 2 dependence of a I' we take 
the matrix elements of the relation [al,Jl~ ] = 0: 

(p/q/jl + 1 m l - 1j; m2 -!I [al,Jl~ ]lPqjlmlj2m2) = ° 
for}; =}2 ±!. 

It is straightforward to obtain the following relations by us
ing (2.7): 

. P q :j, + 12 + 2 a, q;h + 212 + 2 
(

r(2},+2)r(u+ q +1)r(U- q)r(U-p +2)r(u+ p -1))'12( //.' l' 111 lIP" l' 1) 

r(2l,)r(u + q/ + ~)r(u- q/ + !)r(u- p/ + ~)r(u+ p/ -!) 

= . pq:j, +212 a, q:j1l2, 
( 

r(2)1 + 1)r(u+q)r(u-q-1)r(u-p+ 1)r(u+p-2) ) 112 ( ". 1 '11 lIP .. ) 
r(2ll - l)r(u + q' + !)r(u - q/ - !)r(u - p/ + ~)r(u + p' -~) 

( 
r(2), + 2)r(8 + q + 2)r(8 - q + 1)r(8 - p + 3)r(8 + p) )112 (P' ,.. l' _ lila lIP" I . _ 1) 
r(2Jdr (8 + q/ + ~)r(8 _ q' + ~)r(8 _ p' + 1)r(8 + p/ +!) q:jl + 12 2 , q:j, + 212 2 

( 
r(2JI + 1)r(8 + q + 1)r(8 - q)r(8 - p + 2)r(8 + P - 1) )112 ". . , . 

= r(2}1 - 1)r(8 + q' + ~)r(8 - q' + !)r(8 _ p' + ~)r(8 + p/ _!) (p V, + !12ll
a

,llPq:j1l2)' 

(3.24) gives the following expression: 
, , . . . . ( r(2i, - l)r(u + q' + !)r(u - q' - !)r(u - p' +~) )112 

(p q :jl + !12ll a , I IPtlI 112) = --.-------=------=------=---
r(2ll + l)r(u + q)r(u - q - l)r(u - p + l)r(u + P - 2) 

(3.24) 

( 
r(u + p' - ~)r(8 + q/ + ~)r(8 - q' + !)r(8 - p/ + ~)r(8 + p' - !) )1/2 

X r(8+q+ 1)r(o-q)r(o-p+2)r(o+p-1) (p'q'lIadlPq)· (3.25) 
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It is noted that the dependence of a ( oni( andi2 is completely determined except for the reduced matrix elements 
(p'q'lIadIPq)· Similarly, considering the matrix elements (p'q':j( - 1 m( - 1';; m2 -!I [al,J(~ ]IPq:j(ml';2m2) = 0 fori; 
= i2 ± !, we get the following expression: 

(p'q':jl - !i21IaIIIPq:jJ2) = (;g~\;(2)r(~ + ~i~t -q,- 13~~t - P,:II\ )112 
'JI u+q -~ u-q -2 u-p ~ 

X ( r(u+p-2)F(D+q+ l)r(D-q)r(D-p+2)F(D+p-l) )112(p' 'ila lIP ).(3.26) 
r(u + p' - ~)r(D + q' + ~)r(D - q' - !)r(D _ p' + ~)r(D + p' _~) q I q 

The expressions for a2 are obtained from (3.25) and (3.26) by interchanging the role ofil andi2' The expressions for ai and a1 
are obvious from (3.23). 

Let us now determinep' and q' for which the reduced matrix element < p'q'llallIPq) is not zero. Taking into account the 
matrix elements (p'q':jl m l - 1';; m2 - ~I [al,J(::! ] Ipq:jlml';2m2) = 0 fori; = i2 ± ~ together with (2.7), (3.25), and (3.26), 
we obtain the following: 

([ il(u + q' - !)(u - q' - ~)(u - p' + ~)(u + p' -~) - UI - l)(u + q)(u - q - l)(u - P + l)(u + p - 2)] 
X r(u + q)r(u - q - l)r(u - p + l)r(u + p - 2)r(D + q + l)r(D - q)r(D - p + 2)r(D + p - 1) 

r(u + q' + ~)r(u - q' - !)F(u - p' + i)F(u + p' - ~)r(D + q' + ~)F(D - q' -!) 
- [rID _p' + ~)F(D + p' - i)]-I 

X [ il(D + q)(D - q - 1)(15 - P + 1)(15 + P - 2) - (jl - 1)(15 + q' + !)(D - q' - !)(D - p' + ~)(D + p - ~)]) 

X (p'q'lladlPq) = o. 
([ il(D + q' + !)(D - q' - ~)(D - p' + ~)(D + p' - i) - UI - 1)(15 + q + 1)(15 - q)(D - p + 2)(15 + p - 1)] 

X r(u + q)F(u - q - 1)F(u - P + 1)F(u + P - 2)F(D + q + l)r(D - q)r(D - p + 2)F(D + P - 1) 

r(u + q' - !)r(u - q' - ~)r(u - p' + !)r(u + p' - ~)r(D + q' + ~)r(D - q' + !)r(D - p' + ~)F(D + p' -!) 

- [ il(u + q - l)(u - q - 2)(u - p)(u + P - 3) - UI - l)(u + q' - !)(u - q' - ~)(u - p' + !)(u + p' - ~)] ) 

X (plq'llalllPq) = O. 

(3.27) 

The reduced matrix elements (plq'llalllPq) are not zero only when the coefficients in (3.27) vanish. Thus we get the equation 

(15 + q' + ~)(D - q' - !)(D - p' + ~)(D + p' - ~)[(u + D)(u + q - l)(u - q - 2)(u - p)(u + P - 3) 

- (u + 15 - 2)(u + q' - !)(u - q' - ~)(u - p' + !)(u + p' -1)] [(u + D)(u + q' - !)(u - q' - ~) 

X (u - p' + !)(u + p' -~) - (u + 15 - 2)(u + q)(u - q - l){u - P + l)(u + p - 2)] 

- (u + q' - !)(u - q' - Wu - p' + !)(u + p' - ~)[ (u + 15)(15 + q' + !)(D - q' - !)(D - p' + ~)(D + p' - ~) 

- (u + 15 - 2)(15 + q + 1)(15 - q)(D - p + 2)(15 + p - 1)][(u + 15)(15 + q)(D - q - 1) 

X (15 - p + 1)(15 + p - 2) - (u + 15 - 2)(15 + q' + !)(D - q' - ~)(D - p' + ~)(D + p' - ~)] = O. 

(3.28) must hold for any possible u and D. Equating the coefficients of each power of u and 15 to zero, we get 

! (q' + !)2 + (p' _ ~)21 [ (q' +!f + (p' - ~)2 - q(q + 1) - (p - 1)(P - 2) - 1]2 + 4(q' + !)2(p' - ~)2 - 2 

X [(q' + !)2(p' _ ~)2 _ (p _ l)(p - 2)q(q + 1)] [(q' + !)2 + (p' - ~)2 - q(q + 1) - (p - l)(p - 2) + 1] 

- [(p-l)(p-2)+q(q+ lW=O, 

I(q' + !)2{p' - ~)2 - q(q + l)(p - l)(p - 2) - (q' + !)(p' - ~)[ (q' + !)2 + (p' - ~f - q(q + 1) - (p - l)(p - 2) - 1] J 

(3.28) 

(3.29) 

X I{q' + !)2(p' - ~)2 - (p - l)(p - 2)q(q + 1) + (q' + !)(p' - ~)[ (q' + !)2 + (p' - ~)2 - q(q + 1) - (p - l)(p - 2) - 1] J 

=0. 

It follows from the second relation of (3.29) that one of the following relations must hold 

(q' + !)2(p' _ ~)2 _ (p _ l)(p _ 2)q(q + 1) = ± (q' + !)(p' - ~)[ (q' +!f + (p' - ~)2 - q(q + 1) - (p - l)(p - 2) - 1]. (3.30) 

The expression of (3.30) with the negative sign is obtained 
from the positive one by replacing q' --. - q' - 1 or 
p'--. - p' + 3 and then the first equation of(3.29) is invariant 
under this replacement. Thus it is sufficient for us to find the 
solution for the positive sign in (3.30). From (3.30) and the 
first of (3.29), we find 
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(q' - p' + l)(q' - p' + 3)[F(p,q) - F(p' +!,q' + m 
X [F(p,q) - F(p' -!,q' - m = 0, (3.31) 

where 

F(p,q) = pIp - 3) + q(q + 1). 

As in general the first two factors in (3.31) can not satisfy 

Inaba, Maekawa, and Yamamoto 958 



                                                                                                                                    

(3.30), we get 

F(p' +!,q' +!) - F(p,q) = 0, 

F(p' -!,q' -!) - F(p,q) = o. 
(3.32a) 

(3.32b) 

The solutions of (3.30) and (3.32a) are 

{
pi = p _ !}, {P: = p - ! }, {Pi = - P + 1}, 
q' = q - ! q = - q - ~ q' = q - ! 

{
P: = -p +~}, 
q = -q-~ 

(3.33a) 

{ 
P: = q + ~}, {P' = q + ~ }, 
q = p - ~ q' = - p + ! {

P' = -q +!} 
q' = +p-~ , 

{P: = - q + !}. 
q=-p+! 

(3.33b) 

Those of (3.30) and (3.32b) are 

{
pi = p + !}, {P: = p + ! }, 
q' = q + ! q = - q - ! {

P' = -p +1}, 
q' =q +! 

{P: = -p +~}, 
q=-q-! 

(3.34a) 

{ 
P: = q + ~}, {P: = q + ~ } , 
q =p-~ q = -p+~ {

P: = -q+~}, 
q =p-~ 

{
P' = - q +~). 
q' = -p +~ 

(3.34b) 

It is easy to see that the set of solutions in (3.33b) and (3.34b) 
cannot make the coefficients in (3.27) vanish. Thus the solu
tions are given by (3.33a) and (3.34a). However, we must take 
into account the nonnegativeness of p' and q' as well as p and 
q. Taking into account the fact and the remarks below (3.30), 
we obtain p' and q' for which the reduced matrix elements 
( p' q' lIa ,Itpq) are not zero: 

{
p' =p + !}, {P: =p + !}, {P: =p - !}, {P: =p - !}. 
q' = q + ! q = q - ! q = q + ! q = q - ! 

(3.35) 
It is obvious that the same conditions hold for the reduced 
matrix elements of a2• 

Let us determine the action of a, on the bases (2.6) in 
the similar way as in SO(2, 1). We start with the case of q = 0 
in the class (a). The bases with q = 0 are given by 

tpO:j,m,j2m2)' (3.36) 

wherej, andj2 take the same value, i.e.,i, = j2 = (p + n)/2, 
n = 0,1,2,· ... Those with q =! have the form 

tp'!:j; m,j;m2), (3.37) 

wherej; andj; are given by 

j; = (p' + n)/2 + E/4, j; = (p' + n)/2 - E!4, 

c=l. 

Assuming thatp in (3.36) is minimum, we see from (3.35) that 
P' and q' after the action of a, on the bases (3.36) take only the 
values p' = p + ! and q' = !. Thus the bases after the action 
of a, on the bases (3.36) have the form 
tp + B:j; m, - !j;m2) withi; = j, + (1 + E)/4, 
j; = j2 + (1 - E)/4 and)] = i2 = (p + n)/2. As is seen from 
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(3.22),j, should change intojl ± ! andJ2 does not change 
after the action of a ,. This actually occurs in the above result 
as follows: 

j; =j, +!, J; =J2 forE= 1, 
(3.38) 

forE= - 1. 

Thus the action of a, on the bases (3.36) with a minimump 
can be written as follows: 

a, [pO:j,m,j2m2) 

= (m] - jJI/2tp + ! !:jI + ! m I - !j2m2) 

X (p +! !:j, + !j21IalltpO:jJ2) 

+ (m, + JI - 1)'/2tp + ! !:jI - ! m I - !j2m2) 

X (p + B:j, - !J2I1a I![pO:jJ2)' (3.39) 

where (3.22) is taken into account. Similar consideration 
gives the following expressions: 

a1tp + B:j, +! mI + !j2m2) 

= (m, + i,)I/2[pO:j,m,j2m2) f+(pO:jJ2) 

+ (m, + jJI/2tp + 1 0:jlm,j2m2) f+(p + 10:jJ2) 

+ (m, + il)I/2tpl:j,m,j2m2) f+(pl:jJ2) 

+ (m, + jJI/2tp + 1 l:jlm,j2m2) f+(p + 1 I:jJ2)' 
(3.40a) 

a,tp + B:jI -! m, + !j2m2) 

= (m, - J, + I)I/2[pO:j,m 1j2m2) f-(pO:jJ2) 

+ (m, - j, + 1)'/2tp + 1 0:jlm,j2m2) f-(p + 10:jJ2) 

+ (m, - j, + 1)'/2tpl:j,m1j2m2) f-(pl:jJ2) 

+ (m, - j, + 1)'/2tp + 1 1:j,m,j2m2) f-(p + 1 l;iJ2)' 
(3.40b) 

where 

The matrix elements of the generators ofSO{3,2) con
sisting of a; and aT must coincide with those in Sec. II. Thus 
the following relation must hold: 

J I'I tpO . . ) - :'h m ,J2m2 

= [(m, -jd(m, +J, -1)]'/2tpO:j,m, -lj2m2)' 

We obtain from (3.39), (3.40), and (3.41) 

f*r (pO:J,j2)f+(pO:j,j2) 

+ f"'- (pO;iJ2)f-(pO;jJ2) = 2, 

f*r (pO:jJ2)f+(p'q';iJ2) 

+ f"'- (pO;jJ2)f-(p'q':jJ2) = 0 

for (p',q') = (p + 1,0),(p,I), and (p + 1,1). 

(3.41) 

(3.42) 

Substitution of(3.25) and (3.26) into (3.42) gives the following 
results: 

(i) For p> 1, 
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(p + Bllad!PO) = (p - 1)-'/V'5, 

f+(p + I OjJ2) = iE ((2j , - p)(p - 1))1/2 
2jl - I 

X (p + I OliadlP + B), (3.43) 

f ( + 1 0 ·' . ) _ . ((2j , + P - 2)(p - 1))1/2 - P ;]J2 - -IE 
2jl - 1 

X (p + 1 OllalllP + H), 

(pll1a.llP+u) = (p+ l11Ia,IIP+B) =0. 

(ii) For! < p < 1, 

(p +! !llaIIIPO) = (1 - p)-1/2eilJ, 

f * ( 0"') _. ((2j , + P - 2)(1 - P))1I2 + P ;hh -IE 
2j1 - 1 

X (p + BllaIIIPO), (3.44) 

I*- (pO:jJ2) = _iE((2j ,-:P)(I-P))I/2 
2h -1 

X (p+Blla.lIPO), 
(pllladlP+B) = (p+ 1IIIalllP+B) =0. 

- 1. These constants may, of course, differ in (3.43) and 
(3.44). It is noted that the difference of the relative sign in the 
terms involving € in (3.43) and (3.44) is due to the double 
valuedness of the function of the square root and then the 
second relation for p' = p + 1 and q' = 0 in (3.42) is satisfied. 
Similar consideration On the bases IP + 1 0:j,mIJ2m2) gives 

(i)p> I, 

(p + BilarllP + 10) =(p_I)- 1/2ei'l, 

(p + Blla,11P + 10) = o. 
(ii) ! < p < 1, 

(p + Blla,11P + I 0) = (1 - p)- 1/2ei'l, 

(p + Blla, lIP + 10) = o. 

(3.45) 

(3.46) 

'YJ is a phase factor. No further result is obtained from J~I . 
(3.43)-(3.46) together with (3.22) give the matrix elements of 
a I up to the phase factors. The expressions for a r are obvious 
due to (3.23). Similar expressions for a2 (ai) hold and we 
express them with the primed phases. 

o is a phase factor and E is an arbitrary constant taking I or 

In order to obtain the relation among the phases, we 
consider J(~ [= (a l a2 + a2a l )/2]. The action of J(~ on the 
base !PO:j,mIJ2m2) (p > 1) gives the expression 

= (ei(lJ-lJ'l + e- i(lJ-c5',) [(m. - j.)(m2 - j2)(2jl +p - 2)(2j, - P + 1)l2j,(2j. - I)] 112 !PO:i1 +! m l - ~j2 +! m2 -!) 
+ (ei(lJ-lJ'l + e - i(lJ-lJ'l) [(m, + jl - l)(m2 + j2 - 1)(2j, - p)(2j, + p - 3)/(2j, - 1)(2j1 - 2)] '/2 

X !PO:i. -! m l - !J2 -! m2 -!) + i(ui(lJ' - '11 + E'e(lJ- '1'IH(m l + jl - l)(m2 + j2 - 1)(2j, - p) 

X (2j1 - P - 1)1(2j, - 1)(2j, - 2)] 1/21P + 1 O:jl -! m l - !J2 -! m2 -!> 
-i(Eei(lJ'-'1I+E'ei(lJ-'1")[(ml-j,)(m2-j2)(2jl +p-l)(2j, +p-2)/2j,(2jl-I)]I12 

X IP + I Oil +! m l - !J2 +! m2 - !). 

Similar expression holds for! <p < 1. Comparison of the matrix elements for J(~ in Sec. II and (3.47) gives 
(i)p>l, 

(ii) ~ <p < I, 
ei'l = i'l', EeilJ + c'eilJ' = O. 

(3.47) 

(3.48) 

(3.49) 

No further condition except for (3.48) or (3.49) exists, Thus we may fix the arbitrary phases without loss of generality in the 
form; i.e., 8 = 0, Eei'l = - Hor p > 1 and 'YJ = O,Eeic5 = - i foq <p < 1. Thus we could determine the action of a i and a i on the 
bases, and they are summarized as follows: 

(I) The case with q = 0 in (a): 

a l lP0:i lm I J2m2)= [(ml -jl)(2jl +p-2)1(2jl-I)] 1/21P+H:i1 +!m l -!J2m2) 

+ E[(m l + jl - 1)(2j. - p)/(2j1 - 1)] 1I21P + Bi, -! m 1 - !j2m2)' 

a2:(I~), 

adp + 1 0:ilm,j2m2> = - E[(ml - jt\(2j. - p)/(2j, - 1)] '/2IP +! ~j, +! m. - !J2m2) 

+ [(m. + j, - 1)(2j, + p - 2)/(2j, - 1)] ' /2 IP +! ~:j, - !m l - !j2m2)' 

a2:( - E+±l), 

a,IP + Hj, +! m, + !j2m2) = [(m. + j.)(2j, + P - 2)1(2j, - 1)] 1I2IPOj.m.j2m2) 

- E[(m l + j,)(2j, - p)l(2j, - 1)] ' 12 1P + lO:jlmlj2m2)' 
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allP +! til -! ml + !j2m2) = €[(ml - jl + 1)(2jl - p)/(2jl - 1)] 1/2\PO~lmlj2m2)' 

+ [(ml - jl + 1)(2jl + P - 2)/(2jl - 1)] 1/21p + 1 0~lmlj2m2)' 

(3.50) 

where € is equal to 1 for P > 1 and - 1 for! <P < 1, and the notation such as a2 :( 1~) after each expression for a I means that 
the expression for a2 is obtained from that corresponding to a l by interchanging the role ofjl,m l andj2,m2 and further the 
coefficients 1 and € on the right-hand side. For instance, the last notation al:(€-l, 1_ - €) denotes the following: 

a21P +! !~lmlj2 -! m2 + !) = [(m2 - j2 + 1)(2j2 - P)/(2j2 - 1)] 1/21P0~lmlj2m2) 

- €[(m2 - j2 + 1)(2j2 + p - 2)/(2j2 - 1)] 1/21p + 1 0~lmlj2m2)' (3.51) 

It is noted thatjl andj2 in the above expressions take the same values (p + n)/2 (n = 0,1,2, .. ·). The expressions for p = 1 are 
obtained from those for p > 1 as the limit of p-l. For instance, we get 

aliI 0~lmlj2m2) = (ml - jl)1/21~ !~I +! ml - !j2m2) + (m l + jl - 1)1/21~ !~I -! ml - !j2m2)' 

jl = j2 = !(1 + n). (3.52) 

It is straightforward to see that they are valid and give the irreducible representations ofSO(3,2). 
The representations of ai and ar in the other classes are treated in a similar way. We give only the results below. 
(1/) The cases with q#Oin (a): This class is characterized by p >q +! (q =!) andp > q + 1 (q = l,p, .. ·).jl andj2 take the 

valuesjl = (p + n + 6)/2 andj2 = (p + n - 6)/2 with 6 = - q, - q + 1, ... ,q - l,q. The action of al is given as follows: 

a IPq:; m J'm ) = ((m l - jl)(O' + q)(O' + p - 2)(q + 6 + l)(p + 6 - 1) )112 IP + 1 q + 1:; + 1 m _ 1J' m ) 
I :11 I 2 2 2jl(2jl _ 1)(2q + l)(p _ 1) 2 2:11 2 I 2 2 2 

(
(m. + jj - 1)(0' - q - 2)(0' - p)(q - 6 - l)(p - 0' - 1))1/2 . . 

+ (2j1 _ 1)(2jl _ 2)(2q + l)(p _ 1) IP +! q + !'JI - ! ml - !J2m2) 

+ € ((m. - jd(O' - q - 1)(0' + p - 2)(q - 6)(p + 6 - 1) )112 IP + 1 q _ 1:; + 1 m _ 1 . m ) 
2jl(2jl - 1)(2q + l)(p _ 1) 2 2:1. 2 • 2J2 2 

_€((ml+jl-l)(O'+q-l)(O'-P)(q+6)(P-6-1))1I21P+1q_!~ -1m _1' ) 

(2jl - 1)(2jl - 2)(2q + l)(p _ 1) 2 I 2 I 2J2m2' 

allP+ lq~ m j m )=€((ml-jl)(O'+q)(O'-p)(q+6+ I)(P-6-1))·12
1P

+ 1q + 1:; +lm _1J' m) 
I I 2 2 2jl(2jl _ 1)(2q + l)(p _ 1) 2 2:11 2 • 2 2 2 

_€((m. +j.-l)(O'-q-2)(O'+p-2)(q-6+ I)(P+6-1))1I2
1P 

.' _ m _. ) 
(2jl - 1)(2jl - 2)(2q + l)(p _ 1) +! q + !'JI ! I !J2m2 

(
(m. - jt\(O' - q - 1)(0' - p)(q - 6)(p - 6 - 1))112 . . 

+ 2j.(2jl _ 1)(2q + l)(p _ 1) IP +! q - !'JI +! ml - !J2m2) 

+ ((m l + jl - 1)(0' + q - 1)(0' + P - 2)(q + 6)(p + 6 - 1))1/2 IP + 1 _ 1.' _ 1 _ l' ) 

(2jl - 1)(2jl _ 2)(2q + l)(p _ 1) 2 q 2'J1 2 ml 2J2m2, 

allP+!q+!~.+!m.+!jm)= ((ml-jt!(O'-q-l)(O'-P+l)(q-6)(P-6-2))1I21P:' +1 . ) 
2 2 2jl(2jl + 1)(2q + l)(p _ 1) q'Jl m lJ2m2 

+ ((ml+jl)(O'+q)(O'+P-2)(q+6+1)(P+6-1))1/21P" . ) 
2jl(2j. - 1)(2q + l)(p _ 1) q'J.m .J2m2 

€ ((m. - jt\(O' - q - 1)(0' + P - l)(q - 6)(p + 6))112 IP 1 . .) 
- 2jl(2jl + 1)(2q + l)(p _ 1) + q'Jl + Im.J2m2 

+ € ((m. + j.)(O' + q)(O' - p)(q + 6 + l)(p - 6 - 1) )112 IP 1.' . ) 
2jl(2jl - 1)(2q + l)(p _ 1) + q'Jlm I J2m2, 

a.1P +! q -!~ +! m +!j m )= _ € ((m l - jd(O' + q)(O' - P + l)(q + 6 + l)(p - 6))112 IP .' + 1 . ) 
I • 2 2 2j.(2j. + 1)(2q + l)(p _ 1) q'J. m.J2m2 

+€((m. +jd(O'- q -l)(O'+ P -2)(q-6)(P+6-1)).I2
IP

.. . ) 
2j.(2j. - 1)(2q + 1)(p _ 1) q'J.m .J2m2 

+ ((m l - jl)(O' + q)(O' + p - l)(q + 6 + l)(p + 6))112 IP 1 . 1 . ) 
2j.(2j. + 1)(2q + l)(p _ 1) + q'Jl + m lJ2m2 

+ ((m l + jd(O' - q - 1)(0' - p)(q - t5)(p - 6 - 1))112 .. 
2jl(2jl - 1)(2q + l)(p _ 1) IP + 1 q'Jlm I J2m2)' (3.53) 

where c = 1 as well as 0' = jl + j2 and 6 = jl - j2' The expressions for aT are easily obtained by taking into account (3.23). 

961 J. Math. Phys., Vol. 23, No.6, June 1982 Inaba, Maekawa, and Yamamoto 961 



                                                                                                                                    

Those for a2 are given by interchangingi I,m I andi2,m2 and substituting - c for c in each expression fora I' It is noted that case 
(I) with p > I is obtained from the above result as the limit of q-G. 

(III) The case in (b): This class is characterized by p = q + I (q = Q,2, ... ). There are three sets ofi, andi2' i.e., (A) 
i, = (q + 1 + ~)12,i2 = (q + I - ~)/2, 8 = - q, - q + I, ... ,q - I,q; (B)i, = q + (n + 1)/2,i2 = (n + 1)12, n = 1,2, .. ·; (C) 
i, = (n + 1)12,iz = q + (n + 1)/2, n = 1,2, .. ·. The action ofa , andaz has the form in the three cases (A), (B), and (C)asfollows; 

(A) a,lq+ Iq:jlmIJ2m2) = [2(m,-i,)]'/2Iq+~q+!:j, +~ml-!J2m2)' 
a,lq + i q + ~:jl +! m l + !J2m 2) = [2(m, + i,)] '/2 Iq + 1 q:jlm IJ2m 2)' (3.54a) 

I I · . ) [2( . ) ]1/21 J I . .. I I ) a2 q+ q'Jlm lJ2m 2 = m 2-h q+2q+i'Jl m l,hh+i ml-2' 

allq + ~ q + !:jlm IJ2 +! m2 + P = [2(ml + i2)]1! 1 Iq + lq:j,m ,J2m2)· 

(B) a,lq + I q:jlm IJl m 2) = [2(m, - i,)]1!2Iq + ~ q + !:jl + ! m l - !J2m2)' 

a,lq + ~q + !if I +! m l + !J2ml) = [2(m, + i,)] '/2 Iq + 1 q:jlmIJ2ml)' 

allq + I q:jlm.Jl m 2) = [2(m l + il - 1)]'/2Iq + ~ q + !:jlm I J2 -! m l - p, 
(3.54b) 

I J • . . . I I) - [2( . 1 ) ].111 1· . . ) a2 q+2q+i'J.m IJ2-i ml+i - ml-h+ q+ q'J.m IJ2ml· 

(C). This case is clear from (B) because only the role ofi. andi2 changes. The expressions for aT and a1 in each case are 
obvious. 

(IV) The case in (c) and (d): The class (c) is characterized by p = ! and q = O.i, andi2 in (c) take the same value! or~. 
Similarly, (d) is characterized by p = 1 and q = UI andiz in (d) takei, = iJl = ~ ori, = ~Jl = i. Class (c) together with (d) gives 
the expressions for a;. The results are 

a,l~ O:! m l,! m l ) = [2(m, - m 1/111 !:~ m l - !,l m l ), all! o:~ ml'~ m l ) = [2(m, - m 1/211 H m l - !,~ m l ), 
(3.55) 

aliI H ml,a m l ) = [2(m , - m I!ll~ o:~ m l - !,~ m l ), aliI H m l ,! ml ) = [2(m, - ill '/11~ a:! m l - H ml )· 

The expressions for other a's are obvious. It is noted that the results in (III) and (IV) can be considered as the limit of those in 
(II). (IV) will be easily generalized to an arbitrary number of the Bose system. 

IV. DISCUSSION 

We have constructed the infinite-dimensional represen
tations for the system of the two para-Bose operators which 
induce the graded Lie algebra written as GLA(Sp(4):4). We 
have known that in order to describe the representations of 
GLA(Sp(4):4) three irreducible representations of 
Sp(4)::::;SO(3,2) are needed in case (I), four in case (II), and 
two in cases (III) and (IV). 

The vacuum state in (3.3) is unique and must satisfy the 
conditions 

(4.1) 

It, therefore, follows that the vacuum state is contained in 
cases (I) and (IV), because there is a state with q = ° and the 
minimumi, = i2 = m I = m 2• Indeed, 10) is given by 
10) = IpO:p12p12,pI2pI2) in case (I) and 10) = I!O:U,U> 
in case (IV), and they evidently satisfy (4.1). However, it is 
easy to see that case (IV) corresponds to the ordinary Bose 
quantization. We, therefore, see that case (I) corresponds to 
the para-Bose quantization. 

It follows from (4.1) and (3.50) that the following holds: 

(4.2) 

Thus order of quantization in our case is 2p which takes any 
real value greater than 1. The action of the commutators 
[a

"
a21 etc. on the bases is easily calculated and a few of them 
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I 
in case (I) are given below: 

HaT ,a1 JIP0:jlmIJlml ) 

=c((m. +il)(ml +i2)(2il +p-l)(2j, +P_2))1/2 

2i,(2i. - 1) 

X IP + 1 O:jl +! m l + !Jl +! m2 +!> 

_ c ((m l - i, + l)(ml - il + 1)(2i, - p)(2i, - p - 1))112 
(2i, - 1)(2i. - 2) 

X IP + 1 O:jl -! m. + !J2 -! m1 + !), 
(4.3) 

Ha"aT J 1P0:jlmIJlm1) = plP0:jlmIJ1ml ) 

- c[(2i, - p)(2i, + p - 2)]I/IIP + 10:jlm IJ1m1). 

It follows that the commutator [aT ,ai J has only the matrix 
elements between different irreducible representations of 
Sp(4). It is noted that the anticommutator ! aT ,a1 J ( = 2J(~ ) 
has only the matrix elements in the same irreducible repre
sentation ofSp(4). The second of(4.3) gives 2p(2p - 1) as the 
square of the magnitude of [aT ,ai J 10) 12, which agrees with 
the known result. 3 

The bases of Alabiso et al.2 are given by 

Inlm) = Nnim(J(~ nai)i(J(+lnO), 

(4.4) 

where n,l,m are nonnegative integers and N n1m is a normal
ization constant. Their bases are given for the integer order 
of the quantization, i.e., 2p = integer 4: 2. It is easy to express 
the right-hand side of (4.4) in terms of our bases, because the 
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action ofJ (+), aL andJ (~ on our bases is known. We give the 
result for a special case, for the expressions in the general 
case are too lengthy: 

For I = even, 

1
010) =N. 21/2( r(p+I/2)r(1 +//2))1/2 

010 X rIp) 

X I pO:pl2p/2,pl2 (p + /)/2). (4.5) 

For I = odd, 

1010) = EN
oio 

X21/2( r [p + (/ + 1)/2]r [(l + 1)/2])1/2 
rIp) 

X Ip + ~~:LL,(p + 1)12 (p + /)/2), (4.6) 
2 2 2 2 

{ 

(2p - 2)! 

2 / !!(2p + / - 2)!!(2p - 3)!! 
NOlo = (2p _ 2)1 

for / = even, 

for I = odd. 
(/- 1)!!(2p + 1- 1)!!(2p - 3)!! 

The Hamiltonian of our system is given by 
H = 2w(J~I) + J~2)). Thus on making use of m; = j; + n;, 
with non-negative integer n;, the eigenvalues of Hin the case 
(I) are given by 2( P + n + n 1 + n2) for the base 
IpO;jlmIJ2m2)' 2(p + n + n l + n2 + 1) for the base 
I p + 1O:j1m l,j2m2) and 2(p + n + n l + n2) + 1 for the 
bases 
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Ip + ~ ~;jl + ~ml + ~J2m2) and Ip + ~ ~;jlmIJ2 + ! m2 + !), 
where n is nonnegative integer. Thus the degeneracyl4 of the 
eigenvalue of H is given by (N /2 + 1)2 for even Nand 
(N + 1 )/2 X [(N + 1 )/2 + 1] for odd N, respectively. 
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A family of sums of products of Legendre functions 
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We present simple analytic expressions for a few sums of products of Legendre functions, of the 
typel::=o(2n + 1)~~(x)~~(y)~~(z)O~(u). 
PACS numbers: 02.30. + g, 02.90. + p, 03.6S. - w, 03.6S.Nk 

In Ref. 1 we derived a simple closed expression for the 
sum l:: = o(2n + 1)~n(x)On- Jl(y)O';(z). This expression fol
lowed from the unitarity relation for the Coulomb T matrix. 
In this paper we shall evaluate some related series. 

We define the family of sums S31 by 

S3 /a,/J,y;p): = ! (2n + I)~~(x)~~(y)~~(z)O,;(u), 
\X, y,z;u n = 0 

(1) 

where ~~ and 0'; are Legendre functions of the first and 
second kind, respectively.2 The variables x, y, z, u, a, /3, y, 
and p are in general complex. The infinite series in Eq. (1) is 
convergent when 

Ix + (x2 - 1)1/2 1.1 y + (y2 - I)1/2Hz + (Z2 _ 1)1/21 

(2) 

We shall assume throughout this paper that this condition is 
satisfied. To avoid ambiguities in the definition of complex 
powers we shall take the real part of x, y, z, and u positive. 
E.g., in Ref. 2, p. 123, the definition 

(Z2 - l)a: = (z - It(z + It,larg(z ± 1)1 < 17',larg zl <17', 

is used which means that (Z2 - I)a is different from 
exp(a In(z2 - 1)) when Rez <0. 

It is interesting to note that the equation 

Iz+ (Z2 _1)1/21 =R, R> 1, 

represents in the complex z plane an ellipse with foci at + 1 
and - 1, with major axis equal to R + R - 1 and with minor 
axis equal to R - R - 1. 

In this paper we present the simple analytic expressions 
given by the right-hand members of Eqs. (3)-(7). In order to 
avoid problems related to branch cuts we take, in these equa
tions, the real part of z [and of u in Eq. (6)] sufficiently large 
and positive. 

In the first place we have obtained 

! (2n + 1)~n(x)~n-Jl(y)O,;(z) 
n=O 

= ei1TJlW-1I2(yz _ x - WI12j1ll2(yz _ X + WI/2) -Jl/2 

(3a) 

= ei1TJlW -112( y2 _ Ijll/2(Z2 _ Ij1l/2(yz _ X + W 1/2) -Jl, 

(3b) 
where 

W: = W(x,y,z): = x 2 + y2 + Z2 - 1 - 2x yz. 

It is interesting to note that the closed formula for the sum 
l:(2n + 1)~n(x)On-I'(y)O,;(z) obtained in Ref. 1 can be de
rived from Eq. (3), and vice versa. We have obtained a new, 
independent proof of Eq. (3), which is given in Ref. 3. Fur-

thermore, we have found 

! (2n + 1)~n(x)~n(Y)O,;(z) 
n=O 

= ei1TJlr(1 + p)( Z2 _ 1jIl12W - 1/2 -JlI2~ Jl ((z - X y) W -1/2) 

(4a) 

and 

= ei1TJlr (1 + p)( Z2 - IjIl12W - 112 -JlI\ FI 

X( - !p,! + !p;I;(1 _X1)(y2 - I)W- I
) (4b) 

= ei1TJlr(l + p)(zZ - 1jIl12(z - xy) -Jl-12 FI 

x(I + !p,! + !p;I;(x2 - l)(y2 - 1) 
X(z - x y)-2), (4c) 

! (2n + l)~,;(x)~n-/l(y)O,;(z) 
n=O 

= ei1TJl W - 1/2 -/In[!(x + l)(y _ l)(z + 1)]/l/2 

X ~:((x+z- y-l)W- 1/2) 

ei1TJl (x + 1 y - 1 z + 1 )/l12 --------
r(l-p) x-I y+I z-I 

= ehr/l (x + 1 .L.=...!. z + 1 )/l/2 W -1122 FI 
Fll-p) x-I y+l z-I 

(Sa) 

XI!, - p;I - p; - 2W- 1(x - I)(y + l)(z - 1)), (Sc) 

with Was before andA: = x + z - y - 1 - W I12. 

We have evaluated one member of the family defined by 
Eq. (1) containing products of/our Legendre functions, 

! (2n + 1)~n(x)~n(Y)~n(z)On(u) 
n=O 

= (W2 _ T)-1/4~_1/2(W(W2 - T)-1/2) 

= 211217'-1 T -1/40_1I2( WT -1/2) 

= W-1/22FI/!,P;TW-2), 

(6a) 

(6b) 

(6c) 

where 

W: = W(x, y,z,u): = Xl + y2 + Z2 + u2 - 2 - 2x yzu, 

T: = T(x,y,z,u): = 4(1 - x2)(1 - y2)(1 _z2)(1 - u2
). 

There exist simple relations between ~n- a and the Ja
cobi polynomial P';:' - al, and similarly between 0'; and the 
so-called Jacobi function of the second kind, Qt,;. -/ll, see, 
e.g., Szego.4 

We have obtained the following interesting relation: 
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I (2n + 1) F2(n + 1) 
n~O F(n +a + l)F(n -J.t + 1) 

- -- 2FI 1,1 +J.t,l +a,--. (7) _ 1 F(J.t+1) ( . .Y-1) 
z - 1 F (a + 1) z - 1 

This result suggests that interesting generalizations may ex
ist for the more general case ofJacobi polynomials P ~a. PI and 
Jacobi functions Q ~.vl. 

In the special case J.t = a, Eq. (7) reduces to the simple 
relation 

I (2n+1) F2(n+l) 
n~O F(n+a+l)F(n-a+1) 

(8) 

which is well known.4.5 

For the proof of Eqs. (3), (5), and (7) we refer to Ref. 3, 
where many other interesting sums of products of Legendre 
functions are also given. The remaining part of this paper 
consists of the proof ofEqs. (4) and (6). 

For the proof ofEq. (4) we start with Heine's formula2 

I (2n+ l)~n(x)On(z)=(z_x)-I. (9) 
n=O 

For convenience we take here z > I, and x and y between 0 
and 1. Later these conditions can be relaxed by analytic con
tinuation. We introduce the notation 

x: = (1 - x 2)lf2, y: = (1 _ y2)1/2. 

By using 

17'-1 i'" ~n(xy + xycos q:J) dq; = ~n(x)~n(Y) 
and 

17'-1 So'" (t - cos q:J)-1 dq; = (t 2 - 1)-1/2,Re t> 0, 

we obtain from Eq. (9), 

I (2n + 1) ~n(x) ~n(y)On(z) 
n~O 

= 17'-1 i'" (z - xy - xycos q:J)-1 dq:J 

= W -1/2 = ((z _ X y)2 _ (XYf)-1/2. 

Note that Eq. (11) is just Eq. (4) withJ.t = O. By using, 
furthermore, 2 

F ( - J.t )O,;(Z) 

(10) 

(11) 

=ei1Tl'(r-1j1'12 l"" 0n(t)(t-z)-I'- I dt, -l<ReJ.t<O, 

we obtain from Eq. (11) 
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F( - J.t) I (2n + 1)~n(x)~n(Y)O,;(Z) 
n~O 

=ei1T l'(z2_1j1'l2 i"" (t-Z)-I'-I 

X(x2 + y2 + t 2 _ 1- 2xyt)-1/2 dt 

= ei1T 1' (Z2 _ 1j1'12W - 112 -1'12 

xi"" r-I'-I(r+2rW- 1/2(z-xy)+ 1)- 1/2 dr 

= ei1T l'(r _ Ij1'l2W -112-1'/2 

xB(l +J.t, -J.t)~I'(W-1/2(Z-xy)), 

which completes the proof ofEq. (4). Here we have used (cf. 
Ref. 6, Formula 3.252.11), 

i"" r-I'-I(r + 2/1r + 1)-1/2 dr 

=B(l +J.t, -J.t)~I'(P), -1 <R~<O. (12) 

For the proof ofEq. (6) we combine Eqs. (10)-(12) and 
get 

I (2n + 1) ~n(x) ~n(Y) ~n(z)On(u) 
n=O 

= 17'- I fr [(x y + x Y cos q:Jf 

+ Z2 + u2 _ 1 _ 2uz(xy + xycos q:J)] -1/2 dq:J 

= 17'-1 i1T (a + 2b cos q:J + e cos2q:J)-1/2 dq:J 

= 17'-I(a + e + 2b )-1/4(a + e - 2b )-1/4 

X i"" r- 1/2(r + 2/3r + 1)-1/2 dr 

= [(a + e)2 - 4b2]-1/4~_1/2(P), 

Here 

a: =x2 y2 +Z2 + u2 - 1- 2xyzu, 

b: = x.Y{xy - zu), 

e:=rr, 

/3: = (a - e)[(a + e)2 - 4b 2]-1/2, 

which implies a - e = W,(a + e)2 - 4b 2 
= (a - e)2 - 4(b 2 - ae) = W 2 - T, and we have used the 

substitution 

r: = (a + e - 2b )1/2(a + e + 2b )-1/2 tan2q:J/2. 

Using, finally, the well-known relations2.7 

~_1/2(Z) =z-1/22F I(!,a;I;1-z- 2), Rez>O, 
= 21/217'-I(Z2 _ 1)-1/40_1/2(Z(Z2 _ 1)-1/2), 

Rez>O, 

the proof of Eq. (6) is completed. 
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Very recently Painter has developed a method for solving Poisson's equation as a set of finite
difference equations for an arbitrary localized charge distributionp(r) that is expanded in a 
partial-wave representation asp(r) = 1:L pdr)Ydr), whereL denotes / and m. In the present work 
a variational principle is established, and a possible approach is outlined, for obtaining 
approximate partial-wave coefficients Vdr) of the potential Vir) = 1:L VL (r)Ydr). 

PACS numbers: 02.30. + g, 41.10. - j 

I. INTRODUCTION 

Painter's method I for calculating the potential of an 
arbitrary localized charge distribution is a generalization of 
Loucks' finite-difference method2 that is applicable to 
spherically-symmetric charge distributions. The basis of 
Painter's method is the representation of the nonspherically
symmetric localized charge density by a rapidly convergent 
partial-wave expansion 

p(r) = LPdr)Ydr), (1) 
L 

where L denotes I and m. In this case, the potential can also 
be represented as the partial-wave expansion 

Vir) = L VL (r)yL(r). (2) 
L 

Withp(r) expressed by Eq. (1), and Vir) by Eq. (2), Pois
son's equation (in atomic units), 

V2V(r) = - 811p(r) , (3) 

leads to the differential equation 

~d(rdVdr))ldr_/(/+I) VL(r) = -81TPL(r) 
r dr r 

(4) 

for each partial-wave component VL belonging to the par
tial-wave component PL' 

With the transformation 

x=lnr, (5) 

Equation (4) is transformed to 

d 2 VL dVL --+ -- = - 81Te2xPL + 1(1 + I)VL . 
dx2 dx 

(6) 

The first-derivative term in Eq. (6) can be eliminated by 
the transformation 

WL(x) = e-<12 VL(X) , (7) 

leading to the second-order inhomogeneous differential 
equation 

d 2 W 
--2-

L 
= (/ + !)2WL - 811e5X12PL' (8) 

dx 

This is the differential equation that should be solved 

for each partial-wave component WL • The potential of the 
charge distribution is then specified by Eq. (2), upon consi
deration of Eqs. (5) and (7). 

II. THE VARIATIONAL APPROACH 

In order to solve Eq. (8) by an equivalent variational 
principle, one considers the functional 

(9) 

where F has to be so chosen that upon its substitution into 
the Euler-Lagrange equation,3 

_a_F_~_a_F=O, 
aWL dx aw~ 

(10) 

Eq. (8) is recovered. It is easy to show that the expression 

F= - ~(W~)2 - W + ~fWi + 811e5x12PL WL (11) 

satisfies the above requirement. 
What remains now is a specification of the boundary 

conditions at r-o (corresponding to x----+ - (0), and at 
r----+ + 00 (corresponding to X----+ + (0). (In order to keep a 
possible model in mind, one can assume that an originally 
spherically-symmetric atom is placed in a crystal where its 
electron cloud undergoes a distortion). 

The boundary condition at r----+ + 00 is I-dependent. 
The potential of the nonsphericall y -symmetric charge distri
bution must approach the multipole expansion4 as r in
creases. The multipole potential is 

qL YL(r) 
V (r) = 811"'----

m -f 21 + 1 r I + I ' 
(12) 

where the multipole moment, corresponding to the L th par
tial-wave component of the charge distribution [Eq. (1)] is 1 

PL = L (r')/+2pL(r')dr'. (13) 

In the limit of r----+ + 00, only the monopole term 
(I = O,m = 0) ofEq. (12) is important. In this limit 

VM(r----+ + (0) = 2(411)1/2qoo , (14) 
r 
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with q denoting the total charge of the distribution. For a 
neutral atom q = Z, where Z is the atomic number. 

The boundary condition at 7---+ + 00 can serve as a 
check on the "goodness" of the approximate WL's: the vari
ational WL's are good, at least at large distances from the 
atom, if Vir) agrees well with V M(r). 

To establish the boundary condition as 7-0, one con
siders that, for small values of 7, Eq. (8) becomes 

d 2 WL 2 
~-(/+!) WL =0. (16) 

The solution ofEq. (16) is 

(17) 

where A is a constant. In view of this result, the boundary 
condition at 7-0 can serve as a guide in selecting a variation
al WL • 

The problem that remains now is the determination of 
the constant A. This problem did not arise in Painter's the
ory,1 since in the finite-difference method it was only neces
sary to relate values of WL at adjacent mesh points. 

To determine A, one considers that the charge distribu
tion is finite. This means that p---+O as 7---+ + 00. The vanish
ing ofthe charge density P is tantamount to demanding that 
PL -0 as 7---+ + 00. In this case, the term 81reSX

/
2PL in Eq. (8) 

goes to zero as 7 goes to infinity and one again has Eq. (16), 
whose solution is Eq. (17). Combining Eq. (7) with Eq. (14), 
one finds that 

A = 2qoo' (18) 

APPENDIX: OUTLINE OF A VARIATIONAL PROCEDURE 

One may assume that, for the interval ( - 00, + 00), 
WL can be written as 

WL(x) = CWdx---+- oo)P + DWL(x---+ + oo)Q, (AI) 

where, from Eq. (17), 

WL (x---+ - 00) = Ae(1 + 1I2)x 

and, from Eqs. (7) and (14), 

(A2) 

WL (x---+ + 00) = Be - x/2 (A3) 

with A = 2q/(41r)1/2, andB = 2q, as follows from Eqs. (15), 
(18), and (14), (15), respectively. 

In Eq. (A 1), C and D are constants, and the quantities P 
and Q must be such that 

Q(X)-o} 
P (x)---+ 1 as x---+ - 00 , (A4) 

and 

Q (X)---+l} 
P(x)-o 

as x---+ + 00 . (A5) 

The problem is to find a Q (x) and a P (x) with such behavior. 
It is easily seen that the functions 

P(x)=b/[b+e(l+I)x] , (A6) 

and 

Q(x)=al[a+e-(/+I)x] , (A7) 
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where the quantities a and b are considered as positive vari
ational parameters, satisfy Eqs. (A4) and (A5). 

With Eqs. (A6) and (A7), it follows from Eq. (AI) that 

WL (x---+ + 00) = (CAb + DB)e - x/2 , (A8) 

which is the x-behavior required by Eq. (A3). In obtaining 
Eq. (A8), the constant b has been dropped in the denomina
tor of the first term in Eq. (A 1), and the term e - (I + l)x has 
been dropped in the second term ofEq. (AI). 

Again, with Eqs. (A6) and (A 7), it follows from Eq. (A 1) 
that 

WL (x---+ - 00) = (CA + DBa)e(1 + 1I2)x , (A9) 

which is the x-behavior required by Eq. (A2). In obtaining 
Eq. (A9), the term e(l + I)x has been dropped in the denomina
tor of the first term in Eq. (AI), and the constant a has been 
dropped in the denominator of the second term in Eq. (A 1). 

What remains now is the determination of the constants 
C and D. It follows from Eqs. (A3) and (A8) that 

CAb+DB=B, (AlO) 

while Eqs. (A2) and (A9) require that 

CA +DBa=A. (All) 

Solving Eqs. (AlO) and (All) for C and D, one obtains 

Ba-A Ab-B 
C= Aab-A; D= Bab-B' (A12) 

Using Eqs. (A2), (A3), (A6), and (A 7), one finds that Eq. 
(AI) becomes 

CAbe(l + 1I2)x DBae - x/2 
WL(x) = + . (A13) 

b + e(/+ I)x a + e-(l+ l)x 

The variational procedure can now be outlined by 
adopting a model density. One can, for instance, choose the 
same model density as that of Painter, 1 namely 

PL(7) =Klle- a
,
r

, (A14) 

where KI = ai+ 3/[ V 41r(/ + 2)!land the constants a l are 
assumed to be known. Using Eq. (5), one can express Eq. 
(A14) as 

PL(x)=KleIXe-ar. (A15) 

With Eqs. (A13) and (A15), the quantity Fin Eq. (11) is 
specified. A little reflection shows that the complicated term 
arising from Eq. (A15) is well-behaved both atx = + 00 and 
at x = - 00. Upon choosing values for the variational para
meters a and b, the integrations required by Eq. (9) can be 
carried out by numerical techniques. This concludes the out
line of an approach to the variational procedure. 

'0. S. Painter, Phys. Rev. B 23,1624 (1981). 
2T. L. Loucks, Augmented Plane Wave Method (Benjamin, New York, 
1967), Appendix 1. 

JR. Courant, Differential and Integral Calculus (Interscience, New York, 
1968), Vol. II, p. 491. 

4J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 99. 
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A nonstandard infinite dimensional vector space approach to Gaussian 
functional measures 
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Nonstandard analysis is used to apply the usual concepts of finite dimensional vector spaces in 
order to define various Gaussian functional measures without using a limiting process. The 
approach is to define matrices on the infinite dimensional space and use straightforward 
techniques to determine the properties of the functions the measures are concentrated on. The 
power of nonstandard analysis allows one to work directly with infinite and infinitesimal 
quantities and "visualize" certain sets upon which the basic Gaussian form is or is not 
infinitesimal. The relation of the choice of Gaussian to the function (process) properties remains 
heuristic since a proof of the Holder continuity of the Weiner paths is not complete, but remains 
at a local (infinitesimal) level. However, given the Holder continuity the nonbounded variation 
property easily follows. Higher derivative Gaussian measures are also easily developed and their 
analytic properties displayed along with their covariances. By using Fourier analysis on finite 
abelian groups transferred to the nonstandard universe and applied to hyperfinite abelian groups 
a rigorous transformation from the discrete form of the Weiner measure to a Fourier series form 
is accomplished. It is shown here that the functions (processes) are infinitesimally close to those 
of the discrete version of the measure. The Fourier approach is also extended to more general 
measures. Finally, some speculations show directions in which this direct approach to Gaussian 
functional measures can be extended and generalized. 

PACS numbers: 02.30.Cj 

I. INTRODUCTION 

The usual physicist's approach to functional integra
tion 1-6 over some Gaussian measure (for example, an expon
entiated action integral) is to select some equal-spaced time 
slicing and write the functional as though it were a function
al on an n-dimensional vector space IR n. Then the attempt 
would be to integrate over each "vector component" and 
after doing the integration take the limit as n-+ 00 and hope it 
exists. Very often the correct answer is obtained. Because 
nonstandard analysis is well suited for rigorously handling 
infinite dimensional spaces, it seems a natural choice to see 
how far the simple vector space approach can be taken with 
regard to certain Gaussian measures. 

The attempt here is to derive many of the usual path 
properties of the Weiner measure by using infinite dimen
sional spaces and to use these results to define other Gaus
sian measures which are shown to be related to the Weiner 
paths. The attempt falls short because the proof that the 
Weiner paths are Holder continuous of order <! has only 
been accomplished at a "local" level. Hence on the whole the 
development must remain heuristic. However, given Holder 
continuity the nonbounded variation ofthe paths can be 
shown by examining the region of *IR n (where n is an infi
nite number) on which the measure is concentrated. Other 
geometric notions arise here and because of the power of 
nonstandard analysis a clearer vision of the paths as vector 
quantities emerges. 

On the whole the word measure is used loosely and sim
ply refers to the Gaussian form on *IR n. The question of 
whether or not this is a true measure has been deferred. 
Questions about the measure algebras of 'sets have been ne-

glected. The approach here is a direct one and somewhat 
along naive lines but, thanks to nonstandard analysis, the 
results are more rigorous than would be expected and more 
geometric in meaning. A short attempt is made in the section 
on integration in *IR fI to show how a true measure over an 
algebra of cylinder sets can be related to some Gaussian 
forms. In particular, the connection to the Weiner measure 
is shown. The emphasis throughout the paper is on the vec
tor space operations and quantities, their relationship to 
standard entities, and the properties selected by various 
Gaussian forms. 

Physicists also use Fourier representations for func
tions and integrate over the coefficients to do functional inte
gration.3

•
5

-
9 The direct connection between the time-slicing 

vector-space representation of the Weiner function integral 
and its Fourier representation is shown here. It is shown that 
the transformation to Fourier space (also an *IR n space) 
yields functions which are infinitesimally close to the Weiner 
functions. The Fourier representation also allows the usual 
generalization to fractional derivatives. 

Some concluding remarks also suggest ways to extend 
this explicit representation of Gaussian measures to more 
general cases. 

Overall, the power of nonstandard analysis will become 
apparent in the ability to treat infinite and infintesimal quan
tities directly as standard numbers are treated in classical 
analysis. This often gives more meaning to a result than sim
ply saying, for example, that the limit of some variable is 
infinite. In fact, having "concrete" values for certain infinite 
or infinitesimal quantities allows the "visualization" of cer
tain geometric aspects of the problem. 
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II. NONSTANDARD ANALYSIS 

A. Theory 

In recent times Robinson 10 put the Liebnitzian con
cepts of infinite and infinitesimal numbers on a sound math
ematical foundation while retaining their intuitive aspects. 
The general advantage of this scheme, called nonstandard 
analysis, is that the usual roundabout "8E" methods can be 
replaced by the direct use of infinitely large and small quanti
ties. This does not mean the 8E techniques have to be alto
gether abandoned but, instead, that they become a smaller 
part of the general scheme of mathematical analysis. Below, 
a simplified heuristic introduction to the formulation of non
standard analysis is given which is a combination of the ap
proaches in Refs. 10--16. This is not meant to be a complete 
introduction to the subject, but only a guide for this article. 

Classical analysis can be thought of as a system of state
ments about various n-ary relations based on an infinite set IR 
of individuals. For example, the sum c of two numbers a and 
b can be denoted by S (c,a,b ), a ternary relation, where 
c = a + b. Then the statement "for any a,bEIR there exists a 
cEIR such thatS (c,a,b)" is true. Similarly, there are relations 
for" > " and "." so that a > b is written as a binary relation 
Q (a,b ) and the product of two numbers, c = a·b, is written as 
the ternary relation P(c,a,b). There also exist relations be
tween sets and individuals, i.e., members of IR, between sets 
and sets, etc. In general, one can think of the relations as 
subsets of the Cartesian products IR X IR X ... X IR (n times for 
an n-ary relation), subsets of the Cartesian products of these 
subsets, etc., producing an entire heirarchy of Cartesian pro
ducts and their subsets. Sets can be thought of as singulary 
relations. These relations and statements about them [as in 
the statement above about S (c,a,b )] constitute the standard 
system of classical analysis and will be denoted by U. In 
other words, this is just the set of relations, lemmas, defini
tions, and theorems usually called classical mathematics. 

An abstract language L can be established in which all 
the relations of U can be written as abstract relations ep in L. 
For example, S (c,a,b lin Ubecomesep (s,c',a',b ')inL, wheres 
stands for sum, i.e., it names the relation. The individuals of 
L, the setA, are denoted by c',a',b' here, and are abstract 
entities which merely name the individuals (IR) of U. All the 
statements in U can be written in L in terms of the relations 
ep ( ... ) and a set oflogical symbols: 3,'v', 1, V, /\ ,=>, [, and]. 
These have the usual logical meanings. Then in L the former 
statement in U about the existence of a sum of two numbers 
becomes the sentence 

'v'a,b [ep (A,a) /\ ep (A,b )3c[ep (A ,c) /\ ep (s,c,a,b)]], 

where ep (A ,x) is the relation xEA. This can be read "for each a 
and b in A there exists a c in A such that c is the sum (in the 
sum relation) of a and b." The entire set of sentences in L 
which are the abstract counterparts of U is denoted by K. In 
fact one can think of L (and therefore K ) as given and U as 
being a particular concrete model for K. It is emphasized 
here that Land K are sets of abstract individuals, relations, 
symbols, and sentences and do not necessarily represent any
thing concrete. There may in fact be other models for K 
besides U. The intention here, however, is not to find new 
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models of Kbut to extendK to a new set of sentences of L,Kc' 
in such a way that a model of Kc will include the desired 
infinite and infintesimal numbers. The relation between the 
model of Kc and the model of K (U) will be given as the now 
famous Transfer Theorem. This will provide the connection 
allowing statements in one system to be interpreted and used 
to develop new results in the other. 

A concurrent relation is any binary relation, say 
ep (x, a, b), in K where a and b can be individuals, relations, 
sets, etc., and x is the name of the relation with the following 
property: For any finite set of entities G in the domain of the 
relation there exists an entity in the range of the relation for 
which the relation holds for all the entities of the finite set G. 
Symbolically, given any finite set GCdomain 
[ep (x, a, b)], G = !g\,. .. , gn I say, there existsy E range 
[ep (x, a, b)] such that 

ep (x, g\, y) /\ ... /\ ep (x, g", y) 

is true. An example of this is the abstract relation for" < ," 
written ep (/, a, b), which meansa < b (or, moreacurately, the 
images of a and b in L are in this relation). Then it is well 
known that for any finite set of numbers there always exists 
another number which is greater than all those in the finite 
set, i.e., " <" or ep (/, a, b) is a concurrent relation. Now, us
ing the set of concurrent relations, the set of sentences K can 
be enlarged. 

Take the set of all concurrent relations of K and add to 
K entities which satisfy the concurrent relations for all (i.e., 
infinite) sets of entities of the domains of the relations. In 
other words, for any concurrent relation ep (x, a, b ) and any 
subset of the domain of this relation, say Q = (ailiENj, add 
to K from other available and unused entities of L, always 
assumed to exist, entities b such that ep (x, ai' b ) is true 
'v'iEN, and all other formal sentences which were true still 
hold true. Call this new set of sentences so generated Kc. 
Note KCKc andKc still retains formally all the qualities of 
K (sum relations, inequalities, set inclusion, theorems, lem
mas, etc.). The great accomplishment of Robinson 10, 12 was in 
showing that Kc also possess a model called a nonstandard 
universe *Ubased on an extension ofR,*R Obviously 
IR C *R, but *R - R =1= 0. This can be seen by considering the 
concurrent relation" < ". There exists, by construction, in 
*R a number (J) such that n < (J) 'v' nEN. In fact, there exists an 
infinite number of such (J)'s since (J) + x(xER ), (J)2, ~(J), etc., 
also satisfy the concurrent relation" < "'v'xER. These are the 
infinite numbers. Similarily, using" > "one obtains "31]E*R 
such that (lin) > 1], nEN." The number 1] is a member of the 
infinitesimal numbers. In general, standard sets are always 
subsets of their nonstandard extensions (denoted with a star 
prescript), but they are not necessarily equal to their non
standard extensions, In fact, if the standard set is of infinite 
cardinality the nonstandard set will be larger, i.e., will con
tain nonstandard entities. 

The question can now be asked: How does one go from 
the standard to the nonstandard universe and what rules 
apply to the new entities? At first one might guess that since 
both universes model similar sets of sentences in a formal 
abstract language all sets of individuals and all relations in 
* U have the same properties as those of U. That this is not so 
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can be seen by considering the set R C *R. R is bounded 
above by w, an infinite number, but R does not have a least 
upper bound (lub). If WI = lub(lR) then W! - 1 is an upper 
bound to R which is infinite also but is less than w!. From 
this it is seen that there exist sets in * U which do not have the 
usual standard properties (actually the logical formula of U 
have been presented rather loosely concerning the quantifier 
'tJ; only bounded quantifiers can be transferred to * U and be 
true!5). The answer to this situation lies in the realization 
that * U obeys all theformal properties of U as exemplified by 
the set of sentences Kc generated from K. Thus, one must 
first couch all entities from U in the formal language of Land 
only these statements will get through to * U and remain 
true. The reverse is also true, that is, only statements in * U 
which can be translated into a formal sentence of Kc and 
hence of K will be true (formally) in U. If the "*,, prescript 
represents the map (transform) of entities and formal state
ments from U to * U, then the above is a rephrasing of 
Robinson's 

Transfer Theorem: All formal logical sentences are true 
in U if and only if the * transform of the sentence is true in 
*u. 

If Trepresents the 1-1 map which associates the model 
U with K eLand T' represents the analogous map between 
* U and Kc C L, then the following diagram illustrates the *
map between U and * U: 

/~\' 
U .*U 

Thus R in * U is not the *-image of anything in U. *R is 
the image of Rand *R has all the formal properties in * U of 
R in U. These considerations lead to the definition of the 
properties internal and external which can be assigned to the 
entities of*U. An entity in * Uis internal if and only ifit is the 
*-image of a formal entity in U (e.g., *R is internal) or if it is 
defined using only other internal quantities. If an entity is 
not internal it is external (R is external in * U as are the set of 
infinite numbers and the set of infinitesimal numbers). The 
transfer theorem basically states that only the internal quan
tities of * U obey the formal rules of U. In the above diagram 
the map T' is not onto since * U contains external quantities. 

B. Some nonstandard applications and nomenclature 

The *-transform applies to all standard quantities (e.g., 
S -* S, 2---+*2, limn~oo -*limn~ooo' etc.), but will be dropped 
when no confusion will arise. This can be done for many 
standard entities since their behavior is essentially the same 
in *Uas in U. 

The numbers'" 1, *2, ... E*R can be written and treated as 
one does the numbers 1,2, .... However, there are other quan-
tities in *R; for example, the set of infinite numbers *Roo 
= ! XE*R I Ix I > la I, aER l or the set of infinite integers *1'100 
= *1'1 - N C *Roo . There is also the set of infinitesimal num

bers *Ro = !xE*RI Ixl < lal, aER l. Numbers like 45 + y, 
where YE*Ro, are also in *R since they belong to the sum 
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relation. This number differs from 45 by an infinitesimal 
amount. The relation ~ is used to denote any two quantities 
which differ only by an infinitesimal amount. Thus 
45~45 + yand *RQ = IXE"'Rlx~O!. Whenever a numberc 
is finite (CE!:"'Roo ) then it can be shown that c~b, where b is 
some standard number (bER). This relation is written 
b = "'(c), where (T is the standard part map. Thus 
45 = "'(45 + y). A number which has a standard part is said 
to be near standard. When two numbers differ by a finite 
amount they are said to be in the same galaxy or that one is in 
the galaxy of the other. That is, if a, bE"'R and a - bE!:"'Roo 
then aEgalaxy of b. For example, the galaxy of 0 (or any finite 
number) is just the set of finite numbers. The galaxy of an 
infinite number W is just the set of other infinite numbers 
which differ from W by a finite amount. It can be seen that ~ 
and "galaxy" set up equivalence classes in "'R. 

The word infinite can become confusing since it has 
many definitions here. It might refer to a number in *R oo or 
to a limn_o oo ' which is a *-transform ofa standard definition 
of infinity. If one examines the quantities in "'Roo in this light 
they are "'-finite in the sense that the elements ofR are finite; 
however, when there will be no confusion one can say that 
the elements of "'Roo are infinite. The difference between the 
use of a *-transformed quantity and a standard quantity 
which is examined in * U comes out in the concept of 
continuity. 

If a standard real valued functionf(x) on [a, b] is con
tinuous at x = y then one knows that 'tJ € > 038 > 0 such that 
I fix) - f(y)1 <€ whenever Ix - yl <8. Thus picking a fixed 
standard € and transforming this statement to '" U it can be 
seen that for some positive 8"'0 this is always true 'tJ stan
dard € > O. Thus one must havef(x)"'f( y) whenever x"'y 
and xE[a, b]. This is the intuitive notion of standard continu
ity. Robinson!2 has shown that it can be taken as the starting 
point and the standard definition can be derived from it. 
However, in '" U one also has the definition of *-continuity: 
An *R valued functionfon [a, b ],a, bE"'R, is *-continuousat 
YE[a, b] iff for each €> 038 > 0 such that I fix) - f(y)1 <€ 
whenever Ix - yl < 8. In this last case € and 8 can be infini· 
tesimal. For example, the functionf(x) = x 2 is standard con
tinuous only on the finite numbers, is not standard continu
ous on *R oo , but is *-continuous on all *R. Another example 
is the nonstandard internal function sin WX, wherexE"'R and 
wE*R oc • This is *-continuous but not standard continuous. 

If/(x) is standard and continuous on [a, b] then 11 con
cept which is intuitively useful and thoroughly rigorous in 
* U is that of vectorization. For any infinite ilE"'N 00 define a 
vector Jin the Cartesian space *R!J = "'R X ... X "'R (il times) 
byJj=(Jt =f(a + [(j - l)/il]b). 

Differentiation is intuitively defined also (but now the 
definition is rigorous). Givenf(x) a standard function then 
fix) has a derivative at x = y iff there exists a unique near 
standard number 1'( y) such that 

f'( y)",f(Y + 8) - f( y) for all 8~0 
8 

or,equivalently,f'(x) = "'((f(y + 8) - f(y)]/8 )fora1l8~0. 
Another definition for the existence ofl'( y) is thatf(x) is 
"linear" in 8"'0 at x = y, which meansf( y + 8) = f( y) 
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+ f(y)c5 + TJc5, where c5~O and TJ~O. If a standard function 
has a derivative everywhere on some interval then one can 
simply use the vectorization method and show that 
f'(y)~(fj - fj_1 )/p, wherep = 1/11 andjp,.....,y. As in the 
case of continuity there are functions in * U which are not 
standard (but are internal) and possess a *-derivative (which 
is a *-transform of the standard definition of the derivative); 
for example, e - wx for some lUe*R

oo 
• 

The definition of integration of a continuous function is 
very direct along the usual intuitive lines. Iff( x) is a standard 
continuous function on [a,b] then 

f f(X)dx""-'}tl fjp, 

where l1,p, andfj are as before. The concept of integral can 
be star transformed to *U and one can write * J/g(x)dx, 
where g is some internal integrable function and .Y is a mea
surable set. For a standard function h (x) the improper inte
gral f:: h (x)dx can be examined in * U. If the standard inte
gral exists in U then 

* f~'7 h (x)dx~ f: 00 h (x)dx(or (7[f~ T]h (X)dX] = too"" h (X)dX) 

and (OC h (x)dx~O 
JT] 

for all infinite TJ(TJe*R"" ). Note that for a nonstandard func
tion, "p(x) = 1 if x < lU for lU fixed, positive, and infinite and 
e - x for all other x;" for example, the integral f (f' p(x) dx 
exists (in * U) because of the *-transformed limit definition of 
an improper integral. 

Overall, one can see that various operations and con
cepts for standard quantities can be defined on * U and 
mapped back to U(by u, for example) and these concepts can 
be *-transformed back to * U to operate on quantities in * U! 
While this may at first seem confusing very little perplexity 
emerges so long as one realizes that the * concepts apply only 
to infernal quantities. Looking back at the three nonstan
dard functions defined in the preceding paragraphs one can 
see that they are internal. An example of the external func
tion is 'j(x) = I if x~O and ° otherwise," since it involves the 
set *Ro which is external, i.e., it has no image in Kc CL] and, 
of course, has no counterpart in U. Similarly, *R oc and *N 00 

are external. Internal objects are those which are generated 
by a *-transform or through a formal definition in Kc involv
ing other internal objects. For example, {x Ix < lU j is internal 
for any fixed lU even if it is infinite. The concepts of internal 
and external are both used to develop new results. It is their 
interplay which is important. 

If an internal quantity Q (n )e*R for ne*N is infinitesimal 
for all neN then it is infinitesimal for some infinite nle*N co • 

This is the infinitesimal prolongation theorem. 13 The proof 
is quite straightforward and illustrates very well the con
cepts of internal and external. Consider the set 
A = {ne*NII nQ (n) I < Ij. A is internal (it is defined in terms 
of internal quantities and relations). A # N since N is exter
nal, but from the definition of Q it is true that I nQ (n) I < 1 for 
all neN (because infinitesimal x finite = infinitesimal). Thus, 
there must exist an nle*N 00 such that InIQ(nl)1 < I and 
hence IQ(ntll < I lin I 1,.....,0. 
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The concepts in this section and other *-transformed 
properties will be of use in the following development. 

* III. THE SPACE RJJ AND GAUSSIAN MEASURES 

Since, intuitively, one wants to integrate over an infinite 
dimensional space one can introduce the space *RJJ, where 
I1E*N 00 • Although no direct attempt is made here to rigor
ously relate integrals in *RJJ with a measure on a particular 
algebra of sets, it can be shown that in certain cases it is 
possible to define *RD consistently with such an algebra. 

For example, on the space of continuous functions 
((J [0, 1] a definiton of an algebra of cylinder sets is as follows. 
Given a finite set of points (tl, ... ,tn), fl <t2 < ... <tn' in (0,1) 
define the mapZt: 'If --+ Rn by Zt(l) = (I( ttl, ... /(tn )). Then 
the sets C ~ = Zt- I(B ), where B is a Borel set in R", are cylin
der sets in 'If. A Gaussian measure may be defined on 'If by 
using these sets as the basis for au-algebra S on 'If and defin
ing a measure on the C ~'s by an integration over a Gaussian 
in Rn. For example, a conventional definition of the Weiner 
measure is the following (in the next section a more heuristic 
definition will be given). Define the function 

1 , w(s x y) = __ e - Ix - yl /1" 
"v'21TS . 

Then define the measure A on C ~ by 

A (C~)= 1 dbl,,·dbn w(tl,O,b )W(f1,bl,b1),,·w(tn ,bn -- I ,bn)· 

This induces a measure on S, the Weiner measure. In order 
to use an infinite dimensional space in this case note that 
given any set of sequences {t},j = l,,,.,n}, where t j 

= (t~ , ... ,t';"j )eRm
" one can define an ascending set of se

quences of ordered points Uk = uJ = I k t j so that Uk C Uk + I 

and Uk represents a point in R/, where Ik = l:7 mj' A concur
rent relation has been set up here which states that for any 
finite set of tj's there is a new set un which includes all the 
points of the tj's and has associated with it a new space R/n. 
This means that in the nonstandard universe there exists a 
sequence of 11 elements f, say, and an associated space *RD 

for some l1e*N 00 for which t j C t for all standard fi's. Note 
that t contains all standard points in (0,1) as well as infinitely 
many nonstandard ones. A Weiner measure for a cylinder 
set is now easily defined on this space because the Borel set B 
which defines C ~ has an image * B in *Rn C *Rfl and one 
merely integrates from - 00 to + 00 over all variables not 
in * B. Put more rigorously, if IT is the projection from *RJJ to 
*Rn, where *BC *Rn, then define the measure 

A (C~) = a( ( db I· .. dbu W(b I,".,bu )), (1) 
J7T 1(·8) 

where W is the appropriate infinite product of the w func
tions (n of them). In general, it will be assumed that some
thing of this nature can be done for each measure in this 
article. 

In the previous example the criteria that all standard 
elements of (0, 1) be in t can be relaxed to just making 
t; = i/n, i = 1, .. . ,11 - 1, for the components oft. The inte
gral in Eq. (1) can then be defined the same way except taking 
as the variables in * B a set of n points which are infinitesimal-
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ly close to those of u. Since the integrand in (1) is a continu
ous standard function and the elements of u are all different 
by standard amounts, the two integrands will differ only by 
an infinitesimal amount and thus on taking standard parts 
the measure will remain the same for all C ~. The definition 
of the Gaussian in terms of equal spacings such as this will be 
done in the next section. A general outline of this process is 
presented below. 

Using the space *R fl as a starting point a general Gaus
sian measure can be defined on it. In fact, the method 
throughout shall be to first define the Gaussian measure and 
then determine what standard entities it is concentrated on. 
The Gaussian measures here will be defined using square 
matrices on *R fl with nonzero real eigenvalues (although in 
general they may be infinite or infinitesimal). If A is such a 
matrix on *R fl then, letting G = A T A, the Gaussian mea
sure related to A can be defined using 

exp[ - wcI,Gj)], (2) 

wherejE*R fl and (,) is the natural inner product on *R fl. 
Thus G is symmetric and has positive definite eigenvalues. 
Then, for example, if this is to be a measure on the cylinder 
sets of~ [0, 1],C ~,say, pick the components of/according to 
the previous prescription involving equally spaced tj'S and 
define the measure by 

a(l dl" ···dl" - -) A (C~) = 'JI 'In e-(IIlIIJ.Gf). (3) 
rr '(*B) (21T)llI2,j det G 

The exact form of G will be shown later. All integrals of this 
nature will be written with the integrand 

dj e - (112I1/.G/), (4) 

where djincludes all the normalization factors like 1T and 
det G. However, all functional integrals in this article will be 
handled by the simple approach of assuming the functional 
to be integrated is of the form in which its arguments can be 
vectorized and one can then integrate over each component. 
For any functional F this will be expressed by the symbolic 
form f dAG F, where dAG = dj exp [ - (!)cI,Gj)]. 

Using the variables x = Ai, where G = A TA, (4) 
becomes 

dx e - (1/211-".-"1 = dx exp( - (!) ~ x~ ) . (5) 

An important heuristic concept in what follows will be that 
of the external set on which the measure is concentrated. 
That is, in order to visualize the subset of vectors of *R n 

which contribute to the standard part of the measure in (5) a 
definition will be offered which produces a set E which is 
maximum in some sense (to be defined) on which the integral 
of (5) is infinitesimal. Then the integral is concentrated on 
H = *R II - E. The set E is external since its definition in
volves the concept "infinitesimal" and thus H is also exter
nal. Hence, integration over E of H cannot be seriously con
sidered since in general integrals exist only over internal sets. 
But the E and H concepts will be useful to help visualize the 
region of *R n in which the representatives j of standard 
entities are concentrated by the measure. 

The entire contribution to the measure comes on the set 
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H = *R n - E. This means that thejwhich contribute to the 
standard part of the integral are contained in A - I(H). It is 
these vectors in *R n which will relate to standard entities. 
The heuristic sets E and H will be referred to throughout. 
Although E and H cannot be exhibited explicitly, several 
"approximations" to them will be shown in the next 
paragraphs. 

Several theorems about the properties of the vectors x in 
Eq. (5) can be proven. Since the quantities ofinterestjare 
related to x through a transformation A, knowing x will im
mediately shed light on properties ofl The first property is 
derived in 

Theorem 1: At least one component of x can be infinite, 
i.e., for each xEH one Xi can be an infinite number. An "up
per bound" on this number is vln(S!J 2 /~), where r is an 
infinitesimal number. 

Proof Start with a more exact definition for a set en
compassing E, namely the internal set Ee =! xllx i I > C for 
some i, all other components are arbitrary J. The object now 
could be to find a value of c such that A (Ee )~O. However, it 
is easier to calculate the measure of He = *Rn - Ee 
= ! xllx i 1< c for all iJ and determine for what c values it is 
~l. Then 

n ie 
dx· 2 A(He)= 112 I e-(I12)x,. 

1=1 0,j21T 
(6) 

Letting 2 f~e - (l/2Ix'dx/ ,j21T = (1 - 5), where 0 ~ 5 ~ 1, 
then A (He) = (1 - 5 )ll. Now although 5 ~O whenever 
cE*R"" ,( 1 - 5 )n~ 1 for certain infinitesimal S. Thus defin
ingH' = n! HelA (He)~1 J it is seen thatthe measure is "con
centrated" on H' and H' contains some x for which at least 
one component can be an infinite number. An "upper 
bound" can be placed on these numbers by considering the 
cases for which (1 - 5 )n~l. 5 is given by 
5 = (2/V1T) r;;J'2dx e- x

', which follows from the proper
ties of the error integral transferred to * U. In order to see 
what values of c will yield (1 - 5 )n ~ 1, note that for all in
finitesimal r, e - I' ~ 1. Then for some positive r~O set 
(1 - 5 )n > e - I' to insure the result. Thus 5 < 1 - e - I'm. 

Since 5 is monotonically decreasing in c this relation deter
mins a c such that for any sets which contain x's with any 
component larger that this c the measure of the set will be 
infinitesimal. An estimate of c (in terms of r) can be obtained 
by using the approximation 

i:" (2) i"" d - x' ( 2 ) i"" d v'1x - x' ~= -- xe < -- x--e 
V 1T el\l'2 V 1T el\l'2 C 

= ~ (! y12 e - e'll. 

Then setting 

2 (2 )112 _ e'12 1 -yin - - e <-e 
c 1T 

insures that A (He)~ 1. Solving (S) for c gives 

c> ,jln(S!J 2/Y1T) .• 

(7) 

(S) 

Note that this depends on an external relation, ~, and 
so one cannot get a true upper bound for X I' However, it does 
provide a geometric picture of an approximation to H, name-
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ly the external set H I = [illx II < v' In(Sfl 2/r1T) for all 
positive r~O I. This is just an fl-dimensional cube. 

Because of the form of the Gaussian it is natural to ask 
whether there are any bounds on ?- = ~? x] when iEll. 
From Theorem I a bound would be ?- < fl In(Sfl 2/r1T). In 
fact, a better set of bounds on ?- is given by 

Theorem 2: For all iEll?- = ~ x] E galaxy of fl. 
Proof Using hyperspherical coordinates for an n-di

mensional space Rn 

XI = rcos 01, 

X z = r sin OICOS O2 , 

Xn _ I = r sin Ol,,·sin On _ 2 COS On _ I , 

X n = r sin 0 I'" sin On _ I , 

where?- = ~ x~, yields a volume element dV = r" - IdrdA n , 

where dAn = solid angle 
= sinn - 201· .. sin20n _ 2sin On _ I dOI·"dOn _ I' 

For simplicity choose n even. Then 

f 21Tn12 
dA =----

Unit n (n12 _ I)! 
hypersphere 

Transfer these results to * U and apply them to the measure 
in Eq. (5) and the set 
H(c\>cz) = [ilv'2c1 < 1~f1~ I xfl <v'2c21 . This gives 

A, (H (cl,CZ)) = ,.n -- Ie -,.-dr. 
2 Ie, , 

(fl 12 - I)! e, 

(9) 

Toseeforwhatvaluesofc i andcz..1, (H(cI,c2))~lletk = fl /2 
and examine first the integral 

..1,2 = --- rfl-Ie-rdr. 2 I"" 
(k - 1) e, 

The integrand has a maximum at r.nax = (fl - 1 )/2 and is an 
increasing function of r for r < r max and a decreasing function 
of r for r> r max' So it is expected that the integral will be 
concentrated in the region of r max' 

Changing variables to Y = ?-, 

..1,2 = yk-Ie-Ydy. 1 I"" 
(k-l)! e~ 

Transferring the standard integral formula 17 to * U and do
ing some algebra yields 

1 -e; k~1 C~n 
A2=e L-' 

n~O n! 

Since it is expected that the c~ for which ..1,2~a will be greater 
than (fl - 1)12 pick c~ = a(fl - 1) with a> 1. Then 

k - I (fl _ l)n 
..1,2 <e- alfl - I) ak I <e-alfl-I)ake-Ifl-I). 

n~O n! 

Rewriting this as an exponential and substituting for k, 
..1,2 < ell - a + 11!2)lnalfl -II - al. 

Obviously, if a is such that "(a) > 1 then ..1,2~a, since the 
exponent is negative and infinite [this follows from a > pn a]. 
A closer estimate on a can be made by taking a = 1 + 1/lfl, 
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where 1/ > 0 and 1/lfl~a. Note that 1/ can still be infinite. 
This gives for the exponent 

( - !L + ~ In( 1 + 1// fl ))n + !L. 
fl 2 fl 

Using In (1 + 1/lfl) < 1/lfl this gives for ..1,2' 

..1,2 < e - 11/21'1 + '1lfl. 

Thus..1,2~a whenever 1/ is infinite or, equivalently, whenever 
c~ >fl + 1/ for some infinite 1/. 

The case for a similarly defined A, I as a function of C I is 
the mirror image of that for ..1,2' Take a < 1 and 
ci = a(fl - 1). Then the same formulas result as before for 
the exponential. Picking a = I - 1/lfl, where 1/ > a and 
1/lfl"",a, gives the condition that..1,l~awheneverci';;;;fl -1/ 
for some infinite 1/ < fl. Thus H (C I 'C2) is concentrated in the 
region in which ~xi = fl + 1/ for some finite 1/. This is just 
the galaxy of n .• 

This presents the geometric picture of H being con
tained in a spherical shell in *Rfl of nominal radius fl and 
"thickness" the external set *R - *R oo , the set offinite num
bers. This result will be particularly useful in showing the 
property of nonbounded variation for functions of the 
Weiner measure. 

One final theorem of this section, while not so general, 
will be of use in plausibility arguments for the finiteness and 
continuity properties of the Weiner functions. 

Theorem 3: For iEll ; fl ~f1~ I x I is near standard. 

Proof In order to prove this the full use of *Rfl as a 
Euclidean vector space is made. Let [ej I be an orthonormal 
basis for *Rfl so thati = ~?xlei' Let [aj I be a new basis 
related to ej by an orthogonal transformation 
O:ej = ~?Ojjai' Pick 0 such that al = (1/v'fl )~f1ei' This 
can be done since a I determines one direction and it is always 
possible to define the rest of the transformation on the sub
space [vE*Rfl Iv.a I = a I so that it is orthogonal. This is as
sumed to be done and the detailed form of 0 on this subspace 
will not be of concern here. The factor of 1/v' n in the defini
tion of ii I normalizes ii I' Then the component of i along ii I is 
given by yl==X·ii\ = XjOjl . From the properties of orthogo
nal transformations transferred to * U, Ojl = Olj = 1/ v' fl 
so thatYI = (1/v'fl )~?Xj' Because 0 is orthogonal 
~?xi = ~;ly~. LetEe = [il(1/v'fl )I~?xj I >cl. Then 
transforming the integral over Ee using 0 gives 

A, (Ee) =2 (00 dYI e- IIIZ )Y1. 

L ~21T 
Thus for all infinite c A, (Ee )~O and so for all 

iEll(I/v'fl )~?Xi is near standard .• 

IV. DISCRETE FUNCTIONAL MEASURES 

A. First order or Weiner Gaussian measures 

The first Gaussian functional measure considered here 
is the usual Weiner measure, 18 which was historically the 
first functional measure studied. The path spaces will be tak
en throughout to be the paths with domain [a, 1]. The Weiner 
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paths form the set of paths of Brownian motion of a point 
particle. 18 This measure will be the foundation from which 
several other Gaussian measures will be built. The path 
properties are already well known 18 and those necessary to 
this article will be stated with only a few nonstandard proofs 
shown. 

The Weiner measure and several subsequent measures 
are defined here by considering the following matrix D. Let 
nE*N 00 and let J.L = 11 n, then on the space *lR n define the 
matrix 

0 0 0 
-1 0 0 

I 0 -I 0 
D=- (10) 

J.L 0 0 -I 

Let G1 = J.LD TD. Note that the definition of G1 differs slight
ly here from the previous section. This defines a Gaussian 
measure using Eq. (3). To put the exponential into more fa
miliar form use Eqs. (3) and (1) to write (using/o = 0) 

exp[ -(1I2)(j,G/)] =exp [ - ~jtl(J} -J}~1)21J.Ll 
(11) 

Then, using the nonstandard expression for the integral of a 
function and the derivative of a function, (11) becomes 

(12) 

the form more familiar to physicists as the measure in a path 
integral. The diffusivity has been taken to be one-half here. 
Also one should note the derivative d/ldt is a weak deriva
tive (a distribution) since it will be seen that the paths/ are 
not differentiable. 

It is well known that the Weiner measure is concentrat
ed on a set of continuous functions 11""1 with certain proper
ties. The external set in *jR n on which the measure is concen
trated is (11 V J.L)D ~ 1 (H ) in the basis of the vectors j The 
assumption here (which makes the subsequent development 
heuristic and not entirely rigorous) is that the vectors 
/E( 1/1/ J.L)D ~ 1 (H) represent the Weiner functions in thatthey 
are infinitesimally close to them. Thus, assume that if 
/E(1IVJ.L)D ~ I(H) then./j':::::=.a(jln), where aE1I""1' Some 
plausibility arguments for this are given below, but so far it 
has not been possible to fully show this using these nonstan
dard vector-space methods. 

LetF= (1IvJ.L)D -I(H). Then the following arguments 
show th..at the above associations of/'s and a's is plausible. 

I.fEF are all near standard. From Theorem 3 it follows 
that/n is finite. For any j < n Theorem 3 can be generalized 
by applying it to the subspace generated by {ei Ii = I, ... ,jj to 
showthat(1IVj)~xi is finite. Nowforjw::::::t, where tis any 
standard point in (O,l),j = an, where "aE(O,l) and therefore 
(1IV!1 )~Xi is finite. Since the sum toj (with the lIvn 
factor) is justJ}, this is highly suggestive thatJ} is finite. But 
the actual set to measure is the set 

He = r/IIJ} I = VflIl:~Xil <cfor allj) to see whether 
AG , (He)~ 1 for all infinite c. This is analogous to finding the 
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allowed values of the separate Xi in Theorem 1. A similar 
plausibility argument could have been made there that the 
xeH are all finite, but as shown this is not necessarily true. 
Thatfj is finite is no doubt true since the Weiner measure is 
well known to be concentrated on finite functions, but inte
gration over He is not a simple matter. 

2. /EF correspond to continuous standard functions. 
This can be proven gi~en 1. Let Ec = [II J} - J} ~ I I > c for 
somej}. Obviously, if/is to represent someaE1I""1 it must be 
true that A (Ee )~O for all standard c. Let -yp,xj = J} - J} _ I , 
then by a simple change of variables AG , (Ee) = A (Ke), where 
Ke = [xlix) I >clvJ.L forsomej}. LetK~ = [xllx)1 >cIVJ.L, 
all other components arbitrary}. Then Ke = uj K ~ and 
A(Ke)<l:?A(K~). Now 

A (K j ) = 2 ) e - (112)"1 < _.r:.. e - 2/1-' Vj; 1"" dx. ,2 (11.)112 
e elV I-' (217") 1/2 C 17" 

then using the definition of J.L, 

A (Ke) < ~ (~)1I2e-2n~0 for all finite c, 

since the exponential dominates the n factor. By the infini
tesimal prolongation theorem A (Ke )~O for certain infinites
imal c's, which suggests that the continuity properties of 
aE1I""1 can be restricted. 

3. The/EF are "locally" Holder continuous of order 
r <~. The sense of local will be made clear in the following. 
Consider the approach of Theorem 3 applied only to the 
subspace generated by [el,e l + I" • • ,ek ) k > I. Make an or-

thogonal transformation to Y I = (11 ~ k - I) l:J ~ I xj . Then 

~J.L(k - I) YI = h - J; and the restriction 
Ih - J; I >ci(k -1)J.LI Y becomes I Yll >cl(k _1),uIY-II2. 
Now define the setsE};, = [llilk - J; I >cl(k -I J.uIY}. Let 
LE*N and L < n. Then the set E~ = Uk _ i<LEkl is the col
lection of vectors/whose components/k ,J;, say, differ by 
values larger than c I (k - 1 ),u I Y whenever L > (k - I). This 
permits investigation of the continuity on a "local" level de
termined by the size of L. Now AG, (E~) < l:k -I<LAG, (E};d 
and 

AG (E};,) = 2 (00 ~e-lll2)yf 
, J/I(k _ /II"I'lIl) y (217") 1/2 

< 21(k _/)J.L1
11/2

) - Y exp( _ c21(k _I J.u12y- I), 
(217") 1/2c 

so that 

AG,(E~) 
21(k /),u111l2) ~ Y 

< I - 1/2 exp(-c21(k-I)J.L12Y-I). 
(k - I) <L (217") c 

Lettingj = k - 1 the sum becomes 
L (n -J'linII1l21 - Y 

A (Ee) " Vr- (21' 12Y-I) 
G, L <)~l (217") I 12c exp - c J,u , 

since for eachj there are (n -j) equal terms. Noting that 
1 j,u I I 1121 - Y < 1 and 1 jJ.L 12Y - I >IL,u 12Y - I, the previous expres
sion becomes 

2 L 
AG , (E~) «217")1/2C exp( - c2ILJ.L12y- I) j~l (n - j). 

Replacing the sum by its (transferred) inductive formula, 
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A (EC < L (W + L + 1) exp( _ c2ILPI2r-I). 
G, L (21T)1/2C 

This will not be infinitesimal in general for all infinite c be
cause of the explicit presence of the {) factor. However, if 
ILpl <.{) - b, where b is standard and bE(O, 1), the following 
expression results: 

, (EC) L(W+L+1) -c>o" 3{)2 -c'o" 
AG L < e < / e , 

, (21T)1/2C (21T)1 2C 

where the fact that L<.{) - I has been used. The crucial 
question is whether ({) 2/c)exp( - c2{) b) is infinitesimal. Re
write this as a total exponential: 
exp( - c2 {) b + 2 In {) - In c). Now for standard bE(O, 1) and 
any noninfinitesimal c, c2

{) b> 2 In {) by an infinite amount. 
Thus, AG, (E~ )~O and theJElI are locally Holder continu
ous of order r <!, the locality being determined by L.. 

The general result for Weiner functions is that they are 
truly Holder continuous of order <~. 18 If an attempt is made 
to obtain this result above by choosing r < ! and c infinite it is 
noted that for certain values of L (now restricted only by 
L<.{) - 1) Lp is not infinitesimal and there is no guarantee 
that the total exponential expression in the theorem will be 
negative infinite unless c is on the order of {) b for b as given in 
the theorem. The problem is that the inequality AG , (E ~) 
< :I.(k -/l<LA (E~/) is too crude and a lower upper-bound is 
needed. Of course, neither the local nor the total result holds 
if r>!. The local result will be useful for converting the pre
sent discretely defined measure to a measure on Fourier se
ries coefficients. 

A property which follows from the Holder continuity 
property is that the paths are nowhere differentiable. This 
can be seen by recalling that for a standard function g(x) to 
possess a derivative at Xo there must exist a standard number, 
g'(xo) say, and an infinitesimalp such that l3 

g(xo + p) - g(xo) = g'(xo)p + pp 

whenever p ~O. That is, g(xo + p) - g(xo) is linear "to first 
order" inp. But if gE?'rI, then g is at best Holder continu
ous; this means g(xo + p) - g(xo) goes as p r, where 
rE[O,1I2), which is "less than linear" and therefore g'(xo) is 
not necessarily standard or near standard. 

Finally, the property of nonbounded variation of 
Weiner paths can be derived directly by nonstandard means. 
A function h on [0,1] is said to be of bounded variation if 

sup i Ih(Yi)-(Yi_llI<oo 
i= 1 

for all partitions [ Yjj = I, .. . ,n I of [0,1]. It can be shown 
that all vectors in the set on which the measure is concentrat
ed, F, represent functions which are of non bounded vari
ation. Use the following notation again, Xj 

= U; - 1;-1 )lvp. Then the nonstandard Weiner measure 
becomes 

e-(1I2l(j,Gjldj = e-( I12 l(x';ildi. (13) 

In the previous section is was shown that if iElI then :I.?xT 
= {) + a, where a is near standard, contribute to the inte

gral. Now, recalling the definition of Xj and p gives the 
relation 
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o 
L Lt: - h- I )2~1, 

I 

which must be true for all/which are present a function 
aE?'r1 and so it must be true for the vectorization of a [that 
is, for a where aj = a(jp)]. Geometrically, the result states 
that the differentials of the members of ?'rl must lie on a 
spherical shell of nominal radius 1 and with thickness of the 
set of infinitesimals. 

Let a be the vectorization of aE?'r I' Then, with 

.L1a = max la i - ai_II, 
i= 1, ... ,0 

o 0 

l~L (a i -ai _ I )2<.L1a L lai -ai_II· 
I I 

But since .L1a~O this means that the variation of a must be 
infinite and hence each aE?'r I is of nonbounded variation. 

The covariance of the Weiner measure can also be cal
culated using the vectors of *1{ 0 in a straightforward way. 
The covariance is defined as the expectation value of the 
product a(t )a(s) for t,sE[O,l]. This can be evaluated by an 
integration on *1{ o. Let the functional C (a) = a(t )a(s) for 
aE?'rI. The covariance is fdAG, C. Choosej and k such that 
jp~t and kp~, then write 

covariance = Cov GI(t,s) = "(J.Ru1;/ke-I/2)(i.GJldf )="(JG,). 

(14) 

This is easily calculated by first noting that f 0Rn Xj X k 

X exp( - :I.x~ )di reduces to Ojk' Using I = D - I the integral 
in (14) becomes 

lG, = (lIp)IjI hm81m 

and 

Cov GI(t, s) = "((lIpHIl T)jk)' 

The matrix product in this is easily shown to be 

(lIp)II T = P 
222 
233 
234 

and thus Cov G I = "(,u min(j, k)) = mints, t). This is the 
usual form of the covariance of the Weiner measure. IS 

B. Higher order discrete Gaussian measures 

The quantities introduced for the Weiner measure can 
be used to define new functional measures merely by iter
ation. A Gaussian measure on a space of once differentiable 
functions whose derivatives are continuous but nowhere dif
ferentiable can be defined by using the matrix D of Eq. (1), 
Define G2 = p(D 2)11J 2, A general component of D 2 Jwill 
look like (1; - 21; _ I + 1; _ 2 )lp 2, which is a discrete version 
of the second derivative of a function. As before, the expo
nential part of the measure can be translated into an action 
integral form which becomes 
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The above-mentioned properties of the paths of this 
measure are easily derived. Again use the variable 
x = (v,u)D 2 j It is known that the integral is concentrated 
on the set iEH. From the last section the quantities 
ii = (1!v ,u)Ii are Weiner paths, where as before I = D -I. 
Then thej's are given by j = Iii or by component 

(15) 

Now since the ii 's represent continuous functions the sum in 
(15) represents an integral. Taking standard parts of (15) 
yields the relation 

art) = f ds{3(s), (16) 

where a( t ) and{3 (t ) are the standard functions corresponding 
tojand ii, respectively, and t"-'j,u. Obviously from (16) a has 
a first derivative everywhere on [0,1]. To see that a is inde
pendent of which representation of {3 is used in (15) let g be 
another representation of {3. Then gj ~hj for allj. Write 
gj - hj = 1]j and let 1] = maxI I 1]j I)· Then 
l: hj,u = l: gj,u - l: 1]j,u~l: gj,u because Il: 1]j,u I < 1]~0 and 
therefore the standard part of both sums is the same. Define 
'lr2 as the space of paths of the measure G2. Then aE'lr2 is a 
path whose derivative is a Weiner path, i.e., daldtE'lr I. 

Obviously this process can be extended to any finite 
order n by defining G n = ,u(D nfD n as the bilinear form. 
This induces a measure dA.. G• on the space 'It [0, 1] and is 
concentrated on the set 'lrn. Define ii j = Dj j in analogy 
with the G2 case. It follows immediately that ii n - I repre
sents a Weiner path. Using the same argument used for Eq. 
(16) the vector ii n - 2 represents a path in 'lr2. Continuing 
this yields the vector ii n - m, m> 1, which represents a path 
in 'lr m and is related to ii n - m + I by an integration. Let 
ii n - j,j = 1, ... ,n, be a series of vectors generated by this pro
cedure. Let an - j = U(ii n - j). Then a k is a function in 'lr n _ k 
which possesses k - 1 derivatives and whose (k - 1) deriva
tive is a Weiner path. In particular thejrepresent paths an, 
which possess n - 1 derivatives. 

The covariances of the measures dA.. G• can be calculat
ed. It is possible to calculate them as was done for the Weiner 
measure, but this becomes cumbersome. A better method is 
derived as follows. Note that the operator I = D -I acts com
ponentwise as an integral [see Eq. (10)]. This will be useful in 
this derivation. Define 

O(i _ .) = {I if i<"j, 
J O'f" 1 J> I. 

(17) 

Then I ij = 0 (i - j),u and 

(18) 

Since in (18) there exist near standard numbers t, s,p such 
that t~i,u, s~k,u, and P"-'j,u this means 

1 LI i' -likIkj~ O(t -slOts - p)ds = O(t - p) ds. (19) 
,u ° p 

A similar reduction is possible for the transposes 

977 J. Math. Phys., Vol. 23, No.6, June 1982 

~I~I~ = O(p - t)fP ds. 
,u , 

(20) 

Now let t~i,u and s"-'j,u. Then 

Cov Gn(t,s)~(1!,un -1)[IVTr]ij' (21) 

Use (19) and (20) to tum all the sums in (21) into integrals to 
obtain 

Cov Gn(t,s) = fdYI .. ·fdYn .. ·fdY2n-IO(t - YI)"'O 

X(Yn-1 -Yn)O(Yn+1 -Yn) .. ·O(S-Y2n-I)· 

(22) 

The (n - 1) integrals fromYI tOYn _I can be reduced using 
(19) to 

(23) 

This is related to a volume integral over an n - 1 dimension
al rectangle by 

i
'dYn-I .. ·i'dYI = --I-i' .. ·i'dYn-I ... dYI 

Y. y, (n - I)! Y. Y. 

(t-Yn)"-I 

(n - I)! 

In a similar fashion the integrals from Y n + I to Y2n _ I can be 
reduced to (s - Y n )" - I/(n - I)!. Combining these results in 
the last integral over Y n gives 

1 lmiRI,.sl 
Cov Gn(t,s) = 2 dy(t - yr - I(S - y)" - I. 

[(n - I)!] ° 
(24) 

Using the binomial expansion, letting m = n - 1, and taking 
t <s this can be written as 

Cov Gm + I (t,s) 
m t m + 1 + Ism - 1 m ( _ l)k + 1 

= I I (25) 
1=0 /l(m-I)! k=ok!(m-k)!(k+l+l) 

For the case s < t simply interchange s with t. Note that when 
m = 0 this is the covariance of the Weiner measure and (25) 
gives the correct result. The covariances of several low order 
derivative measures are listed below. 

Order Bilinear form Function Covariance (t < s) 

-!t 3 + !t 2S 

tot 5 - f.t's + fl3S2 
2 
3 
4 

Jl-(D 2)1]) 2 

Jl-(DYD 3 

Jl-(DYD' - ,Jwt 7 + not 6S - ~t 5S 2 + Tht's3 

It is possible to extend the discrete form further and 
define a measure on the space of infinitely differentiable 
functions on [0,1] = 'It 00[0,1]. Let VE*N oo and v<n. De
fine the matrix 

(26) 

and use this to define a measure dA.. G_ on a space 'lr 00' The 
action integral may be represented formally by 
f ~ dt (d 00 f I dt 00 f. It will be shown that 'lr 00 = 'It 00 [0,1] by 
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showing that the vectors in *Rn on which the measure is 
concentrated represent functions which possess any (stan
dard) order derivative. As before let ii j = Dj Then ii v - I 

represents a continuous Weiner path and in general ii j repre
sents a path which possesses v - j - I derivatives and whose 
(v - j - 1 )th derivative is a Weiner path. To show this mere
ly use the same argument leading to Eq. (11), recursively 
starting with the "lowest" path ii v - I which represents the 
continuous function Pv _ I (t), say. Then build up to the gen
eral path (n < v) 

Pn(t)= fds,f'ds2···f' n'dsv_n_,Pv_dt). (27) 

Then Po are the paths of rr 00 • It can be seen from (27) that 
for any nEN d n Bo! dt n exists everywhere on [0,1]. 

V. MEASURES IN FOURIER SPACE 

A. Fourier measures on Weiner paths 

On a simple level the Weiner measure can be thought of 
as measure based on an action integral S~ dt (da/dt f If one 
naively writes the derivative as a Fourier series 
daldt = l: bne21Tint, then the action becomes l: b ~ and there 
is the possibility of doing the functional integration by inte
grating over the coefficients bn , since by an integration in t 
these determine a(t). This has been an approach used in the 
past for a number of simple functional integrals3

•
5

-
9

. It will be 
seen below that the conversion of the Weiner measure to 
something of this nature is possible, but that the proof that 
the same functions are associated with each measure is not 
straightforward. 

Before proceeding some nonstandard versions of Four
ier series formula will be presented. These results come from 
the very good article on a nonstandard approach to Fourier 
series by Luxemburg. 19 The basic approach is to use the re
sults from harmonic analysis on finite groups. 

For mEN consider the additive group 
T(m) = !0,lIm,2/m, ... ,(m - 1)lm mod 11 ofm + 1 ele
ments. That is, ifO<k < m and nEN the points k 1m and 
(k + nm)m are identified. Then define an algebra offunc
tionsLm on T(m),L m 3s: T(m)_C, where C are the complex 
numbers. The muliplication 0 on Lm is defined by the convo
lution sum 

(sor)(z) = f s(z - Zk )r(Zk) 
k=O 

for zET(m) = !Zk J and s,rELm • In the above sense the ~le
ments of Lm act like periodic functions on the set of rational 
numbers {O, I,m, ... J with period = 1. It is possible to de~ne a 
discrete Fourier representation for the elements of Lm m 
terms of a sum over m + 1 terms. The relations between an 
element s of Lm and its Fourier coefficients an arel9 

978 

an = __ 1_ f s(zk)e- 2"ink/(m+ II, 
m + 1 k=O 

( ) _ ~ a _21Tinj/(m + I) SZj - k n e . 
n=O 
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(28) 

(29) 

Note that Eq. (29) is exact, that is, the Fourier representation 
of s is not just an approximation to each s(Zj)' If one thinks of 
{ an J and {s(Zj)J as m + 1 dimensional vectors then, apart 
from the factor of 1I(m + 1) in Eq. (28), Eqs. (28) and (29) 
appear as unitary transformations using the matrix 
Mnk = e21Tink/(m + II. One other relation between the mem
bers of Lm and their Fourier coefficients which is of use here 
is the equality '9 

(30) 

To extend these results to the usual Fourier series of 
continuous functions simply put m + I = lUE*N 00 and 
transfer all results to * U. Then Eq. (28) is related to the usual 
integral and Eq. (30) becomes the form of Parse val's formula 
familiar to most physicists. The point is that using the formal 
properties of (28), (29), and (30) one can work with continu
ous functions and other entities as discrete quantities, vec
tors, in a Euclidean space *R"'. 

It can be seen that Eq. (30) is especially well suited for 
application to the Weiner measure with 
s(Zj) = gj = If; - !j _ I )//1-, which would yield the simple ex
ponent l: b ~ of Fourier coefficients of gj' This will turn out 
to be true in general, but requires some study in detail to 
exhibit the correct subspace of Fourier coefficients over 
which to integrate. Later a nontrivial theorem will relate the 
1: to the direct integration of the Fourier series of gj' First the 

J . 
properties of the Fourier series of!j and gj are denved. 

To do Fourier analysisj and g, vectors in *Rn from 
before, must first be changed to cyclic functions. One way to 
do this is to extend the domain from [0,1] to ( - 1,1] in a 
systematic way. The method chosen here is consistent with 
the requirement that/o = O. Define I _j = -!j for 
j = O,I, ... ,n and!j+ 2IJ =!j. LetlU = 2n. Then the new vec
tor space becomes *R'" andj = if -n + I , ... Jo, ... /n) with 
1- n = + In, etc. Define g, the "derivative", by the above 
formula, where /1- = 2/ lU. The g's are almost symmetric, 
g _ j = gj + I , and are cyclic mod lU. 

The exponent in the Weiner measure becomes 
(,u/4) l:~ n + I gJ and in terms ofthe Fourier coefficients bn 

of g this transforms to ~ l:~ n + I b ~ . But the b n are complex 
in general and g is a real vector, hence not all bn's are inde
pendent, just as not all of the components of gE*R are inde
pendent. To see which bn will be integration variables these 
relations need to be explored. These will also be of use in 
showing the relation between f and the integral of the Four-
ier series of g. _ 

The notation used in the following will be to writel:j for 
l:f= _ n + I and ~j for l:f= o· When the index of summation 
is clear (e.g., a repeated index) it will be omitted from the 
summation symbol. 

The Fourier coefficients an ofthe/'s determined by us
ing Eq. (28) behave almost like Fourier coefficients of !1nti
symmetric functions. Using the definition of a cyclic !E*R'" 
the requirement that the an represent a real function 
(an * = a _ n), and being careful with indices leads to the fol
lowing relations for an: 
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Re(ao) =fn/(J), Im(ao) = 0, Im(an ) = 0, 

Re(an) = ( - 1 )"ao, Im(a _ n) = Im(an ), 

n = - n + 1, ... ,n - 1 . 

(31) 

There are initially 4f1 coefficients, but there are 3n relations 
leaving n independent coefficients, the same number as 
there are independent components inj Note that the behav
ior is almost like an antisymmetric function in that 
Re(an )~O for all near standardj 

The Fourier coefficients bn of gj can likewise be re
duced by similiar methods using the following obtained 
relations: 

bo=O, 

b. = b = e2i1Tjnlwb = 2( - 1)" [e21Tjnlw - 1] I" _ • (32) n -n n n In 1 

The factor of e21Tjnlw comes from the relation g _ j = gj + 1 • 

Again there are only n independent coefficients. 
A relationship between an and bn can be obtained by 

using bn = (1/(J)) 'f gje - 21Tijnlw = ~ 'f (fj - J; _ l)e - 21Tijnl@ 

and rearranging terms. This gives 

b . ffjnlw (Sin mr/(J)) = I1rne an· 
n n1T/(J) 

(33) 

This is almost what one would expect for a derivative rela
tion. In fact for n/fl~O, bn ~i1Tn an' but this breaks down 
for larger n. However, Eq. (33) will be usefullater}n relating 
an to an auxiliary function which approximates! 

In order to transform the Weiner measure dJ.. G , into a 
measure on Fourier space first write 

-I 

as a matrix on *JR'" or *C'" (see the following comment) and 
take G1 = f-lD TD. Define the measure as 

e-( 1/411i.G,j) n dJ;. 
dJ.. G , = IT 

~det G
1 

j= -[1+1 2V1T 
(34) 

In order to facilitate the transformation to a general complex 
Fourier representation/will be treated as a vector in *C''' and 
after the transformation to a Fourier space the proper re
strictions on the coefficients will be imposed. With this in 
mind Eq. (34) transforms to 

dJ..
G

, = e -(1/
4

11' ~ t?7dg. (35) 

To transform to the Fourier coefficients use the fact that {gj} 
and {bn } are related by a nearly unitary transformation with 
the extra (J) factor being canceled by the f-l which appears in 
(35). This yields a Jacobian which isjust 1 and a transformed 
measure 
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(36) 

Here db = n ~= -n+ 1 db ~ db~, where b ~ = Re(bn ) and 
b ~ = Im(bn). Now restrictions can be placed on/to make it 
conform to the previous case of a real antisymmetric func
tion on ( - 1, 1]. Then g has the appropriate restrictions and 
Eq. (36) can remain the same, but the domains of integration 
for the bn will be constrained by Eq. (32). 

Equation (36) shows that the Fourier representation is a 
natural one for the Weiner measure. This is because it repre
sents an inner product on a certain function space which is 
best represented by Fourier series. 20 Equation (36) can also 
be changed to an integration over an' but this is not as clean 
as integration over bn • Also, the possibility of using the Four
ier representation as a continuous representation instead of a 
discrete one presents itself. 

This last possibility is an interesting one since it would 
be particularly nice to be able to use the transferred defini
tion of derivative and integral to operate on the simple func
tions e2ffjnt, tEl - 1,1]. This would allow the direct calcula
tion of/and g in a *-continuous fashion and avoid going 
through a "time-slicing" process. However, the question re
mains whether one can obtain the/'s by direct integration of 
the Fourier series for the g's. That is, can it be shown that 

(37) 

whenever t"-'jf-l? It is this last relation which would allow a 
direct link from the integration variables bn to the function 
valuesJ;. But because ofEq. (33) it is not clear that this will 
work. The extra factor e1Tjnlw (sin n1T/(J)), which will not ap
pear in Eq. (37), casts the doubt. 

In order to show that Eq. (37) is valid it will be necessary 
to introduce an auxillary function F (t ) for each/in the man
ner of Luxemburg. 19 Define 

F(t) = J;when - 1/(J) <t - jW<.,1/(J). (38) 

Thus, F(t) is a step function infinitesimally approximatingj 
When/represents a Weiner function thenJ;~F(t) when
ever t"'jf-l. 

The necessity of using F(t) becomes more apparent 
when one calculates the Fourier coefficients ofF (t ) using the 
transferred Fourier series results from U. That is, calculate 19 

F =J..J1 
F(tje-2ffint=a (sinmr/(J)j. (39) 

n 2 _ 1 n (n1T/(J)) , 

this shows that it is the true Fourier coefficients of F(t) 
which have a relation to the Fourier coefficients of g more 
like the relation expected between a function and its deriva
tive, namely 

(40) 

The factor e - rrjnlw will only shift the sum by an infinitesimal 
amount which does not matter for continuous functions. 
Thus, integrating 'fbne21Tjnt according to Eq. (37) will lead to 
an approximation to F(t). Since F(t )"-'ij whenjfl~t it re
mains to be shown that the sum 'fFn e

21Tjnt is infinitesimally 
close toF (t ) whenever F (t ) is an auxillaryfunction for a vector 
/which represents a Weiner function. 
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In order to show this it wilI be necessary to use the 
version of the Riemann localization theorem developed by 
Hille and Klein:21 

Theorem: If SN(t) = ~: ~ _ NFne27rin" where Fn are the 
Fourier coefficients of a function F(t) on ( - 1,1], then 

RN6=ISN(t)-~f6 F(t+x) sin NXdxl 
1T _6 X 

<~(l1F11 + I)MI (1/N), 

where 

1 fl IIFII- - IF(t )Idt 
2 -I 

and 

M (1/ N = Integral Modulus 
I ) fC .. o ontlnUlty 

= max fl IF(x + t) -F(x)ldx 
,<liN -I 

and K is a finite constant. This shows how the partial Fourier 
sum is related locally to the function. 

Now transfer this theorem to * U and apply it to the 
auxilIary function F(t). Set N = eu (or eu - 1 if a symmetric 
partial sum is desired as in the theorem since the elimination 
of one infinitesimal term from the partial sum will not mat
ter). It can be seen that IIF II < F max' which is near standard. 
Since IF(t + x) - F(x)1 <[the largest step when t< 1/eu] and 
sinceJis locally Holder continuous, it follows that for some 
standard c andpE(O, 1) M I ( lieu) < 21TC( 1/euf. The question is, 
can fJ be chosen so that R<u6 =0 for the Hille-Klein theorem? 
The answer is yes. 

Lemma 1: There exists an infinitesimal {j such that 
R<u6 =0 for F (t ), an auxillary function to a Weiner vector J 
locally Holder continuous of order p. 

Prool: From before, Rw{!«21TK IfJ)(Fmax + l)c(1/euf, 
where PE(O, 1) and is standard. With the exception of (1/ eu)/3 
and {j all terms are near standard so that all that matters is 
the factor (1/fJ )(1/eu)/3. Pick rE(O,I) and standard such that 
r <po Then set fJ = (1/eu)Y so that (1/fJ )(1/euf = (1/euf- Y 

=0 and R,"{j~O .• 
This means the partial sum of Fourier coefficients of 

F (t ), S<u (t ) approximates J'''- {! F (t ) [sin(eut )It 1 dt infinitesi
mally closely. The main theorem now goes as follows. 

Theorem 5: IfJis a Weiner vector in *lRfl then the par
tial sum S," (t ) oftheauxillary function to], F (t), is related toJ 
by S,"(t)~J; wheneverj,u=t, where,u = 2/eu. 

Proof If it can be shown thatSw(t )=F(t), then from the 
definitionofF(t ) it automatically follows thatSw(t )~J; when 
j,u~t. The proof comes down to showing that 
(1/1T) SIi_1i dx F(t + x)(sin eux)/x=F(t) for an appropriate {j 
and applying the previous lemma. To show this last result 
pick rE(O, 1) and r <p, where P is the order ofJHolder con
tinuity as before. Then set fJ = (1/eujY. Write 
F(t + x) = F(t) + a/Ix) on XE(t - fJ, t + fJ). From the local 
Holder continuity 

la/(x)1 <cfJ/3 = c(1/eu)/3Y=O. 

Then 
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1 f6 F( )sineux d - F(t)fO ()sineux d - t+x x--- a,x--- x 
1T -8 X 1T -5 X 

If 0 
()sineux d + - a,x --- x. 

1T -0 X 

The first integral becomes 

F(t)f{)W sin; d;= F(t) foo sin; d;=F(t) 
1T -6w ; 1T -00 ; 

since fJeu is infinite. The second integral is more subtle: 

l ~f6'" a,(; leu)sin ;d; I <~f6t" lar(; leu)sin ;Id; 
1T -{)," ; 1T -6," ; 

cfJi3f6", I sin; I <- -- d;=4c(1/eu)Y/3ln(eu l
- Y) , 

1T - DM ; 

where the fact that in U S~ Nisin; I; Id;---A1T In N asymp
totically22 has been transferred to * U. But 
(1/euV/3ln(eu l 

- Y)=O for the present choices ofrandp. Now, 
because r < P and r is standard and rE(O, 1) use the previous 
lemma to show that Sw(t )~J; wheneverj,u=t .• 

It should be remarked here that contained in these re
sults is the following standard theorem: 

Theorem (standard): Iflis a Holder continuous func
tion on an interval ( - 1,1] and FN (t) is a step function ap
proximation to I(t ) with N steps, 

FN(t) =1((2jIN) - 1) when 
t - [(2j/N) - I]E( - 1/2N,1/2N] 

for j = 1,2, ... ,N. 

Then the Fourier coefficients of F N (t ), F: are such that 

lim SN(t) = I(t) pointwise, where 
N----+cc 

N 

SN(t)= L F:e21Tint
• 

n= -N 

It may be possible to weaken the assumptions of this 
theorem by introducing a standard definition of locally 
Holder continuous. 

These results complete the circle of correspondence of 
], g and their Fourier coefficients a and b. Not only is it 
assured that the Fourier coefficients bn are related via Eqs. 
(28) and (29) to a Holder continuous function, but that the 
function can be approximated infinitesimally well by merely 
integrating the Fourier series in bn via Eq. (37) and using the 
theorem relating ~ Fne1l"ln, and F(t). This means 

L Ibn eTrin'dt=F (t - 1/eu) - F(1/eu)=F(t )~J; forj,u=t. 

The internal *-continuous functions g(t) = ~ bneTrinr and 
I(t) = ~ a"eTrinl can be defined and the usual calculus oper
ations transferred to * U can now be applied to them to gener
ate new internal functions, some of which are near standard, 
as well be seen. 

B. Fourier measures in other function spaces 

The results of the last section show that one could alter
nately define the Weiner measure by an integration over the 
variables a", the coefficients off In this case one would use 
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the matrix 

2 

K= 
° 

3 ° (41) 

n 
on *Rn to define the Gaussian generated by G = K 2. The 
functions "i"(bnln)errint (with the appropriate conditions on 
the b n ) are infinitesimally close to the usual Weiner func
tions in Jr I' 

In a similar way one can define the Gaussian generated 
by G = K4. This yields Fourier coefficients likebn ln 2

, where 
the bn take on the same values as the bn in the previous 
section. The Fourier series generated by these coefficients 
yield paths which can be shown to be infinitesimally close to 
a double integral of the derivative pathsg(t) of part A (which 
is what one would expect intuitively): 

is it -bis is dt dx g(x)::::=. I ~ etr;ntdt - F(l/w)dt 
o 0 11Tn 0 0 

since the second integral is infinitesimal. Thus, by a redefini
tionofb toabsorbthe - l/~thepathh (s) = "i"(bnln 2)etr;ns n 

is infinitesimally close to paths in Jr2• 

The generalization of this using G = K 2n for paths in 
Jr is obvious but the use of Fourier series allows a wider 
gen~ralization.'Since K is diagonal, the matrix Ka, where a 
is standard and aE(O, 1), is well defined. Then one can define 
the Gaussian generator G = K 2(n + a). This can be said to 
generate the space of paths Jr n + a • One might think of this 
in terms of paths with a fractional derivative. A further step 
is simply to use a monotonically increasing function p and 
defineK = 8 pIn) and G = K2. A number of interesting nm nm 

mathematical questions come up here regarding the form of 
p required to yield quantities which are continuous func
tions, functions with various derivatives, etc. Also of interest 
is the "minimal" p which still yields meaningful results in 
terms of the integral still being concentrated on a space of 
standard functions. It would appear that many of the forms 
of allowablep's are determinable by what is presently known 
about trigonometric series,22 although this is by no means 
clear. 

VI. CONCLUDING REMARKS 

It is possible to "go the other way" in deriving new 
Weiner spaces Jra from Jr l by using the inverse of the 
matrix D given by Eq. (10), I. Define G -I = III TI. The prop
erties of the vectors which emerge from this definition are 
easily derived. Let hE(l/lllI -I(H) and write 
hj = (gj - gj_1 )/Il, wheregis defined as in Eq. (10). Now 
examine the quantity ~hhjajll for a standard continuous 
function a on [0,1] for which a( 1) = 0. This becomes 
- ~h (aj + I - aj)gj. If a has a first derivative everywhere in 
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[0,1], then aj + I - aj = !3jll, where!3; is near standard. 
Then I~hhpjlll = I - ~?-I !3jgjlll <max(!3j)1 ~?-I gjlll, 
which is near standard (see the section on the Weiner mea
sure). Thus VhE(l/Il)/ -1(H)thesum~hpjllisnearstandard 
so long as a has the above-stated properties. Each h associ
ates a number with each a in a linear fashion and so the h 's 
represent distributions (linear functionals) on a subset B of 
'G' 1[0,1], which consists of the above a functions. Equiv
alently, the quantities y; = h;1l can be thought_of as a mea
sure on B. Notationally, it can be written that h represents a 
quantity in Jr -I which is at least a subset of the set of distri
butions on B. 

The generalization to the case Jr ±" is immediate and 
corresponds to G ±" = Il(D ± ")TD ±". The case of n = ° 
simply yields the vectorsg of Sec. IV as the representatives 
which are at least distributions on the space of continuous 
functions and are known to represent white noise. 18 A fur
ther step is to use a Fourier series to describe the paths. Then 
using K as defined by Eq. (41) define G a = K 2a and presume 
that the entities which emerge are in the space Jra. Or, 
using a functionp as before, generate Jrp(a)' Whether this is 
possible for all aER and allp#O is not clear. 

Another generalization follows from an attempt to get 
away from the simple method of vectorization and come 
closer to a measure theoretic construction. One can define a 
hyperfinite partition 9,u on [0,1] following the ideas of 
Loeb. 23 Consider a finite partition of [0,1], say 
9 n = IAI,···,An J, where u7= IA; = [0,1] andA;nAj = 0 if 
i #J. Then it is known that for each finite partition 9 n (or for 
a finite set of 9 's) there is a refining partition 9 m such 
that each memb;~ of 9 m is a subset of one set of 9 n (or one 
set of each 9 n,). This is a concurrent relation and so in * U 3 
a hyperfinite partition 9", wE*R", which refines all stan
dard finite partitions of [O,I]. Let A;E9 '" for i = 1, ... ,w and 
let Il be a measure on [0,1] which can now be transferred to 
* U. One can assign the numbers Il; = Il(A;) to each member 
of 9 ",' Loeb23 has shown that by choosing the values of an 
integrable function/by the following prescription,/; = fIx) 
for a fixed xEA; Vi = 1, ... ,w, then the integral of/Ix) is given 
by fb dll/(X)::::=.~f/;Il;. This resembles the vectorization 
methods, but for certain A; one could havell; = ° (e.g., if A; 
is one point and Il is the Lebesgue measure). If Il is a regular 
Borel measure then Shilov et al. 24 have shown that the de
rivative of a set function t/J on an algebra of subsets of [O,!] 
can be defined. Naively, this would be t/J'(x) = lim!l(A)--oO 
t/J(A )11l(A ) for all A of nonzero measure such that xEA. This 
concept could be merged with that of Loeb and more general 
measure theoretic derivatives and integrals could be intro
duced into the definition of a Gaussian generating matrix G. 
For example use the set M = I illl;#O I of *-finite cardina
lity n, say, to define a Gaussian exp[ - ~~(t/J(AYIl;)21l;] to 
generate new spaces of internal quantities t/J(A;) or ~t/J(A;)Il;. 
etc., which also depend on the measure Il. 
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The asymptotic behavior of the equation nt = (In n)xx is studied on the finite interval o.;;;x.;;; 1 
with the boundary conditions n(O,t) = n( 1,t) = no and initial data n(x,O);;;'no' We prove that 
asymptotically In[n(x,t )/no]-A exp( - -rrt /no)2 1/2sin1Tx and also provide rigorous upper and 
lower bounds on the asymptotic amplitude A in terms of integrals of nonlinear functions of the 
initial data. The rigorous bounds are compared to values of A obtained from computer 
experiments. The lower bound L = (23/2/1T)exp[li(1 + Q) - r], where Ii is the logarithmic 
integral, r is Euler's constant, and Q = (1T/2)f[n(x,0)/no - l]sin 1TX dx, is found to be the best 
known estimate of A. 

PACS numbers: 02.30.Jr 

I. INTRODUCTION 

A nonlinear diffusion process of the form 

~=D~(~~), 
at ax n ax 

(1) 

where n(x,t ) is the density and x,t are the space, time coordi
nates, has been predicted for cross-field convective diffusion 
of plasma including mirror effects I and has been observed 
during experiments using the Wisconsin toroidal octupole 
plasma containment device.2-4 The same equation describes 
the expansion of a thermalized electron cloud. 5 The equation 
also arises in studies6

•
7 of the central limit approximation to 

Carleman's modelS of the Boltzmann equation. In this latter 
application, Eq. (1) serves to control a kind of nonlinear 
Brownian motion arising as the central limit approximation 
to Carleman's equation. 

We wish to study the behavior of (1) on the finite spatial 
interval O';;;x';;; 1 so that (1) will serve as an idealized model of 
the situation found in the experiments at Wisconsin. 2-4.9 
Based upon physical considerations, \0 we will require finite 
values of n at the boundaries. For simplicity, we choose to set 
n(O,t) = n(l,t) = no at the boundaries. The constant no is a 
small density to be thought of as a background value. This 
background value must be sufficiently small so that the ini
tial density profile satisfies n(x,O);;;.no' Having made these 
stipulations, we note that, since 

d 51 ( 1 an )1 1 

- n(x,t)dx=D -- , 
dt 0 n ax 0 

(2) 

the flux [i.e., the right-hand side of (2)] will be finite and the 
mathematical problem will be well posed. Furthermore, it 
proves useful to transform (1) into 

(3) 

withm(O,t) = m(l,t) = 0, wherem(x,t) = In(n/no),misnon
negative, and the new time scale differs from the old by a 
factor of no/D. 

alWork performed under the auspices of the U.S. Department of Energy by 
the Lawrence Livermore National Laboratory under Contract No. W-
741O-ENG-48. 

First, the derivation of rigorous inequalities on various 
integrals of functions of m and its derivatives is presented. 
Next these inequalities are used to prove that the solution 
m(x,t) asymptotically approaches 

m(x,t )-A exp( - -rrt )¢I(X), (4) 

where the 

¢dx) = 21/2 sin k1TX (5) 

are the normalized eigenfunctions vanishing at the bound
aries satisfying 

¢k.xx + k 2-rr¢k = ° (6) 

and the asymptotic amplitude A is a constant dependent on 
the initial data. Then further inequalities are derived to place 
bounds onA and, finally, these estimates are compared to the 
results of computer experiments. 

II. INEQUALITIES 

The simplest integral bound for problem (3) is derived in 
the following sequence: 

d il 

- - (em - 1)¢ldx = 
dt 0 

- fmxx¢l dx 

- fm¢lxx dx = -rr fm¢l dx 

.;;;-rr f(em - 1)1,61 dx. (7) 

The steps in (7) include using (3), twice integrating by parts, 
using (6) to substitute for ¢Ixx, and finally using the well
known inequality m.;;;(em 

- 1). With the definition 

Q (t) = 2~2 f [em(x.t I - 1 ]¢I(X) dx, (8) 

inequality (7) can be integrated to yield 

Q (t );;;.Q (O)e ~ "'t -Qoe ~ "'t. (9) 

Thus, we have found an elementary lower bound for Q (t ). 
To obtain an upper bound on some relevant integral 

requires a more sophisticated argument. First note that, for 
any differentiable functionf(x) such thatf(O) = f( 1) = 0, 

983 J. Math. Phys. 23(6), June 1982 0022-2488/82/060983-05$02.50 @ 1982 American Institute of Physics 983 



                                                                                                                                    

fIx) = ffx dx = - ilx dx. 

The Cauchy-Schwarz inequality then implies 

f2(X)<X f f;dx and f 2(X)«I-X)ff;dX. 

From (11), it follows that 

( 1 1) f2 i l 

- + -- F = < f; dx. 
x 1 - x x(1 - x) 0 

In particular, 

i l 1 i l 

m2(x,t )<x( 1 - x) m~dx< - m~ dX==z2(t). 
o 4 0 

(10) 

(11) 

(12) 

(13) 

[Note that the one-dimensional character of (3) is essential 
here because no such bound on sup m in terms of an integral 
of the squared gradient of m is available in higher 
dimensions.] 

Next recall from standard variational arguments that 

-2 f m~dx 
1T< . (14) 

f m2dx 
From (13),exp(m -z)<1 so 

f m2dx;;;.e- zf m2emdx 

and therefore 

(IS) 

-2 f m~dx 
1T <ez (16) 

f m 2emdx 
Then again use Cauchy-Schwarz at the end of the following 
sequence of manipulations: 

(f m~dxy =( - f mmxxdxY 

= [f(mem/2)(mxxe - m12) dx r (17) 

<f m2emdx f m~xe-mdx. 
Combining (16) and (17) yields 

f 2 -md Z d 
'fil<ez mxxe x = _ !!..-..!., 

f m~dx z dt 

where we have used the fact that 

!!.. z(t) = - f m~xe - mdx/4z 
dt 

in the final equality of (18). 
Inequality (18) can be integrated II to yield 

Ei(z)<Ei(zo) - 'filt, 

(18) 

( 19) 

(20) 

where Zo = z(O) and Ei(.) is the exponential integral. 12 Fur
thermore, using the identity I 1,12 

00 yk 
Ei(y)=r+lnIYI+ I-, 

k~ I k·k! 
(21) 

where r is Euler's constant, and also the fact that z;;;.O, it is 
straightforward to show that 

984 

z<exp [Ei(z) - r 1 <exp [Ei(zo) - r - 'filt 1 ==z B e - rr'1. 
(22) 
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Thus, (22) provides an upper bound on z and, together with 
(13), it therefore bounds sup m. 

The single most important characteristic of both 
bounds (9) and (22) is the fact that the time dependence is 
exp( - 'filt ) for both the upper and lower bounds. This fact is 
crucial for the latter developments. 

III. ASYMPTOTIC BEHAVIOR 

To determine the asymptotic behavior of the solution 
(3), consider the function 

u(x,t) = err'lm(x,t), (23) 

which satisfies 

(24) 

We know from ( 13) and (22) that m-o as t_ 00. Therefore, if 
we could show, in some sense yet to be defined, that lu, 1-0, 
then in some corresponding sense the solution of (24) ap
proaches the solution of 

0= Uxx + 'filu. (2S) 

What is required then is an estimate of lu,l showing that it 
must tend to vanish. The required estimates can be obtained 
by studying the Lyapunov functional 13,14 

flu) = fU;dX - 'fil fe m u2 dx. (26) 

First, from the definitions (13), (22), and (23), it follows 
that 

O<f u;dx = 4e2rr'IZ2<4~ 

and that 

(27) 

o.;;;J emu2dx<ez f u2dx< ~ f u; dx. (28) 

The last inequality in (28) follows from (14). Thus, both terms 
of(26) are bounded for all time and therefore f (u) is bounded. 

Using (23) and (24), the time derivative of the Lyapunov 
functional is 

:t f = - 2 f emu;dx + 2'file - rr'J uu~ dx. (29) 

Again using (12), we find 

(30) 

so the second integral in (29) is bounded above by a positive 
constant (say C =4z1) as determined by (27). Now suppose 
that I u I I does not tend to vanish. Then there exists an E such 
that 

2 f emu;dx;;;'E > O. (31) 

From (29), it follows that 

d 2' -f< - E + 21T Ce-- trl. 

dt 
(32) 

Integrating (32) yields 

f<2C(1 - e-rr'I) - Et<2C - Et. (33) 
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The right-hand side of(33) tends to - 00 as t-->- + 00. Thus, 
if(31) were true, I (u) could not be bounded below as we have 
shown previously. Hence, (31) is false and there must exist a 
sequence of times t; for which 

f emu;dx-+O as t;-->-oo. (34) 

It follows, as in Ref. 15, that there exists a function R such 
that u(·,t; )-->-R (.) as t;-->- 00 as in the space H 6 ofSobolev. 16

•
17 

We must still show that R is a solution of the linear equation 
for¢I' 

Now, if (24) is multiplied by em and also by any COO_ 
function P vanishing at the boundaries, then after integrat
ing we have 

f Pemur dx = - f Pxuxdx +"r f Pemu dx. (35) 

Using the Cauchy-Schwarz inequality again, we have 

(f Pemur dx Y <femu; dx femp2 dx. (36) 

From the boundedness of P and m and from the result (34), 
we find that the left-hand side of (35) tends to zero for the 
sequence of times t;. Since em -->-1 as t;-->- 00, it follows that 
u-->-R, where the function R (x) satisfies 

(37) 

Thus, R (x) is a weak solution of (25). From the existence of 
the lower bound (9), we infer that R is not identically zero. 
Then, by using the same arguments used in Ref. 15, we con
clude further that R must be a classical solution of (25). 

To show that u-->-R for all t requires the further infor
mation that S u2dx-->-const as t-->- 00. Consider the time de
rivative of this integral 

:r fU 2dX = 2"r fU 2 dx + 2 fe-muu xx dx 

= 2"r f u2 dx - 2 f(1 - m)e- mu; dx, (38) 

where we have used (23) and (24) and integrated once by 
parts to obtain the second equality in (38). 

Again using (14), we find that (38) implies 

:r f u2 dx<2 J [1 - (1 - m)e - m]u; dx 

<4f mu;dx = 4e- tr'J uu; dx. (39) 

The second inequality in (39) follows from the fact that 
[1 - (1 - m)e - m] <2m forany m, which can be proved us
ing elementary calculus. 18 Equations (30) and (39) show that 

(40) 

Now suppose that Su2dx does not converge to a constant for 
all t and consider two time sequences s; and t; for which the 
integral Su 2dx converges to the distinct constants a and p, 
respectively, satisfying a <p. Using the estimate (40) togeth
er with standard arguments, it is not difficult to show that 
both sequences must converge to the lower constant a-thus 
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contradicting the hypothesis. Therefore, Su 2dx converges to 
a constant for all t.1t then follows, using the same arguments 
as in Ref. 15, that u converges to R for all t. 

We have shown that 

u(x,t )-->-R (x) = A¢I(x) 

or equivalently 

m(x,t )-->-Ae - tr'r¢I(X), 

(41) 

(42) 

uniformly in x and for all time. The asymptotic amplitude A 
appearing in (41) and (42) is a definite constant whose magni
tude will be studied in the next section. 

IV. AMPLITUDE ESTIMATES 

We have established the general asymptotic behavior of 
the solution of (3) but we still need to find estimates of the 
asymptotic amplitude A. Bounds on A can be obtained from 
the inequalities (9) and (22). To illustrate, note 

, 1T il 
1T lim e1rrQ(t) = 3i2 R(x)¢I(x)dx= 3i2A>Qo (43) 

r~oo 2 0 2 

and 

lim etr'rz(t) = ~[(R2(X)dx]l12 = .!!.-A<ZB' 
r.,,,, 2 Jo 2 

(44) 

We define the resulting bounds on the amplitude to be 

L I=(23/211T)Qo and UI=(2!1T)zB' (45) 

Other integral inequalities can also be derived and a few of 
the more interesting ones will be obtained in the following 
paragraphs. 

The most significant new bound can be derived by a 
slight modification of (7) using the properties of convex func
tions. 19 Iffis a convex function and p(x»O, then in general 

f[ S p(x)u(x) dX] < S p(x)f[u(x)] dx . 
S pIx) dx S pIx) dx 

(46) 

The exponential function is convex so we have 

[ 
S m¢ldx ] S em¢ldx exp < -'---'--'---
S ¢Idx S ¢Idx 

(47) 

or equivalently, using the definition of Q from (8), 

f m¢ldx«1T123/2 ) In(1 + Q), (48) 

since S¢ldx = (23/211T). Replacing the last step in (7) with 
(47), we have 

- ~ Q<"r In(l + Q), (49) 
dt 

which can be integrated II to yield 

li(l + Q»li(l + Qo) -"rt (50) 

in terms of the logarithmic integralli or, equivalently, 

Ei[ln(l + Q)]>Ei[ln(1 + Qo)] -"rt (51) 

in terms of the exponential integral, since lit y) = Ei[ln( y)]. 
Checking the limiting forms as in (43) and (44), we find 

(52) 

Although upper bounds other than (22) exist, none have 
been found which generally give a significant improvement 
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over (22). However, one set of bounds has been found to be 
slightly better when the initial data are small. To derive these 
bounds, first consider the following inequalities, valid for 
m>O: 

m 2<2[ 1 - (1 - m)em ] <m2em «em - 1)2. (53) 

These inequalities can be derived using elementary calcu
lus. 18 Combining (15) and (53) gives 

Jm2dx>e~ZJ2[I-(I-m)em]dx, (54) 

from which it follows that 

(55) 

Similarly, using (15) and m>O, we have 

-2 fm;dx Sm;dx f(I + m)m;dx 
1T < -- <ez <ez (56) 

Sm 2dx Sm 2emdx Sm 2emdx 

Then, since (em - 1) is a function that vanishes at x = 0 and 
1, the same variational argument leading to (14) also shows 
that 

(57) 

In all three cases (55)-(57), the integral in the numerator on 
the right is one-half the negative of the time derivative of the 
integral in the denominator. For example, with the 
definition 

W(t) = 2 J [1 - (1 - m)em
] dx, (58) 

we have 

- ~~ W= -Jmemmt dx = -Jmmxx dx 
2 dt 

= f m~ dx. (59) 

From (55) and (59), it follows that 

- ~~ln W>tile~z. 
2 dt 

(60) 

To integrate (60), we need to study the right-hand side 
of the equation. Using the inequality (22) on z, note that 

Le~Zdt =t+ L(e~Z-I)dt 

>t+ L[exp(-zoe~rr't)-1]dt 

= t + f'B (e ~ Y _ I) dy 
Jz"e ,c' tily 

>t + ~ [Ei( - zo) - Ei(zo)], (61) 

where in the last step of(61) we used the definition I I 

. iZB 

d El(-Zo)=r+lnzo + (e~Y-I)..z 
o y 

(62) 

and the definition (22) of Zo' 
So, integrating (60) using (61), we find 

In[ W(t)/W(O)) 112< - tilt + Ei(zo) - Ei( - zo). (63) 
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TABLE I. Values ofthe asymptotic amplitude A and the rigorous upper and 
lower bounds on A obtained in seven computer experiments. The initial data 
for the first six cases are given by m(x,O) = l:1 ~ I a. sin krrx, where 
(a l,a2,a"a4) equal (i) (1,0.4,0,0), (ii) (1,0,0.3,0), (iii) (1,0, - 0.3,0), (iv) 
(1,0,0,0.225), (v) (0.1,0.04,0,0), and (vi) (0.01,0.004,0,0). For case (vii), 
m(x,O) = I for O<x< I. Formulas for L" U

" 
L 2, and U2 are given in Eqs. 

(45), (52), and (64), respectively. 

Case L, L2 A U, U, 

1.202 2.222 2.375 7.715 23.51 
11 1.089 1.906 1.987 9.532 26.04 
111 1.243 2.343 2.508 9.532 28.83 
iv 1.146 2.061 2.172 9.527 26.54 
v 0.0742 0.077 3 0.077 6 0.1049 0.0923 
vi 0.00711 0.007 I3 0.00713 0.00918 0.00775 
vii 1.547 3.363 3.558 00 00 

Applying the same reasoning which lead to (43), (44), and 
(52) gives 

A<WI/2(0)exp(Ei(zo) - Ei( -zo)]==U2• (64) 

Similar bounds can be obtained from (56) and (57) but (64) is 
the best of this set of bounds because of the relation (53). 

From the definition (22) ofzo and the identity (21), it 
follows that 

[ 

00 z~] 
ZB =zoexp L -- . 

k~ I k·k! 
(65) 

If Zo is small, then the exponential factor in (64) can approach 
unity. Ifzo is large, the exponential factor can become enor
mous, making this set of bounds useless. In the former case, 
Uz can give a slight improvement over UI. In the latter case, 
Uz is a much worse estimate of A than UI. 

To check our results, a series of computer experiments 
were performed. The results are presented in Table I. Equa
tion (3) was integrated numerically using a linear implicit 
three-level difference scheme developed by Lees20.21 for qua
silinear parabolic equations. The initial values for m(x,O) 
were chosen in six out of seven cases to be of the form 

4 

m(x,O) = L a k sin k1TX (66) 
k=1 

using different sets of values for the {a k J. The six cases test
edofthis form (a l ,a2,a3,a4) were: (i) (1, 0.4, 0, 0), (ii) (1, 0, 0.3, 
0), (iii) (1, 0, - 0.3, 0), (iv) (1, 0, 0, 0.225), (v) (0.1, 0.04, 0, 0), 
and (vi) (0.01, 0.004, 0, 0). The exceptional case was (vii) for 
which m(x,O) = 1 for the 99 grid points in the interval 
O<x< 1 but m(O,O) = m(I,O) = 0 at the boundaries. The am
plitude A can be determined during the course of the com
puter experiment by monitoring the upper and lower bounds 
until the difference (U - L )< a predetermined error. The 
values of A quoted in Table I are correct ± a unit in the last 
significant figure quoted. 

The results show that L2 is always the closest estimate 
of A and that neither of the upper bounds is a very good 
estimate of A. 

V.COMMENTS 

The results obtained here differ from the results of our 
previous work 15 in a fundamental way. To obtain the proper 
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time dependence of the upper bounds (22) and (64), we re
quired an estimate of sup m in terms of the integral of the 
squared gradient of m. Such estimates are available in one 
dimension but not in higher dimensions. Therefore, the 
methods used in this paper to determine the asymptotic be
havior of(3) cannot be generalized to higher dimensions. In 
our previous work, I S estimates such as ( 13) were not required 
in the one-dimensional case so the generalization to higher 
dimensions was relatively straightforward. The mathemat
ical consequences of this difficulty have not yet been ade
quately explored. 
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The WKB theory for differential equations of arbitrary order or integral equations in one 
dimension is investigated. The rules previously stated for the construction of Stokes' lines for 
Nth-order differential equations, N;;.3, or integral equations are found to be incomplete because 
these rules lead to asymptotic forms of the solutions that depend on path. This paradox is 
resolved by the demonstration that new Stokes' lines can arise when previously defined Stokes' 
lines cross. A new formulation of the WKB problem is given to justify the new Stokes' lines. 
With the new Stokes' lines, the asymptotic forms can be shown to be independent of path. In 
addition, the WKB eigenvalue problem is formulated, and the global dispersion relation is 
shown to be a functional ofloop integrals of the action. 

PACS numbers: 02.30.Jn, 02.30.Rz, 03.65.Sq 

1. INTRODUCTION 

Phase integral methods have been used for many years 
as a means of obtaining approximate solutions to linear ordi
nary differential equations in the limit that the solution is 
rapidly varying in comparison with the variation in the coef
ficients of the equation. The development of quantum me
chanics led to a great deal of interest in the application of 
phase integral methods to the solution of Schrodinger's 
equation. A comprehensive theory of the application of 
phase integral methods to second-order differential equa
tions, WKB theory, was developed. 1-3 

In addition to the work on second-order differential 
equations, there has been a continuing interest in the appli
cation of phase integral methods to the solution of higher
order systems of equations. Such equations are of particular 
interest in the study of wave propagation in inhomogeneous 
media. In this paper we examine the application of phase 
integral methods to the solution of higher-order equations. 
Following previous workers,4-6 we consider equations of the 
form 

f dx' G (x - x',x + x'/2,w)¢ (x') = o. (1 ) 

Differential equations of arbitrary order are a subclass ofEq. 
(1) in which the kernel G involves a sum of delta functions 
and their derivatives, with the singularities located at x = x'. 
Our results may be extended to vector systems of integral (or 
differential) equations by using the methods of Berk and 
Pfirsch.6 

For the purposes ofWKB theory, it is sufficient to con
sider the characteristic equation 

€(k,x,w) = f dy G(y,x,w)exp (- iky) = O. (2) 

Early work on higher-order differential equations 7-9 and in
tegral equations 10 demonstrates that Eq. (1) has asymptotic 

solutions of the form 

¢(x)-exp [J\(z)dZ], (3) 

where kj (z) is a particular branch of the function k (z) defined 
by 

€[k (z),z,w] = O. (4) 

In an analogy to the WKB theory of second-order differen
tial equations, it is found that the asymptotic solutions, (3), 
are coupled at turning points where two branches, k;(x) and 
kj(x), of the function k (z) merge.4-6.11-18 This coupling of the 
asymptotic solutions, which has been particularly well stud
ied in certain fourth-order differential equations, leads to 
linear mode conversion and wave reflection. 11-16 Multiple 
wave reflections can lead to the formation of linear normal 
modes. 17.IX 

In addition to this work on fourth-order equations, the 
quasi classical theory of mechanics has been developed by 
applying phase integral methods to the solution of higher
order equations in which the differential operator is Hermi
tian. 19-22 While this restriction to Hermitian operators does 
not raise any difficulty in examining the classical limit of 
quantum mechanics, it is a serious restriction when studying 
the propagation of waves in a dissipative medium. The dif
ferential operator describing wave propagation in a dissipa
tive medium is never Hermitian, as dissipation is associated 
with the anti-Hermitian part of an operator. In the limit of 
weak dissipation, progress can be made by using the quasi
classical approximation while treating the anti-Hermitian 
part of the operator as a perturbation. 23 

In the general case in which the dissipation is not weak, 
such perturbation expansions must be abandoned in favor of 
a method in which the Hermitian and anti-Hermitian parts 
of the differential operator are treated on an equal footing. 
Such a generalization has been successfully made in the 
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WKB theory of second-order differential equations. 1 The 
major complication that arises in second-order differential 
equations when the operator is not Hermitian is that the 
turning points do not, in general, lie on the real axis. Hence, 
it is necessary to consider the behavior of the solution in the 
complex plane, rather than just on the real axis. It is conve
nient to introduce Stokes' lines24 when examining the behav
ior of solutions in the complex plane. 

Stokes' lines also playa fundamental role in the WKB 
theory of integral equations. Past work4-6.25 indicates that 
Stokes' lines emerge from turning points of the characteristic 
equation where 

(5) 

The subscript on € denotes a partial derivative with respect 
to the indicated variable. Equation (5) is the condition for the 
merging of two branches,k;(x) and kj(x), of the function k (z). 
The Stokes' lines satisfy" 

Y ij(x)3Re {[k;(Z) - kj(z)] dz = O. (6) 

Note that for second-order differential equations in standard 
form (i.e., the coefficient of the first derivative vanishes), 
k;(x) = - kj(x) and k ~ = O. Hence, condition (6) reduces to 
the usual definition of a Stokes' line. 1-3 

Stokes' lines are significant because they delimit regions 
of the complex x plane in which the asymptotic approxima
tions to solutions of Eq. (1) have a particular form. These 
asymptotic approximations change discontinuously upon 
crossing Stokes' lines. 24 

The object of WKB theory is to develop a set of rules for 
continuing asymptotic solutions to all regions of the com
plex x plane. Past workers4-6.10--18 have focused on the behav
ior of solutions in the neighborhood of an isolated turning 
point. The integral equation may be reduced to an Airy 
equation in this region. 25 The familiar connection rules of 
the WKB theory of second-order differential equations 1-3 
are then recovered. Since these rules were first put forward 
by Furryl for a general linear ordinary differential equation 
of second order, we call them "Furry's rules." 

Furry's rules are complete for second-order differential 
equations. However, for Nth-order differential equations 
(with N> 2), it is possible for Stokes' lines [as defined in Eq. 
(6)] to cross. When such a crossing occurs, Furry's rules can 
lead to contradictions in the asymptotic properties of the 
solution. This problem is discussed in Sec. 2, where we pre
sent a particular example of an equation that leads to crossed 
Stokes' lines. 

We resolve this difficulty with Furry's rules by refor
mulating the problem of obtaining the WKB connection for
mula. The breakdown of Furry's rules indicates that there 
are phenomena that occur in differential equations of third 
and higher order that have no analog in second-order differ
ential equations. To study these phenomena, we extend the 
methods of quasiclassical mechanics22 in using the Fourier 
space representation of the equation to obtain a contour inte
gral representation of the solution to Eq. (1) that is valid in 
the neighborhood of one or more turning points x~ (Ref. 6). 
The asymptotic solutions and connection rules are then de-
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duced from this integral representation. 
This formulation of the problem has several advan

tages. It resolves the philosophical difficulties surrounding 
the retention in the asymptotic solution of a subdominant 
term in the presence of a dominant term. Stokes' lines appear 
naturally in this formulation. Hence, the ambiguity in the 
definition of Stokes' lines for higher-order equations (com
pare Refs. 5, 6, and 26) is resolved. In the process new classes 
of Stokes' lines are discovered. When these new Stokes' lines 
are considered, the difficulties in the asymptotic properties 
of the solution are resolved. Since this formulation does not 
make use of comparison equations, it is applicable to both 
differential equations of all orders and integral equations. 
Since our formulation of the connection problem is new, a 
careful presentation is given where we shall rederive known 
properties of Stokes' lines as well as obtain new results. 

In this paper we restrict our attention to simple turning 
points. That is, we assume 

and 

(i)k (x) is finite for Ixl < 00, 

(ii)€kk(k ~,x~,w)=I=O for any i,i, 

(iii)€x(k ~,x~,w) =1=0 for any i,i. 
An extension of this formulation to include singular 

turning points, where (i) is violated, and multiple turning 
points, where (ii) and/or (iii) are violated, is reserved for fu
ture considerations. In addition, we do not consider systems 
in which two turning points are joined by a Stokes' line. This 
singular configuration is encountered in quantum mechan
ics when studying tunneling through potential barriers and 
has led to a great deal of controversy2.3 regarding the proper 
statement of the WKB connection rules for second-order 
differential equations. 

The plan of this paper is as follows. In Sec. 2 we examine 
a particular third-order differential equation to show that 
the rules put forward by Berk and Pfirsch6 lead to inconsis
tencies in the asymptotic properties of the solution to this 
equation. Our contour integral representation of the solution 
is developed in Sec. 3, where we point out that the usual 
WKB wavelets may be recovered when the contour integral 
is evaluated by the method of steepest descent. In Sec. 4 
Stokes' lines are discussed in the context of this contour inte
gral representation. We demonstrate that in addition to the 
Stokes' lines emerging from turning points, there are addi
tional classes of Stokes' lines. In Sec. 5 we evaluate the 
Stokes' multipliers associated with each class of Stokes' line, 
and follow this in Sec. 6 by a review of rules for continuing 
asymptotic solutions to all regions of the complex plane. In 
Sec. 7 we show that the global dispersion relation is a func
tional ofloop integrals in the complex plane. Finally, in Sec. 
S several unresolved problems are discussed. 

2. A PARADOX INVOLVING CROSSED STOKES' LINES 

In studying higher-order differential equations we find 
that Stokes' lines, as defined by Eq. (6), can cross. In fact, 
experience27.28 with Nth-order systems of differential equa
tions (N) 2) indicates that the Stokes' lines often do cross. 
This is to be expected because Eq. (6) defines a Stokes' line 
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.Y'ij through two branches, k;(x) and kj(x), of the muItiva
lued function k (z). When the system of equations is of third 
or higher order, then k (z) has more than two branches. 
Hence, there are several "kinds" of Stokes' lines. 

Consider the Stokes' lines .Y'ij which emerge from turn
ing points xI, together with the Stokes' lines .Y'mn which 
emerge from x~n (( i,f) =1= (m,n)). Since the elements of .Y'ij 
obey an equation that is independent of the equation obeyed 
by the elements of .Y'mn' we expect that these Stokes' lines 
will go off to Ixl = 00 in the complex x plane at independent 
angles () = arg(x). Hence, the generic situation is that at least 
one of the triplet of Stokes' lines Y;j that emerge from x r 
will intersect a Stokes' line Y mn from x~n' 

Such a crossing can lead to difficulties with the rules put 
forward by Berk and Pfirsch6 for continuing the asymptotic 
solutions to all regions of the complex x plane. We illustrate 
these difficulties by considering the simplest equation that 
exhibits crossed Stokes' lines: 

(id 3ldx3 + 3id Idx + x)¢ = O. 

The characteristic equation is given by 

c(k, x) = k 3 - 3k + x = O. 

Setting c = Ck = 0, we find two turning points: 

x~{3 = - 2, k ;'{3 = - 1 

and 

T 2 k T X {3y =, (3y = 1. 

(7) 

(8) 

Since the characteristic equation is cubic in k, there are three 
branches to the function k (x), which we label a, /3, and y. 
Hence, the two turning points must share at least one com
mon branch. A numerical solution ofEq. (8) for k;(x) reveals 
that the two turning points share exactly one branch, which 
we have labeled /3. 

The Stokes' structure, which was obtained by numeri
cally solving Eq. (6), is shown in Fig. 1. The Stokes' line 
(x~{3 ,e) is seen to cross the Stoke' line (x~y, A ) at x q • The 
numerical solution of the characteristic equation shows that 
the WKB wavelet 

(ka IX~{3,x)-exp('1~1J ka dX) 

is exponentially large compared to the wavelet 

(kplx~p,x)-exp(z-1:
11 

kp dX) 

on (X~p ,e). Hence, (ka ) is dominant with respect to (kp ) 

on (x,!"p,e). Similarly, we find that (kp ) is dominant with 
respect to 

(ky IX~y,x>-exp(i 1:, ky dX) 

on (xJ~, A). We note that the crossing of two Stokes' lines 
illustrated in Fig. 1 is an example of an ordered crossing of 
Stokes' lines because the relative dominance of all three 
WKB wavelets is determined at x q • Namely, (ka ) is domi
nant with respect to (kp ), which is in turn dominant with 
respect to (ky). We will discuss the importance of ordered 
crossings of Stokes' lines in Sec. 4. 
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Region 1 Region 2 

A B c 

FI G 1. Example of an ordered crossing of Stokes' lines. 

Suppose that we have a solution ¢ (x) that can be ap
proximated by (ka ) in region 1, and we attempt to continue 
this solution to region 2 by following path a. Path a crosses 
the Stokes' line (x~ ,e), and the subdominant wavelet must 
be added according to the rules delineated by Berk and 
Ptirsch.6 Then ¢ (x) becomes 

¢(x)-(ka ) +PI(kp ), 

where PI is a constant that will be as determined precisely in 
Sec. 4. When path a crosses the Stokes' line (x~y' A ), the 
wavelet (k{3) induces a (ky) wavelet, so that ¢ (x) becomes 

¢(x)-(ka) +P1(kp ) +P2 (k y )' (9) 

If, on the other hand, ¢ (x) is continued along path h, we do 
not induce a wavelet on crossing the Stokes' line (x~y, A) 
because no (kp ) wavelet is yet present. The wavelet (k{3) is 
induced on crossing the Stokes' line (x';{3,e). Hence, we 
obtain 

¢ (x)- (ka ) + PI (k{3) 

as the asymptotic solution in region 2. These two versions of 
the asymptotic solution in region 2 differ by a term in (ky). 
This term is exponentially large compared to the term in 
(k{3) on the Stokes' line (x~y,D) that bounds region 2. Clear
ly, only one of these asymptotic approximations to the solu
tion of Eq. (7) can be correct. Hence, previous rules do not 
provide a complete prescription for continuing asymptotic 
solutions to all regions of the complex plane. 

We anticipate the results of Secs. 4 and 5 by noting the 
existence of an additional Stokes' line (Xq ,B) on which the 
wavelet (ka ) is dominant with respect to (ky). When this 
new Stokes' line is included, the wavelet (ky) is induced 
upon crossing (Xq ,B j, while the (k{3) wavelet is induced on 

Berk, Nevins, and Roberts 990 



                                                                                                                                    

crossing the Stokes' line (x~p,C). Hence, we obtain 

~(x)-(ka> +Pl(kp > +P2(ka> (9') 

as the asymptotic solution in region 2. We see that with the 
introduction of a new Stokes' line it will be possible to both 
establish rules for connecting asymptotic solutions to all re
gions of the complex x plane, and obtain results that are 
independent of the path used in continuing these solutions. 

3. AN INTEGRAL REPRESENTATION OF THE 
SOLUTION 

Equation (1) has asymptotic (WKB) solutions of the 
form4 - 6 

These solutions break down in the neighborhood of x-space 
turning points; i.e., those points whereEk [k (X&),xn = 0. To 
derive WKB connection rules, we require an approximate 
solution to Eq. (1) that is valid in the neighborhood of these 
x-space turning points. Following quasiclassical theory19-22 
and previous workers,5.6 we obtain such an approximate so
lution by considering Fourier space representation ofEq. (1). 
This Fourier representation also has an approximate WKB 
solution, 

~(k)-112exp[ -i rkX(k)dk], 
Ex Jko 

where x(k) is determined from the equation E[k,x(k)] = 0. 
This k-space WKB solution breaks down in the neighbor
hood of the k-space turning points, where 
Ex [k -;rn ,x(k -;rn)] = 0. When the k-space and x-space turning 
points are well separated, i.e., when 

[ 
Ex(k ~&; ]1/2Ix& _ x(k -;r") 13/2> 1 
Ekdk ij,xij) 

(10) 

for all (m,n), then an approximate representation of the solu
tions to Eq. (1), valid in the neighborhood ofx&, is given by 
the Fourier transform of ~ (k ); viz., 

~i(X) = i J/~(~) exp [ - i (x(k') dk' + ikX] . 
qk) Ex,z Jko 

(11) 

The contour Ci (k ) avoids regions where Ex (k,x) = ° and ter
minates where the integrand vanishes. 

It is convenient to transform to the variable z = x(k ). 
The z manifold is chosen such that the function k (z) is single
valued. Hence, this manifold consists of N sheets-one for 
each branch of the multivalued function kj(x). We then find 

~.(x) = 1 dz dk (z) 1 
I d J12[k cif ., z Ex (z),zj 

X exp [ - i r dz'z' dk (z') + ik (z)x] 
Jzo dz 
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where 

<Pj(z,x) = - k (z)(z - x) + r dz'k (z'), 
J"I 

(13) 

Zo = x(ko), and dk /dz = - Ek/E". The <Pj(z,x) term in Eq. 
(12) is obtained from an integration by parts. The sUbscriptj 
on Xj labels the sheet ofthe z manifold on which x, the end 
point of the z' integrals, resides. The contour Ci (z) is the 
mapping of the contour Cj(k) from the k plane into the z 
manifold under the transformation z = x(k ). 

A given independent solution ~j(x) is defined by a con
tour in the z manifold. Allowable contours must begin and 
end in a remote region at infinite 14 where the integrand of 
Eq. (12) vanishes. Two contours are equivalent when they 
connect the same two remote regions; they are independent 
when they do not connect the same two remote regions. An 
Nth-order differential equation [E(k,x) is then an Nth-order 
polynomial in k ] will possess N independent contours corre
sponding to the N independent solutions. An integral equa
tion will have an infinite number of independent contours. 
We assume that the contours are denumerable. The number 
of independent contours is denoted by N, with N allowed to 
go to infinity. 

In some region of the x plane it is always possible to 
choose N independent contours {Cj I, such that the N inde
pendent solutions I ~j j-defined by these contours together 
with Eq. (12)- can each be approximated by a single WKB 
wavelet, 

These contours may be constructed as follows. At some 
point x = x let us find stationary points with respect to z of 
the integrand in Eq. (12). We will assume that exp[i<P (z,x)] is 
rapidly varying when compared to Ez • The stationary phase 
condition is then 

-(z-x) dk(z=x) = Ez[k(z),z] (z-x)=O. (14) 
dz Edk(z),z] 

Hence, stationary phase points occur where z = X, 
E z [k (z),z] = 0, or E k [k (z),z] = 00. Only the first condition 
is allowed. The second condition is ruled out since neither 
Eq. (11) or (12) is an accurate representation of the solution to 
the integral equation near points where fz = 0, and the third 
condition implies a singular E(k,z) for finite z, a condition 
that we have assumed not to exist. Thus, the stationary phase 
points ofEq. (14) are 

z=x. 

Since the z manifold has N sheets, there are N stationary 
phase points-one on each sheet-where z = X. These sta
tionary phase points are saddle points of the function 
exp[i<P (z,x)]. From each of the N saddle points we generate a 
contour Ca by following the two paths of steepest descent 
from the saddle point to Izl = 00. The change in the phase 
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t/> a along the steepest descent path is 

[
at/> u ] 

dt/>a=id/3 = (dzR + idz/) az 

€z(ka,z) 
= (z - i)(dzR + idz/), 

€dka,z) 
(15) 

where z = ZR + iz/. Note that dt/> must be positive imagi
nary on a steepest descent path or, equivalently, d/3 is posi
tive and real. Hence, the real part of the right-hand side of 
(IS) vanishes so that the steepest descent contour satisfies the 
first-order differential equation, 

Im[ €z(ka,z)(z - i)/€k(ka,z)] 

Re[€z(ka,z)(z - i)/€dka,z)] . 
(16) 

In the vicinity of z = i Eq. (16) is singular. However, 
near z = i one can expand t/> a (i + 8z,i) to second order in 
8z and find 

(17) 

where {j/3 is a small positive real number (negative {j/3 would 
describe the initial direction of a steepest ascent path). Start
ingfromz = i + {jz, and using Eq. (16), we can then generate 
the two steepest descent paths, one for each branch of the 
square root in Eq. (17); these paths are precisely defined pro
vided that 

at/> a 
-(z,i)#O 

az 
(18) 

anywhere along the steepest descent paths other than at the 
original point z = i on the ath sheet, where k = ka (i). The 
contour C a is then defined to be the union of the two steepest 
descent paths from the saddle point atz = ion theath sheet. 
Hence, for each root ka (i), a contour Ca is generated. These 
N contours! Ca J, together with Eq. (12), define N indepen
dent solutions to the equation! t/> a (x) J . 

We now show that if at/>a/az#o anywhere on the ath 
steepest descent contour (except for the original point z = x 
on the ath sheet), then this contour must deform continously 
asx is varied. Consider the steepest descent path of the func
tion exp [it/> a (z,x)] from the saddle point at z = i. We may 
label points on this path by 

/3 = 1m t/>a(z,i). (19) 

/3 monotonically increases from zero as you move away from 
the saddle point along the steepest descent path. Hence, Eq. 
(19) may be inverted to write an equation for the steepest 
descent path in the form 

z = Z ~ ± I( /3,i), (20) 

where the plus/minus sign in Eq. (20) corresponds to the 
plus/minus sign in Eq. (17). 

Similarly, we may evaluate the phase function at a near
by point, i + {jx. The steepest descent path now satisfies 

z = Z~± I( /3,i + {jx). (21) 

Note that Re t/>a vanishes on both of the steepest de
scent paths, (20) and (21). Hence, the separation {jz between 
corresponding points (i.e., points labeled by the same value 
of /3 ) on these two steepest descent paths is determined by the 
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condition that {jt/> a vanish. When {jx is small, this gives 

8z=Z ~ ± I( /3,i + {jx) - Z ~ ± I( /3,i) 

at/>a [Z~±I(/3,i),i]/ax 
= - {jx. 

at/> a [Z ~ ± I( /3,i),x ]/ az 

If at/> /az does not vanish anywhere on the steepest descent 
path Z ~ ± I( /3,i), then {jz will be small when {jx is small, and 
the steepest descent path must deform continuously as x is 
varied. In particular, the end points of each steepest descent 
path must remain in the same remote regions. Hence, the N 
steepest descent contours define N independent solutions for 
all x in some region about i such that (18) is satisfied. 

An approximate representation of these independent 
solutions I ¢i(X) 1 can be obtained by evaluating the contour 
integral in Eq. (12) by the saddle point method. 29 Expanding 
t/> (z + 8z,x) to second order in Eq. (12) yields 

[ Lx} ] €1/2 

¢j(x)- - exp i k (z')dz' _X_ 

z() €k 

x ( dz exp[i (z - xf €z] 
Jc, 2 €k 

(21Ti) 1 12 [(X ] 
= - --1/-2- exp i L kj(z')dz' . 

ck XII 

(22) 

This is precisely the x-space WKB representation6 for ¢ (x). 
Exactly one WKB wavelet is needed to represent each of the 
independent solutions ¢i(X) in the vicinity ofi. The choice of 
the branch of €L/2 is implicitly determined by the direction of 
the integration path Cj • This choice will be discussed more 
fully in Sec. 5. 

4. STOKES' LINES 

As we move away from x = i, we can reach a region 
where more than one WKB wayelet is needed to approxi
mate a particular solution, ¢a(x). This happens as follows. 
As point x (at which the solution ¢a is to be evaluated) is 
varied, we may reach a curve Y where Eq. (18) fails; i.e., for 
xEY, at/>a (z,x)/az = 0 at some point along the contour Ca. 
When this occurs, the steepest descent prescription will no 
longer define a unique contour passing through the point 
z = Xa' where we use the notation Xu to denote the point 
z = x on the ath sheet of the z manifold. 

We shall refer to the region containing i as region 1. 
The curve Y is a boundary separating region 1 from region 
2. We see that Y is the locus of points x on which a steepest 
descent path from z = Xu intersects a point where 
at/> (z,xu )/ az = O. However, this is just the saddle point con
dition, and from the discussion following Eq. (14) such a 
point can only occur when z = x. Hence, on the boundary 
separating region I from region 2 a steepest descent path 
from the saddle at Xu must return to z = x, but on a different 
sheet of the z manifold; e.g., at z = x{3' where k (z) = k{3(x), 
another root of the equation €(k,x) = O. From the point 
z = x{3 the two steepest descent paths can be drawn in accor
dance with Eq. (17). Hence, the steepest descent contour 
from z = Xu bifurcates when x lies on a boundary line.f/'. We 
will find that this bifurcation of the steepest descent paths 
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leads to a discontinuous change in the asymptotic represen
tation of tPa. Hence, we call the boundary curves Y Stokes' 
lines. This terminology is equivalent to that employed in the 
theory of asymptotic expansions. 30 

We have seen that x lies on a Stokes' line Y when a pair 
of saddle points xa and xp are connected to each other by a 
steepest descent path of the function exp [iet> (z,xa )]. At one 
of these saddle points, say X a ' the magnitude of the integrand 
in Eq. (12) is exponentially large when compared to its mag
nitude at xp because iet> (xp,xa ) is real and negative on a 
steepest descent path. Hence, we call xa the dominant saddle 
and the corresponding value of k, k (xa) = ka (x), the domi
nant root on Y. Similarly, k (xp) = kp(x) is called the subdo
min ant root on Y. 

We define the quantity ga(3(x) as 

rX/J 
gaP (X) = i L dz' k (z') . 

Xu 

We have from Eq. (13) 

ga(3(x) = iet> (x{3'xa ) . 

(23) 

(24) 

When x is on a Stokes' line, Xa and x{3 are connected by 
steepest descent path ofexp i[ et> (z,xa )], so that gaP (x) is both 
real and negative. The direction of the Stokes' line can be 
determined from the differential ofEq. (23) together with the 
condition that the change in g be real. We then have 

dg = i[k{3(x) - ka(x)]dx = real, 

which yields a differential equation for the Stokes' line, 

dXR 1m [k{3(x) - ka(x)] 

dx/ = Re[k{3(x) - ka(x)] , 
(25) 

where X R and x/ are real numbers satisfying x = X R + ix/. 
Once a single point Xy on a Stokes' line Y has been 

located, the remaining points on Y can be found by integrat
ing Eq. (25), using Xy as an initial condition. These points 
may be labeled by the value of Re ga(3 (x). If we follow the 
Stokes' line in the direction of increasing ga{3' at least one of 
three things must occur. We will reach a 

or 

or 

(i) point where ga{3 = 0 (recall that gaP 

must be negative real) 

(ii) maximum of Re gaP' where dgapldx = 0 

(iii) point x at which the steepest descent 

path from Xa breaks and fails to return to xp. 
It follows from our proof of the continuity of steepest 

descent paths that (iii) can only occur if there is some XEY 

such that the steepest descent path from Xa returns to z = x 
on some third sheet, say z = xy' before returning to xp. Such 
a path must encircle at least two branch points (e.g., one 
branch point that connects sheets a and r as well as a second 
that connects sheets rand /3 ). 

We shall return to this important case later. For the 
present we restrict our attention to the steepest descent paths 
that encircle a single branch point. For these paths either (or 
both) of conditions (i) and (ii) must be satisfied. Condition (ii) 
implies [cr., Eq. (23)] that ka (x) = k{3(x); i.e., the Stokes' line 
has reached a branch point connecting the a and /3 sheets of 
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the z manifold. Recalling that the integrand of Eq. (23) is 
negative definite on the steepest descent path, we see that 
condition (i) can only be satisfied when the arc length along 
the steepest descent path between Xa and x{3 vanishes. Since 
this path must encircle a branch point connecting sheet a to 
sheet/3, it is clear that condition (i) can only be satisfied when 
the Stokes' line reaches this branch point. Hence, we con
clude that the Stokes' lines associated with the steepest de
scent paths from Xa that encircle a single turning point be
fore returning to xp must pass through a branch point x~~ 
that connects sheets a and /3 of the z manifold. These branch 
points may be found by solving the simultaneous equations 

€(x~{3' k ~{3) = 0 

and 

€dx~{3' k ~{3) = 0 

for x~{3 and 

k ~{3=k (x~) = k (x;). 

(26) 

In the vicinity of this branch point the two roots ka (x) 
and k(3(x) may be approximated by 

kap(x);::;;k ~(3 ± i 

x [2(z - x~{3 )€x(k ~{3' x~p )/€kk (k ~{3' X~{3)] 1/2, 

(27) 

which directly exhibits the branch point in the function k (z) 
at z = x~(3' The two roots in (27) correspond to the dominant 
a root and the subdominant /3 root that merge at x~{3' k ~(3' 
Although Eq. (25) is singular at x~{3' the behavior of the 
Stokes' lines in the neighborhood of x~p can be analyzed by 
expandingga {3(x) for x near x~{3' 

It can readily be shown that three Stokes' lines emerge 
from x~{3 as in Fig. 2. Along any given Stokes' line one root is 
dominant and the other is subdominant. Ifwe would analyti
cally continue the roots in an arc around the turning point in 
the counterclockwise direction as shown in Fig. 2, the root 
ka (k{3) that is dominant (subdominant) on the Stokes' line 
(x~{3' a) becomes subdominant (dominant) on the adjacent 
Stokes' line (x~{3' b). If the arc makes a complete circuit, the 
analytic continuation of the original dominant (subdomin-

(a. ~) 

c 

b 
(/l,a) 

(a,ll) 

FIG. 2. Structure of Stokes' line about a turning point. 
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ant) root will be subdominant (dominant) when we return to 
the original Stokes' line. Hence, the need for the branch cut 
emerging from the turning point as shown. These turning 
points are a generalization of the simple turning points found 
in the WKB theory of second- order ordinary differential 
equations that has been discussed in previous works. 5,6.25 We 
will call the Stokes'lines emerging from these simple turning 
points "primary Stokes' lines." 

Figure 3 indicates the topology of steepest descent con
tours in the vicinity of a primary Stokes' line. When x is 
immediately to the left of the Stokes'lines (x';tI' a), the steep
est descent contour through the dominant saddle at z = Xa 
[which is shown as a dashed line in Fig. 3(a)], connects re
mote region I to remote region II. The dotted line in Fig. 3(a) 
represents the steepest descent contour through the subdo
minant saddle at z = xtl . This contour connects remote re
gion III to remote region II. Figure 3(b) shows the configura
tion of the steepest descent path when x lies on the Stokes' 
line, whereas just to the right of Stokes' line (x';tI' a), Fig. 3(c) 
shows that the steepest descent path through x = Xu con
nects remote region I to remote region III. However, the 
steepest descent contour of the subdominant solution still 
connects remote region III to remote region II and is only 
slightly different than that shown in Fig. 3(a). For x on the 

(a) 

III • 

• • x Ii ... .,. ... 
'" -I ........ -II 

........ 

1/ 

(b) 

III .... 
..... 
~ .... ... 

II .......... 11 

(c) 

III" I . ........ \ 
.;--., I 

• •• ,:" - ..I 

FIG. 3. Schematic diagram of steepest descent contours for a point x near a 
Stokes' line: (a) to the clockwise side of the line, (b) on the Stokes' line, and (c) 
to the counterclockwise side. 
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Stokes' line, as in Fig. 3(b), the steepest descent path from the 
dominant saddle point returns to the original x point 
(z = xtl ), and for z beyond xtl the steepest descent path bifur
cates and follows the subdominant descent contour to either 
remote region II or remote region III. 

An additional class of Stokes' lines can be generated 
from the crossing of primary Stokes' lines. Such crossings 
can occur if the characteristic function €(k,x) is cubic or 
higher order in k. It is only when €(k,x) is quadratic, corre
sponding to second-order differential equations, that cross
ings are ruled out. Consider the Stokes' lines of Fig. 4(a), 
where x;~ is the turning point of roots ku and ktl' and where 
ka is dominant with respect to ktl . Suppose the Stokes' line 
Y atl crosses a Stokes' line Y tly emerging from X~y, where 
ktl is dominant with respect to kyo Such a crossing will be 
referred to as an ordered crossing. In contrast, an unordered 
crossing would arise if, at the crossing point, both the a and y 
roots were dominant (or subdominant) with respect to /3 on 
their respective Stokes' lines. Note that for an ordered cross
ing we can define the relative dominance of the three modes: 
a dominant with respect to/3, dominant with respect to y. In 
an unordered crossing there is no relative dominance of all 
three modes. Crossings in which the Stokes' lines do not 
share a common root are always unordered crossings. 

In the case of ordered crossings we find that a new 
Stokes' line (a secondary Stokes' line) Yay-indicated by the 
line Xq ,c) in Fig. 4(a)---emerges from the crossing point x q . 

This is shown by first considering the saddle points x( 1) and 
x(2) in Fig. 4(a). The pointx(l) is the saddle point ofa steepest 
descent contour that emerges from remote region I, goes 
through the saddle point atz = Xu (1), loops the turning point 
x~tI' and returns toz = xtl(l). Then the steepest descent path 
bifurcates to either remote region II or remote region III. 
Similarly, the point x(2) is the saddle point of a steepest de
scent contour that emerges from remote region III, goes 
through the saddle point z = xtl (2), loops the turning point 
X~y, returns toz = xy(2), and then bifurcates to either remote 
region II or remote region IV. 

Now let us follow this procedure on the point x = x q • 

wherex(l) = x(2). In Fig. 4(b) we observe that starting from 
remote region I the steepest descent path goes through (xq)u' 
loops x;~, and returns to z = (Xq )tI. There the steepest de
scent path bifurcates to either remote region III or to a path 
that must loop xJ~, since Xq is on the (/3,y) Stokes'line. This 
path loops X~y and returns to (xq)y' where it bifurcates to 
either remote region II or remote region IV. Hence, we have 
shown that the point Xq is an element of a Stokes' line Y oy' 

since a steepest descent path connects the dominant saddle 
z = (Xq)a to z = (xq)y. 

Other points on this Stokes' line may be obtained by 
noting that 

must be real on Yay' Hence, the remaining elements of Y ay 
can be obtained by integrating a first-order ordinary differ
ential equation in the form ofEq. (25)-with ktl(x) replaced 
by ky (x)-using Xq as the initial condition and integrating in 
the direction of decreasing Re gay' Note that at the crossing 
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(a) 

b 

(b) 

\ 
\. 

" 

------111--

b 

(e) 

FIG. 4. Schematic diagram of steepest descent contours in the case of an 
ordered crossing of Stokes' lines: (a) above crossing point, (b) at crossing 
point, and (c) below crossing point. 

point 

gay(Xq) = gap(Xq) + gpy(Xq) 

is real and negative as it must be on a Stokes' line. The steep
est descent path through a point x on .Y' ay is shown in Fig. 
4(c). This path loops both x;;'p and XIy. 
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In Appendix A we show that the Stokes' line generated 
by such a differential equation has the topology shown in 
Figs. 1 and 4 for the line (Xq ,c); i.e., the direction of decreas
inggay for the Stokes' line is contained within the arc formed 
by the intersection of .Y' ap and .Y' py; the last two lines being 
directed towards decreasing g. 

Equation (25) could also be used to generate a curve 
involving the a and r roots in the direction of increasing gay 

from x q • However, in the next section we shall show that 
such a curve is not a Stokes' line because the steepest descent 
path from a point z = (x s)a on this curve does not return to 
z = (xs)y' 

5. CONNECTION RULES AND STOKES' MULTIPLIERS 

In this section we discuss the form that the asymptotic 
solution takes upon passing a Stokes' line. Connection rules 
for continuing asymptotic solutions across Stokes' lines are 
derived, and the Stokes' constants are evaluated. We demon
strate that upon crossing primary Stokes' lines we recover 
previously obtained connection formulas. Upon crossing 
higher-order Stokes' lines we obtain the connection rules 
necessary to achieve asymptotic representations that are in
dependent of path. 

Suppose that in region 1 of the complex x plane we are 
examining a solution ifJa (x) whose asymptotic representation 
is a single WKB wavelet of wave number ka (x). In this region 
the contour integral in Eq. (12) is evaluated along the steepest 
descent path of the function exp (i<P a (z,x)] through the sad
dle point Z = Xa from remote region I to remote region II. 
Recall that the WKB wavelet is obtained by using the meth
od of steepest descent to evaluate the contour integral repre
sentation of ifJa (x), 

ifJa(x) = A exp[i { dz' ka(z') + iko xo] 

i dz E~12(k,z) . 
X --1/-2 exp[I<P(Z,X)] . 

Culz) (21T) Edk,z) 
(12') 

To establish a sign convention for Ek12, let us first evalu
ate Eq. (12') near a Stokes' line that borders region 1, where a 
is the dominant wavelet on Stokes' line. Near such a line we 
know that one of the legs of the steepest descent contour 
loops the various branch points and then nearly returns to 
xp' Let us assume that the contour Ca(a) starts in remote 
region I, goes through X a ' loops the various branch points, 
returns to Z = xp, and then proceeds to remote region II. 

Now, if we evaluate Eq. (12') by the steepest descent 
method, we find 

(28) 

where we have used 
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and we made the substitution 

The convention used in choosing the branch of 
EL/2(ka ,Xa ) for a dominant mode is that Va increases as the 
path goes through the saddle and heads towards the branch 
points, which it loops. As xa varies away from the Stokes' 
line, the branch of E1/2(k,x) is analytically continued; there 
will be a one-to-one correspondence of this branch and the 
continuously changing steepest descent contour through xu' 

For convenience we define 

so that 

(29) 

where the branch of El/2(ka ,xo) is the analytic continuation 
of E1/2(k,x). Thus, 

(30) 

and the limit is taken along a path that is contained in region 
1. We observe that the WKB wavelet (ku Ixo,x) satisfies a 
propagation relation 

(ku Ixo'x) = (ku Ixo,x,) (ka Ix"x) . 

We can evaluate the asymptotic form of tPa (x) on the 
other side of the Stokes' line. To evaluate the subdominant 
contribution to the asymptotic form, it is necessary to study 
in more detail the behavior of the steepest descent path from 
the saddle point of the function exp[i<P (z,xa )] when x is in 
the neighborhood of YaP' Note that for xeYap we have 
from Eq. (24) that <P (xp ,x,,) = - igap (x), with gaP real and 
negative. Recall that the direction of the Stokes' line is the 
direction along which gaP decreases (i.e., Igapi increases). 
Then, facing in the direction of the Stokes' line, the region to 
the right (left) is the clockwise (counterclockwise) side of the 
Stokes' line. Since 1m gaP = 0 on the Stokes' line, it follows 
from analyticity that 1m gaP is greater than (less than) zero 
on the clockwise (counterclockwise) side of the Stokes' line. 

We now consider the steepest descent path needed to 
evaluate tPa at a nearby point x + ox, where xeYap . The 
dominant saddle is now at Xa + ox. When xEYap and ox is 
small, the steepest descent path from the dominant saddle 
must return to the neighborhood of xp along the curve t5z 
such that 

Re <P (xp + t5z,xa + ox) = O. 

Expanding in a Taylor series and keeping only the leading 
terms yields 

<P (x/3 + t5z,xa + ox) = - iga/3(x + ox) + i!2 V~, (31) 
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where 
E1I2(k ,x ) 

Vp = exp( - i-lT/4) x p p (t5z - ox) 
E1/2(kp,x/3 ) 

€'!2(k ,x + ox) 
= exp( - hr/4) x p p (z - xp - ox). (32) 

EV2(k/3,x/3 + ox) 

Thus, the subdominant saddle on sheet {3 is at Vp = 0, 
and the real Vaxis is the steepest descent path passing 
through the subdominant saddle at xp + ox [see Fig. S(a)]. 
The contour of the subdominant saddle connects remote re
gion II to remote region III. Therefore, we define the branch 
Ek!2(kp,xp) for the subdominant {3 mode to be the one that 
allows the contour to go from remote region III to remote 
region II, as V/3 goes from - 00 to 00. 

Now, in the neighborhood ofxp (a point on Stokes' line 
Y a /3)' the steepest descent path from the dominant saddle at 
xa + ox must satisfy Re d<P = 0, from which Eq. (31) gives 

, 
" " " , 

Re v~ 

/ 
From remote 
region III 

"
"-

" , 

/ 
/' 

/' 
/,' 

" To remote 
region til 

\ 
\ 
\ 
\ 
\ 
\ 
I 
I 

I From remote region I 

\ 

To remote region II 

I 
(a) 

\ 
\ 

To remote region II 

I 
I 

I 

\ 
\ 
\ 
I 

1 F rom remote 
, region I 

(b) 

Re v~ 

FIG. 5. Local transformation of coordinates near a Stokes' line: (a) to the 
clockwise side of the line and (b) to the counterclockwise side. 
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the hyperbola 

(VP)R(VP)/ = 1m gaP (x + ox), 

where 

(VP)R = Re Vp and (Vp)/ = 1m Vp. 

(33) 

Suppose that the region on the clockwise (counterclock
wise) side of the Stokes' line is region 1. We first consider ox 
such that x + ox lies in region 1. Since gaP (x) is a negative 
real on YaP' and gaP is an analytic function of x, it follows 
that 1m gaP is greater than (less than) zero on the clockwise 
(counterclockwise) side of the Stokes' line. Hence, the right
hand side ofEq. (33) is positive (negative) in region 1. As in 
region 1 the steepest descent contour from xa must ultimate
lyhead to remote region II, then by our convention, VR must 
be positive. Thus, the steepest descent contour approaches 
the subdominant saddle (before it veers away) along the 
branch that asymptotes to the positive (negative) imaginary 
Vaxis [as shown in Fig. 5{a)]. As the steepest descent contour 
is directed from remote region I to remote region II and 
misses the saddle xP' we only pick up the saddle point contri
bution at z = Xa in the asymptotic evaluation of ifJa (x) in 
region 1. 

We now follow the solution ifJ a (x) across the Stokes' line 
Y a (3 from region 1 to region 2; i.e., we continue the solution 
ifJa (x) across YaP in the counterclockwise (clockwise) sense. 
The right-hand side ofEq. (33) is now negative (positive) so 
that the steepest descent path from the dominant saddle 
[which still must approach the subdominant saddle along 
the positive (negative) imaginary Vp axis] now follows the 
negative Re Vp axis to remote region III, as shown in Fig. 
5(b). 

The independent solution ifJa(x) in region 1 was defined 
by an integration contour that connected remote regions I 
and II. Hence, if we are to continue this solution across YaP 
into region 2, we may choose an integration contour that 
first follows the steepest descent path over the dominant sad
dle from remote region I to remote region III and then re
turns to remote region II by following the Re V axis across 
the subdominant saddle at xp + ox. Our integration contour 
now crosses two saddles, and an evaluation of this solution 
by the method of steepest descents now yields two WKB 
wavelets: 

[ 
€112(k x) (rXO )] ifJa{x) = (ka Ixo,x) 1 + ~12 a' exp i kdz . 
€k (kp,x) JXa 

(34) 

Equation (34) gives the appropriate asymptotic form of 
the solution ifJa (x) in region 2. It is convenient to rewrite this 
asymptotic solution in terms ofWKB wavelets (k Ix l ,X2 ) 

and Stokes' multipliers. We first assume that YaP is a pri
mary Stokes' line. The steepest descent path connecting Xa 
and xp then encloses a single turning point x::P' and the 
asymptotic form of ifJa (x) in region 2 may be rewritten as 

ifJa(x) = (ka Ixo,x) [1 + ~~:2(ka,x; ) exp (iiX~kdZ)] 
€k (ka,xap Xa 

X 
€L12(ka,x?;p)) ('ixokd €Y2{kp,x::p) 

1/2 exp I Z 
€k (kp,x::p x?:{J €kI2(kp,x) 

= (ka Ixo,x) + (ka Ixo,x::p)P I (kp Ix::p,x). (35) 
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The Stokes' multiplier PI is given by 

(36) 

where 0 is chosen such that x::p + 0 lies on Yap' The 
branches of €L12(k,x::p + 0) have been chosen such that 

lim kL/2(ka,x)/€V2(ka'x::p +0)] = 1 (37) 
x-x;~~+ fJ 

and 

lim kL/2(kp,x)/€k/2(kp,x::p + 0)] = 1. (38) 
x_x;~~+ {j 

In order to avoid encircling the branch points of k (x), the 
limit in Eqs. (37) and (38) is taken along a path that passes 
through region 2 from x to the Stokes' line YaP and then 

follows YaP to x::p + o. 
In Appendix B we show that 

(39) 

where the + ( - ) sign is to be used when crossing a primary 
Stokes' line in the counterclockwise (clockwise) sense. No
tice that the Stokes' multiplier PI depends only on param
eters local to the turning point. Previous analysis (e.g., that 
of Ref. 6) obtained PI by using either the properties of the 
Airy equation or the Furry method. I 

The asymptotic solution in region 2 is then 

ifJu(x) = (ka Ixo,x) ± i(ka Ixo,x::p ) (kplx::p,x). (40) 

It has been observed by Miller31 (for second-order differen
tial equations) and Watson27 (for integral equations) that the 
subdominant wavelet in Eq. (40) can also be obtained by ana
lytically continuing the wavelet (ka Ixo,x) around the turn
ing point x::p in the clockwise (counterclockwise) sense. The 
factor + i( - 1) then arises from continuing €1/2 [which ap
pears in (ka Ixo,x), cf. Eq. (39)] around the branch point at 
x::p, Hence, a pseudophysical interpretation ofEq. (40) is 
that the asymptotic form of ifJa (x) in region 2 is a superposi
tion of both the wavelet propagating with wave number ka 
from Xo directly across YaP to x, and the wavelet that has 
propagated from Xo around the turning point at x::p and on 
to x in region 2. 

We now need to evaluate the Stokes' multiplier P2 on a 
secondary Stokes' line. For definiteness let the crossing of 
the primary Stokes' lines have the sense of Fig. 4; i.e., region 
1 is on the clockwise side of YaP' while region 2 is on the 
counterclockwise side of YaP and on the clockwise side of 
Y py' In Fig. 6 these two regions are illustrated, as well as 
regions 3, 4, and 5, which we will discuss later. The reader 
can duplicate the following arguments if the sense of the 
crossing is reversed. 

Now we note that a steepest descent path through a 
point x in the vicinity of Xq and in region 1 will come from 
remote region I through xa, loop x::P' and approach xp but 
veer off to the counterclockwise side of YaP along the posi
tive Vp axis. After veering off in the counterclockwise direc
tion, the contour has to asymptote to the steepest descent 
contour through x q/3' It is clear from the topology of Fig.4(b) 
that the leg of the steepest descent contour heading in the 
counterclockwise sense past x::p is the leg that loops X~y. 
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Region 3 

c 

B 

FIG. 6. Topology of secondary Stokes' lines. 

Hence, in region 1, within the vicinity of x q , the steepest 
descent contour heading towards remote region II will also 
loop xJy. Therefore, near an ordered crossing, the branch 
£1/2(kp ,x), defined from the subdominant convention, is 
identical to the branch of £;(2(kp,x), defined from the domi
nant convention. By using analytic continuation the branch 
of £l12(kp ,x) is defined unambiguously. 

If we now continue x from region 1 to region 2 (still in 
the vicinity of Xq ), the steepest descent contour from Xu will 
not quite return to xP' but will veer off to the clockwise side 
to remote region III. Thus, the steepest contour in this re
gion cannot return to x. We can conclude there cannot be a 
Stokes' line in region 2. On the other hand, Xq must lie on 
YaP because a steepest descent contour looping x~p and xJ~ 
exists there. We have derived the differential equation in the 
previous section that generates a line from x q • Hence, Xq 
must be the initial condition for this line, and the line must 
have the topology shown in Fig. 6, where we see Y up sepa
rates regions 4 and 5 but does not enter region 2. 

The beginning of a Stokes' line at Xq is natural from 
another point of view. Suppose we consider a point x on 
'Yay' which is shown in Fig. 4(c) below x q • Ifwe follow the 
steepest descent path from x = Xu' we loop both x~p and xJ~ 
and then return to x y. As the point x moves towards x q , 

along ,f!' uy' we observe that the segment interval betweenxa 

and Xy of the steepest descent curve deforms continuously as 
x is varied. However, when we reach x q , a bifurcation of the 
contour occurs at x qp after looping only x~p, Above Xq 
(along virtual Y uy) the steepest descent contour through Xa 
will loop x~p but then veer away from xp and head towards 
remote region III. 

We are now ready to evaluate the asymptotic form of 
¢a (x) when x crosses a secondary Stokes' line in the counter
clockwise (clockwise) sense. (We now resume the convention 
of using parentheses to quote results for x crossing Y"p in 
the clockwise sense.) 

Up to a point, the evaluations of the asymptotic forms 
for primary Stokes' lines carryover to secondary Stokes' 
lines. Contour Ca connects remote region I to remote region 
II on the clockwise (counterclockwise) side of Y cry' Ifwe 
start with Ca , we pass through Xu , then loopx~p and xJy , do 
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not quite return to Xy but veer to the counterclockwise 
(clockwise) side, and finally head to remote region II. The 
saddle-point evaluation of the integral on this contour gives 
Eq. (29). 

We now define Vy as 

£112(k x ) 
Vy = exp( - i17"14) x u' y (z - Xy). 

£1/2(ky,Xy) 

The branch of £L/2(ky,xy) is chosen such that Vy_ + 00 as 
the subdominant steepest descent contour from remote re
gion IV heads through Xa to remote region II. We note that 
in the vicinity of x q , all steepest descent contours passing 
through Xa will head from remote region IV to remote re
gion II because no bifurcation occurs on the steepest descent 
path of the most subdominant mode. 

Now when x is on the other side of 'Yay' the steepest 
descent path veers away from Xy towards the clockwise 
(counterclockwise) direction towards remote region IV. To 
recover the original solution, we must return on the steepest 
descent path between remote regions IV and II, where Vy 
goes from - 00 to 00. The new contribution yields 
an asymptotic form just like Eq. (34): 

tP,,(x) = (ka ixo,x) 

[ 
£112(k x) (Ix)' )] X 1 + ~12 a' exp i k (z')dz' . 
£k (ky'x) x" 

(41) 

In the integral S~;' k (z')dz' the path has to loop both x~p and 

xJy. 
Equation (41) can be rewritten in the form 

¢,,(x) = (k" ixo,x) + P2 (ka iXo,x~/J) 

X (kpix~p,xJ~) (k" ix~~"x), 
where 

. [£l
12

(kp,xJy + 82)] hm 
/),-.0 £l12(k y,xJy + 82) 

(42) 

(43) 

(44) 

(45) 

looks like the Stokes' multiplier PI of the subdominant r 
mode that is generated when a p mode crosses Y py' Howev
er, we have to ascertain that the branches of £1/2 are the 
proper ones. We have already noted that £l12(kp ,x) is the 
same branch. It also follows that £~2(ky,xy + 82) will be de
fined as the same function whether it comes from x crossing 
YaP or Y py' This follows because in the vicinity of x = x q , 

where both Yay and Y py can be crossed, £~2(ky,x) is the 
branch associated with Vy varying from - 00 to 00 as the 
contour integral heads from remote region IV to remote re
gion II. Thus, P2 = (Pd 2 = - 1. 
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The generalization to the Stokes' multiplier Pn for 
Stokes' lines whose steepest descent path loops n simple 
turning points is now apparent. The intermediate branches 
of EY2 may always be chosen such that Pn will involve n 
terms of the form (36), and hence, 

(46) 

where the + ( - ) sign is to be used when crossing the nth
order Stokes' line in the counterclockwise (clockwise) sense. 

6. UNIQUENESS OF ASYMPTOTIC REPRESENTATIONS 

The rules for adding subdominant solutions on crossing 
Stokes' lines I ensure that the asymptotic properties of a func
tion tPa(x) in a given region are independent of the path to 
that region. This uniqueness is in fact the basis of the Furry 
method] in determining the Stokes' multipliers on passing a 
primary Stokes' line. It should be emphasized that because 
of the branch cuts emanating from the turning points, the 
labeling of a WKB wavelet along two different paths that are 
separated by a turning point is not unique, even though the 
asymptotic properties of a particular solution are unique. 
The following examples demonstrate these points. 

Consider Fig. 7, where three Stokes' lines emerging 
from xi; are shown and two paths from points Xa to Xc are 
shown: path a(xa -+Xb -+xc) and path b (xa -+xe-+Xd-+Xc)' If 

(47) 

in the vicinity ofxa' and if (k1) is dominant with respect to 
(k2 ) along Stokes' line (Xi2 ,Xb) and we follow path a, then we 
find that tPa (x) in the vicinity of Xc is of the form 

tPa(x);:::C(k1Ixa,x)+i(k1Ixa,xiz) (k2Ixiz,x), (48) 

where we picked up the second WKB wavelet with the 
Stokes' multiplier i on crossing the Stokes' line (xiz,xb), 

On path b we do not obtain an additional WKB wavelet 
on crossing Stokes' line (xiz ,xe), as (k1) must be subdomin
ant with respect to (k 2 ) on this line. However, on crossingxd 
we pick up a subdominant wavelet with a Stokes' multiplier 
- i, so that near Xc we have 

tPa(x)-C [(k1Ixa,x) - i(k1Ixa,xi;) (k2 Ix I2,X)]. (49) 

The two forms of tPa (x) are identical because it can be 
shown4 from the analytical properties of €1/2(k,x) that, in the 
vicinity of Xc, 

(k1Ixa,x) I path 1 = - i(k1Ixa,xi2) (k2Ixi2'X) Ipath2' 

i(k1lxa ,xiz) (k2lxiz ,x) I path 1 = (k! IXa,X) I path 2' 
(50) 

FIG. 7. Tracking of asymptotic solutions around turning points to various 
regions. 
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Thus, we observe that although solutions are indepen
dent of path, the wavelet labeling depends on path. If two 
paths are not separated by turning points, then the same 
labels map to the same wavelets; if they are separated by 
turning points, it may be necessary to interchange labels in 
order to match the same wavelets. 

For another example, suppose in Fig. 7 we start with a 
function 

(51) 

in the vicinity of Xa' This wavelet is subdominant with re
spect to (k]) on passing X b , and no new wavelet is induced. 
Hence, in the vicinity of x = Xc we have 

(52) 

However, along the upper path we find just to the right of X e , 

tPp(x)- C [(k2Ixa,x) - i(k2Ixa,xi2) (k1Ixi2,x)] . (53) 

As we pass X d , (k 1) induces a second (k2 ) wavelet to yield 

tPp(x)-C [(k2Ixa,x) - i(k2lxa ,xiz) (kllxiz ,x) 

- (k2lxa ,Xi2) (k! Ixiz ,xi2) (k2lxiz ,x) ] 

-iC[(k2Ixa,xi2) (k1Ixiz,x)], (54) 

where (k2 ) has cancelled, and we are left only with (k]). 
Using Eq. (50) we do see that tP p (x) is independen t of path and 
only the labeling of the two wavelets changes because of 
path. 

It is apparent that bookkeeping is easier along path a 
because only one of the triplet of Stokes' lines emerging from 
a turning point is crossed and thus annihilation of wavelets 
cannot take place. 

Now we address the original paradox mentioned in Sec. 
2. We examine the asymptotic representation along two 
paths shown in Fig. 8. The Stokes' lines (Xi2 ,Xg) and (xi; ,xe) 
are assumed to have an ordered crossing with (k 1) dominant 
with respect to (k2 ) on the first line, (k 2 ) dominant with 
respect to (k3) on the other line. Once the new Stokes' line 
emanating from Xq is recognized, the uniqueness of asymp
totic representation is quite transparent. Suppose that in the 
vicinity of point Xa 

(55) 

Then along the upper path (xa -+Xb -+Xc -+Xd ) we have just to 
the right of Xb 

tPa {x);::: Ca [(kdx!,x) + i(k1Ix1,xi;) (k2Ixi;,x)] , (56) 

FIG. 8. Tracking of asymptotic solution around crossed ordered Stokes' 
lines to various regions. 
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and just to the right of Xc 

tPa (x)::::Ca [(ktlxt,x) + i(k t lx t,xi2) (k2 Ixi2'X) 

- (ktlxt,x[;) (k2Ixi2,xf3) (k3 Ixf3,x)]. (57) 

Similarly, along the lower path (xa---+xe---+Xg---+Xd) we 
have, just to the right of X e , 

tPa (x):::: Ca (kdxt,x) , 

as (k3) has to be induced by (k2), and we do not yet have a 
(k 2 ). At the same time just to the right ofx[ we have, by the 
rule of crossing a secondary Stokes' line, 

tPa (x) = Ca [(ktlxt,x) - (ktlxt,x[;) 

x (k2 Ixi2,xf3) (k3Ixf3,x»), 

and just to the right of Xg we have 

tPa (x) = Ca [(ktlxpx) 

- (k t lx t,xi2) (k2Ix[; ,Xf3) (k3Ixf3,x) 

+i(k t lx t,xi2) (k2 Ixi2'X)]. 

(58) 

(59) 

Equations (57) and (59) have identical forms, and they 
are identical functions as their paths are not separated by 
turning points, the branch points of ey2 [k (x),x]. Thus, the 
uniqueness of the asymptotic representations in different re
gions is established. 

7. CONSTRUCTION OF GLOBAL DISPERSION 
RELATIONS 

We now address the general problem of constructing 
the global dispersion relation. Suppose we have a 2N th-order 
(N can approach 00 ) differential equation defined on the real 
axis from - 00 <x < 00 and that the local dispersion rela
tion (i.e., the characteristic equation) is a function of k 2. For a 
dispersion relation of 2N th order in k, there are N WKB 
wavelets that converge as X---+ - 00 on the real axis, Le., 

exp( i IX kj dZ)---+O asx---+ - 00 • 

These converging wavelets may be labeled with the indices 
j = I-N. 

The other N wavelets have k's that are the negatives of 
the well-behaved group so that these WKB wavelets diverge 
as x---+ - 00. In the event that any root pairs have 1m k = 0, 
then a physical criterion, such as outgoing wave energy at 
infinity, determines which root of the pair is allowable at 
infinity. In some physical problems where 1m k<Re k, the 
outgoing wave condition can take precedence over 
sUbdominance.32 

As x---+ - 00, the eigenmodes may be represented as a 
linear combination of the N WKB wavelets that are well 
behaved at - 00, 

N 

tP (x)- I ai (k i Ixo,X) . 
i= 1 

The dispersion relation is obtained by first using our connec
tion rules to continue this solution to x = + 00, and then 
requiring that tP (x) be well behaved at x = + 00. 

For definiteness in this discussion we shall continue the 
solution along the real axis, although other paths may prove 
more convenient in a particular problem. This path then 
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uniquely defines the branches of WKB wavelets as 

k ; 0 . k ( ) d EI/2 [k (x),x ] [ LX ] 
exp I j X X • 

El12 [k;(x),x] x" 

(60) 

It is convenient to choose the phase reference point Xo to lie 
on the real x axis at a large positive value at x, such that no 
Stokes' lines cross the real x axis between Xo and 00. 

Upon continuing our solution from x = - 00 to 
x = + 00 along the real x axis, we find that the original 
superposition of N well-behaved wavelets at x = - 00 

becomes 
N 2N 

tP(x)- I I ajMij(w)(kjlxo,x)· (61) 
j~ tj~ t 

The elements of the matrix M are determined from the WKB 
connection formulas. These matrix elements may be written 
in the form 

(62) 

where! Ca I are contours in the Z manifold that start at (xo)j 
and terminate at (xo)j' The branch of E:/2 is chosen such that 
Ekl2(kj ,xo) is the analytic continuation of E:/2(k; ,xo) from (xot 
to (xo)j along Ca' 

There are N wavelets that diverge as x---+ + 00. The re
quirement that our solution be well behaved at + 00 is 

N 

I a,Mij(w) = 0 (63) 
i= 1 

for each value ofj that labels a diverging wavelet at x---+ + 00. 

Ifwe order the N diverging wavelets at + 00 in one-to-one 
correspondence with the initial N wavelets at - 00, we find 
that the eigenvalues of the system are determined by 

IMij(w)1 = 0, (64) 

where IMij(w)1 is the determinan,t of Mij' 
It follows from the definition of the determinant, to

gether with the form of the individual matrix elements Mij 
[cf. Eq. (62)], that this dispersion relation may be written as 

0= I Mij(w) I = ~ u{3 exp(i f C{3k dZ), (65) 

where u{3 = ± I (in every specific example we have investi
gated u{3 = + 1). The! C{31 are closed contours that weave 
around a particular set of branch points in the Z manifold. 
The contours that are to be included in this sum, together 
with the sign of u{3' are determined implicitly by the WKB 
connection rules. Note that a contour that encloses no 
branch points is allowed. 

We have shown that the global dispersion relation is a 
functional of loop integrals, ¢ k dx, in the complex plane. 
This is an important requirement for a WKB theory of high
er-order equations. The global dispersion relation must be 
independent of the representation of the governing integral 
equation. One might have chosen the Fourier space repre
sentation of this equation to obtain the global dispersion re
lation by the WKB methods. An argument analogous to that 
presented here then leads to the conclusion that the global 
dispersion relation is a functional of loop integrals of the 
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form tfi x(k ) dk. Since 

f k (x) dx = - f x(k ) dk, (66) 

these two dispersion relations are both functionals of the 
same action integral, and hence it is possible that they are 
identical, as a consistent theory demands. 

8. UNRESOLVED PROBLEMS AND SPECULATIONS 

Our presentation leaves several unresolved points of 
difficulty and leads to several speculative conclusions. 

The first difficulty relates to Stokes' lines. In Sec. 3 we 
indicated that if we follow the steepest descent path from a 
point Xs on the Stokes' line Y 12 for the dominant mode k" 
we will eventually return to x, for a subdominant value k 2• 

We can ask whether this will always occur as we follow the 
Stokes' line Re SX(k, - k2)dz away from the turning point (or 
points if it is a higher-order Stokes' line). 

In the text we only considered saddle points that arise 
when z = x. However, we did show that another saddle point 
can occur if the steepest descent contour leads to a point 
where €x(k,x) = O. If we limit ourselves to problems where 
€k(k,x) = 0 and €x(k,x) = 0 are well separated, then such a 
bifurcation in the steepest contour cannot occur when the 
x = z saddle is on the Stokes' line and x is sufficiently close to 
the turning point. 

However, far from the turning point it is possible that 
the steepest descent contour from a point xa on a Stokes' line 
can lead to a point €x(k,x) = 0, in which case an additional 
bifurcation of the steepest descent path arises. Then the 
steepest descent path for points on the Stokes' line [as de
fined by Re fX 7 (k, - k 2) dz = 0] beyond Xa (such as 

x" 
Xa + ox) will not return to Xa + ox. 

We then ask whether a subdominant solution should be 
added when a dominant solution is followed past Xa + ox. 
The speculative answer is that the Stokes' line retains its 
character. The argument is to note that the steepest descent 
contour fails to return to Xa + ox because of a bifurcation in 
the steepest descent path at €x(k,x) = 0, precisely the point 
where the approximate representation of the integrand of 
Eq. (11) is bad, so that the bifurcation cannot be trusted. 

We note that we may modify our rules slightly and 
choose a path for evaluating the integral 

J 
€'/2 

dz _x_ exp[i<P (z,x)] 
€k 

from z = Xa + oXa and k = k,(xa + ox) to z = Xa 
+ oxa, k = k2(xa + oXa) which avoids encircling 

€x(k,x) = 0 but follows steepest descent contours locally 
near z = Xa + oxa. We would then pick up local saddle point 
contributions to the integral from z = Xa + ox, k = k" and 
z = Xa + ox, k = k2' and we also would head to the correct 
remote regions at infinity. Then we would have rules identi
cal to those stated. Further, these rules would still allow 
unique representations of the asymptotic forms. 

The second problem is that since the global dispersion 
relation is a functional of the loop integral of the action, 
tfi k (x) dx, we have the possibility that the global dispersion 
relation is invariant as to whether the problem is solved in x-
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space or k-space since 

f k dx = - f x(k ) dk, (67) 

the latter form being the loop integral of the action in k
space. However, we have not been able to prove that the 
functional dependences derived by starting from x-space or 
k-space are indeed identical. A consistent theory demands 
that they are identical. We believe our rules should have this 
identity built into them, but the proof remains to be 
demonstrated. 

A final difficulty is that we need to develop efficient 
algorithms to select the correct combination of loop inte
grals in the dispersion relation. The correct loop integrals are 
implicit functions of the boundary conditions. The prescrip
tion for obtaining the correct loop integrals by explicitly con
tinuing solutions for - 00 to + 00 is correct but tedious. 
More efficient algorithms should be developed. Knoll and 
Schaefer29 indicated a procedure for second-order differen
tial equations where one chooses a path that crosses only 
zero or one Stokes' line from a given turning point. With 
higher-order differential equations this prescription appears 
to be just a guide and not a rule, as complications arise due to 
the crossing of Stokes' lines. Further study into this problem 
is needed. 
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APPENDIX A: SECONDARY STOKES' LINES 

In Appendix A we discuss the topology of secondary 
Stokes' lines. Consider Fig. 6. We will assume that mode a is 
dominant with respect to mode,8 on the Stokes' line (x~p,C). 
The crossing at Xq is assumed to be ordered. Hence, mode,8 
is dominant with respect to mode yon the Stokes' line 
(x;y,x). 

We consider the quantity gaP (X) defined in Eq. (23). 
Note that 1m gaP vanishes on the Stokes' line (x~p,C), while 
Re gaP is monotonically decreasing. Since gaP (x) is an ana
lytic function, it follows that 1m gaP is greater than zero in 
regions 2 and 3 above the curve (x~p,C) and that 1m gaP is 
less than zero in regions 1,4, and 5 below this curve. Similar
ly, 1m gpy is greater than zero in regions 1 and 2 above the 
Stokes' line (x;y, A ), while 1m gpy is less than zero in regions 
3,4, and 5 below (x;y, A). 

Note that gay = gaP + gpy. Hence, 1m gay can vanish 
only when 1m Gap and 1m gpy have opposite signs; i.e., in 
regions 2 or 4 and 5 of Fig. 8. A necessary condition for an 
(a,y) Stokes' line is that 1m gay = O. Hence, the secondary 
Stokes' line must lie in regions 2 or 4 and s. 

We can determine the direction of decreasing gay on the 
(a,y) Stokes' line at Xa by considering the vectors 
aaP' apy, and aay, where 

aaP = Im(ka - kp)x + Re(ka - kp) Y 
and similarly for apy and aay. Note from Eq. (25) that when 

Berk, Nevins, and Roberts 1001 



                                                                                                                                    

XEYO ap' the vector 8ap is tangent to the (a,/3) Stokes' line. A 
similar condition exists for 8pr , 8ap . All of these vectors 
point in the direction of decreasingg; that is, 8 ap points away 
from x?;p while apr points away from x%r' 

It follows from the definition of the 8 vectors that at any 
point x, 

8 ar (X) = 8 ap (X) + 8Pr (X). 

Evaluating these vectors at xq , we see that 8 ar (Xq) points 
downward from Xq toward region 4. Hence, gar decreases on 
yo ar as one moves down from Xq into region 4, as indicated 
by the arrow in Fig. 6. 

APPENDIX B: EVALUATION OF P1 

The Stokes' multiplier PI is given by [cf. Eq. (36)] 

(BI) 

where the branches of EY2 must be chosen in accordance 
with Eqs. (37) and (38). It is evident from (BI) that the Stokes' 
multiplier PI depends only on properties local to the turning 
point. Near the turning point we may expand e(k,x) as 

e(k?;p + 8k,x?;p + 8) = ~ekk 8k 2 + ex 8. (B2) 

Setting e(k,x) = 0, we find 

8k = ± i (2exlekk)1/2 8 1/2 . (B3) 

Without loss of generality, we may identify the dominant 
root ka with the negative sign in Eq. (B3). The requirement 
that x?;p + 8 lie on yo ap then gives 

(2eJekk)1/2 = Ii gaP (x?;p + 8)18- 3/2, (B4) 

which was defined in Eq. (23), where gaP is always a negative 
real number on a Stokes' line. 

The appropriate branches of d/2(k,x~ + 8) may be de
termined by examining the steepest descent paths from sad
dle points at x = X?:p = 8. On the ath sheet we find 

(eJek)a=il§gapI8-2 (BS) 

and 

(B6) 

Hence, Va [cf. the discussion following Eq. (28)] is given by 

(
z-x ) 

Va = ± l§galll l/2 T . (B7) 

We must choose the sign of the square root such that 
increasing Va takes us from the saddle on the ath sheet to
ward x?:p. If the minus sign is chosen in Eq. (B7), then Va 
increases when (z - xa) is antiparallel to 8, i.e., movement 
along the steepest descent path from Xa in the direction of 
increasing Va takes us toward x?:p along the Stokes' line 
yo all' Hence, we choose the minus sign in Eq. (B7) and there
fore in Eq. (B6) as well. 

Having evaluated (exlek )112 on sheet a, we turn our 
attention to sheet /3. On sheet /3 we have 

(eJek) = - il§ gaP 1/82 (B8) 
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and 

(€x1ek)1/2 = ± exp( - i1r/4) Ii gaP I 112/8 . (B9) 

Hence, Vp [cf. Eq. (32)] is given by 

(BIO) 

The direction of the positive imaginary Vp axis is antiparallel 
(parallel) to yo ap if the upper (lower) sign is chosen in both 
Eqs. (B9) and (B 10). This is the appropriate choice of sign 
when crossing yo ap in the counterclockwise (clockwise) 
sense because the steepest descent path will be directed down 
(up) the positive (negative) imaginary Vp axis as it passes 
from x?:p towards the saddle on sheet,B, as we required in the 
discussion following Eq. (32). Noting that 

€l12(ka ,x?:p + 8) 

e!12(kf3'x?:p + 8) 

we have 

(ex I € k )J-f2 

(eJed~2 ' 
(BII) 

where the + ( - ) sign is to be used when crossing a primary 
Stokes' line in the counterclockwise (clockwise) sense. 
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This paper generalizes the work of J. L. B. Cooper on symmetric operators in a Hilbert space to 
PontIjagin and Krein spaces. Existence (and uniqueness) of a solution for SchrOdinger's equation 
dTf!(t )ldt = iATf!(t )''''(0) = ¢JEll [= II +( -i- )ll]fortheboundeddecomposablesymmetricoperator 
A (the self-adjoint operator A ) is studied. Also, the existence of a solution for (l/i)a"'(t)l 
at = A *ifJ(t), "'(0) = ¢JEll, where A is a cross-bounded symmetric operator in ll, is discussed. 
Finally,existenceand uniquenessoftheequation(l/i) a"'(t )/at = ATf!(t), Tf!(0) = ¢JEllk , where A isa 
self-adjoint operator in the Pontrjagin space llk' is studied, and the fact that the maps ¢J-"'(t) 
form a group of unitary operators on ilk is discussed. 

PACS numbers: 02.30.Th 

INTRODUCTION 

J. L. B. Cooper in his paper "Symmetric operators in 
Hilbert space"I has discusssed symmetric, maximal sym
metric, and self-adjoint operators in Hilbert spaces. He has 
provided a proof for the existence of a solution of the Schro
dinger equation for the adjoint operator and for all symmet
ric operators with any element of the domain of the operator 
as initial value. For self-adjoint operators, he has shown that 
the solution of the Schrodinger equation appears as the 
transform of the inital value by a unitary operator: The total
ity of these unitary operators forms a one-parameter con
tinuous group. 

In this paper we study the very important type of linear 
operator in Krein spaces with decomposition 

ll=ll+( + )ii, 
namely, the cross-boundedly decomposabe operators 

A = [All A IZ ], 

A21 Au 
and we find a necessary condition for such operators to be 
symmetric. Also in the case that A II is a self-adjoint operator 
we find a necessary and sufficient condition for A to be self
adjoint. For bounded symmetric cross-bounded operators 
we discuss the existence and uniqueness of the Schrodinger 
equation 

d"'(t) = iA"'(t) 
dt 

with the initial condition "'(0) = ¢JEll in a bounded interval 
[0, T]. Also we study the existence of a solution of the 
equation 

~ a"'(t) =A *"'(t) 
I at 

with the initial condition ¢t(0) = ¢JEll when A is a cross
bounded symmetric operator. Finally we discuss the exis
tence and uniqueness of the sol ution of the equation 

~ a"'a(t) = A¢t(t), "'(0) = ¢JEllk' 
I t 

whereA is a self-adjoint operator in the Pontrjagin space and 

we deduce that the maps 

¢J-"'(t) 

form a group of unitary operators in 11k . 

SOME MORE DEVELOPMENTS ON OPERATORS IN 
KREIN SPACES-THE EXPONENTIAL MAP 

A vector-valued function "'(t ) mapping the interval (a,,8 ) 
into a Krein space II is said to be weakly (strongly) differen
tiable at point t = to if there exists an element ""(to) Ell such 
that the difference quotient 

h -I ["'(to + h ) - ¢t(to)] 

tends weakly (strongly) to ""(to) as h_O. We shall call "" (to) 
the weak (strong) derivative of "'(t ) at to and denote it by 
[8"'(t )/81 )[dli'(t )ldt]. 

Now let II be a Krein space with the fundamental 
decomposition 

II =il+( + )11-, ll+CB ++, ll-CB --, 

and letp+,p_, andJbe projectors of il onll +, II - and the 
corresponding fundamental symmetry respectively. Clearly 
we have 

p+ +P_ =1, P+P_ =P_P+ =0, 

P 2+ = P +, P 2_ = P _, J = P + _ P _. 

Now let A be a closed operator in il with D (A ) = n. 
The operator A is said to be cross-boundedly decomposable if 
for some fundamental decomposition of il it can be written 
in the following form: 

where 
A II :il+-I1+, AI2:11_-ll+, 

A 21 :il+---+II_, A22:ll_-ll_, 

i.e., 

All =P+AP+, A 12 = P+AP_, 

(1 ) 
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and such that A 12 and A21 are bounded. Let XEIl. Then 
X = X +( + )X -, where X + = P +X, X - = P -X· 

Theorem 1: If A has decomposition (1) (not necessarily 
bounded), then for A to be a symmetric operator in II it is 
necessary that A II and A 22 be symmetric operators and 

A I2 CA !I' A 21 CA f2' 
If II + r;;;.D (A ), then A II must be self-adjoint and bound

ed; in this case A 12 is bounded and so is A 21' 

Corolary 2: All symmetric operators on a Pontrjagin 
space IlK are cross-boundedly decomposable. 

For llK can be written in the form llK = II +( + )II_, 
where II + is a finiteK-dimensional positive space, soA II and 
A21 are necessarily bounded. 

Theorem 3: Let A be a bounded symmetric operator 
with decomposition (1) in the Krein space II. Then for any 
¢JED (A ) the equation 

dt/J = iAt/J, t/J(O) = ¢J, (2) 
dt 

has a unique solution, and for any bounded interval [O,T] 
there is a constant Kr(A 12) whose size depends only on Tand 
IIA dlJ such that for all tET, Iit/J(t )IIJ ~KTII¢JIIJ' 

Theorem 4: Let A be a cross-bounded symmetric opera
tor in the Krein space II with decomposition 

A = [All A12] (3) 
A21 A22 

corresponding to the decomposition II = II + ( + )II - , 
II + CB + +, II - CB - -. Then for any ¢JED (A ) the equation 

~ ot/J = A *t/J(t ), t/J(O) = ¢J, 
iOt 

has a solution. 

(4) 

Theorem 5: LetA be a self-adjoint operator in the Krein 
space with the cross-bounded decomposition 

corresponding to the fundamental decomposition 
II = II + ( + )ll - . 

Then for any ¢JED (A ) the equation 

~ Dt/J = A1/;, with 1/;(0) = ¢J, 
i Ot 

has a unique solution and for any bounded interval [ - T, T] 
there exists a constant K whose size depends only on T and 
IIAdlJ such that for all tEl - T,T] we have 

Iit/J(t )IIJ ~KT(IIA dlHI¢J IIJ' 

Furthermore, the maps ¢J--+t/J(t) form a group of unitary op
erators onll. 

Theorem 6: Let Hbe a cross-bounded symmetric opera
tor in the Krein space II with the fundamental 
decompositions. 

II = II + ( + )II - , 
(5) 

H= [HII H 12 ]. 
H21 Hn 

If HII is a self-adjoint operator in II +, then Hn to densely 

1004 J. Math. Phys., Vol. 23, No.6, June 1982 

defined and closed. Furthermore, H22 is self-adjoint in n - if 
and only if H is self-adjoint in II. 

Before we continue with the proof of the theorems, we 
state some lemmas. 

Lemma A: Let len J be a complete orthonormal system 
in a separable Hilbert spaceH, and let t/J(t )ENbe a continuous 
vector-valued function defined in the interval (a,b ) with the 
property that for each n there exist an element ¢J (t )EN such 
that, for each tE(a,b ), 

d 
-(t/J(t),en) = (¢J(t),en), 11¢J(t)11 <M, 
dt 

where M is a constant. Then (d Idt Ht/J(t ),g) = (¢J (t ),g) for all 
gEN. 

Proof Let gEN. Theng = ~:= I (g,en)en. SetgN 

=~: ~ I (g,en)en; then we have Ilg - gNII--+O as N--+oo. 
Let tE(a,b ). Then there exists a closed interval [a' ,b '] 

C(a,b) such that tE[a',b ']. 
Now let us define the following complex valued func-

tions on [a',b ']: 

and 

Iv(t) = (t/J(t ),gN)' 

I(t) = (1/;(t ),g), 

hN(t) = (¢J (t ),gN)' 

h (t ) = (¢J (t ),g). 

Clearly for all tE[a',b '] we have 

lfN{t)-/(t)1 = 1(t/J(t),gN -g)I~IIt/J(tlllllgN -gll--+O 

as N--+oo. HencelN--+/uniformly on [a',b 'J. By the same 
reasoning h.\,--+h uniformly, and by linearity we havel:v 
= hN . Hencelis differentiable on [a',b ']. Now 

I(t) - I(a) = lim Vv(t) - Iv (a)] 
1"'1 ---ex: 

= .!i~LhN(T) d. 

= Lh (T) dr. 

This gives that/' = h, i.e., (d Idt Ht/J(t ),g) = (¢J (t ),g) for all 
tE(a,b ) and all gEN. 

Lemma B: Now let II be a Pontrjagen space with the 
fundamental decomposition II = II + ( + )II - and let 
dimll - = K < 00. Let leN 1 be a complete orthonormal sys
tem in II with I en J ~ ~ I C II - . 

A necessary and sufficient condition for the weak dif
ferentiability of a vector-valued function t/J(t )Ell at a point 
tE(a,b) is that for all n 

~(t/J(t),en)=¢Jn(t) exists 
dt 

and 
00 

L l¢Jn(tW<oo. 
n ~ K + I 

In this way ¢J (t) = ~,';' = I ¢In (t len is the weak differential 
coefficien t of t/J( t ). 

Proof The necessity is obvious. For the proof of suffi-
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ciency, let, for all n = 1,2,···, 

~n(t)= ~("'(t),en) 
dt 

exist at tE(a,b ) such that };: = K + I I~n (t W < 00. Let yEll. 
Then y can be written in the form 

K = 
y= Lanen(+l L anen, 

n=1 n=K+I 

where};: = I Ian 12 < 00. On account of Lemma A and the fact 
that the dual of 12 is 12 by virtue of the Schwartz inequality, 
we conclude that 

= _ d 
~(K+ l)(t) = n=~+ Ian dt(",(t),en) 

exists. On the other hand, the existence of 
};~ = I an (d Idt )("'(t ),en) is obvious. Therefore, by linearity of 
d I dt and Lemma A 

and 

~ (t) = ~("'(t ),y) 
dt 

~ (t) = I ~n (t). 
n=l 

Lemma C: If "'(t ) is a J-bounded measureable vector
valued function defined over an interval (a,b ) into the Pontr
jagin space n = n + ( + )n - referred to in Lemma B, then 
for all tE(a,b ) outside a set of measure zero 

~i~r + h ("'(7) - ~,"'(7) - ~ ) d7 

= ("'(t) - ~,"'(t) - ~ ) (6) 

for all ~EIl. In particular r + h ("'(7) - "'(t ),"'(7) - "'(t)) d7 = o(h ) 

almost everywhere. (7) 

Proof Let ~ be a fixed element of n and let us write ~ 
and "'(t) in the form 

~= Icnen, "'(t) = I "'n(t)en, 
n = I ,., = 1 

where };: = I ICn 12 < 00 and };: = I I "'n (t W < 00 for each 
a<t<b. Then we have 

K 

("'(t)-~,"'(t)-~)= - L l"'n(t)-cn I
2 

n=l 

+ I l"'n(tf-cn I
2

. 
n = K+ I 

Each term of the right-hand side of the last equality is mea
surable and bounded and so summable; hence the left-hand 
side of it is sum mabIe. So it is the differential coefficient of its 
integral almost everywhere, i.e., (6) holds. 

Now let ~ be an arbitrary element of nand let [On I be a 
sequence of elements of n everywhere dense in n. Then (6) 
holds with~ = On outside a set En of measure zero. Hence (6) 
holds for alln outsideasetE = u:= I En of measure zero. On 
the other hand, for any subsequence [0 ~ I of [On J tending to 
~,we have 
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I ("'(t ) - ~,"'(t) - ~) - ("'(t) - On,,"'(t) - 0 ~)I 

= I ("'(t ),On' - ~ ) + (On' - ~,"'(t)) + (~,~ - 0 ~) 

+ (0 ~,~ - 0 ~))I 

«211",(t )11, + II~ II, + 110 ~ II,)II~ 
- On' 1I,<4MII~ - O~llr~ 

asn'-oo, whereM = max[II",(t )11" II~ II" liON' II, I, 

I 
1 f'+h I ~i~ h I ("'(7) - ~,"'(7) - ~ )d7 - ("'(t) - ~,"'(t) - ~ ) 

I 
1 f'+h 

= lim - ("'(7) - 0,"'(7) - ~ )d7 
h~O h I 

1 f'+h 
-lim - ("'(7) - On' ,"'(7) - On,)d7 

h~O h I 

- ("'(t) - ~,"'(t) - ~ ) + (¢(t) - 0 ~ ,¢(t) - 0 ~) I 

I 
1 f'+h 

< lim - [(¢(7) - ~,¢(7) - ~) 
h-O h I 

- ("'(7) - 0 ~ ,¢(7) - 0 ~) ]d7j 

+ I - ("'(t) - ~,"'(t) - ~ ) + ("'(t) - On' ,"'(t) - 0 ~) I 
1 fl+h 

<lim - 4M II~ - On' II,d7 + 4M II~ - 0:, II, 
h-_O h I 

= 8MII~ - 0 ~ 11,-0 as n'-oo. 

This gives us that for all tE(a,b ) outside the set E of 
measure zero (6) holds for all ~EIl, The second part of the 
lemma follows by putting ¢(t) for ~ in (6), 

LemmaD:Ifforalla < t < b,~ (t) = o¢(t )10ft )existsand 
is J-bounded, then ~ is almost everywhere the strong differ
ential coefficient of ¢(t), i.e., 

lim// ¢(t + h) - ¢(t) _ ~ (t )11, = 0 a,e, 
h--O h 

Proof Letn = n +( +)n - and let [en 1:= I be a com
plete orthonormal system with [el,,,,,eK I en -, Then 

("'(t ),en) = (¢+(t) + ",-(t ),en+ + en-) 

= (¢+(t ),en+) + (¢-(t ),en-) 

This gives us 
= 2(",-(t),en-) + ("'(t),en)" 

("'(t ),en ), = (¢(t ),en ) - 2(¢-(t ),en-), 

Thus 

d 
dt (¢(t ),en b 

= ~(¢(t ),en ) - ~¢-(t ),en-), 
dt dt 

By virtue of the weak differentiability of ¢(t), the differential 
coefficients on the right-hand side exist by Lemma Band 

Thus by Lemma A, "'(t) is a weakly differentiable vec
tor-valued function with respect to the inner product 
[.,.] = h·), and we have 
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II ,p(t + h 1- ,p(t) - 4> (t lIl~ = ( ,p(t + h 1- ,p(t) - 4> (t), ,p(t + h1- ,p(t) - 4> (t)t 

= ([ ,p(t + h 1- ,p(t) - 4> (t) r - [ ,p(t + h1- ,p(t) - 4> (t) t, [ ,p(t + h1- "'(t) - 4> (t) r + [ ,p(t + h 1- ,p(t) - 4> (t)] -) 
=([ "'(t+h~-"'(t) -4>(t)r,( "'(t+h1-"'(t) -4>(t)r) 
_ ([ ,p(t + h ~ - ,pIt) _ 4> (t I) -,[ t/J(t + h ~ - t/J(t) - 4> (t)) .. ) 

n=~+11 ,pn(t+h~-,pn(t) -4>n(tf + ntll t/Jn(t+h~-,pn(t) _4>n(1)12 

00 \1 (,+h \2 K 11 r+
h 

12 
= n=t:+1 hJ 4>n(T)dT-4>n(t) + n~1 h"J, 4>n(T)dT-4>n(t) 

00 I 1 (' + h \Z K I 1 (' + h \2 
= n=~+1 h")' (4>n(T)-4>n(t))dT + I'll h), (4),,(T)-dT-4>n(t))dT 

1 (,+h 00 1 (,+h K 
'h")' n=~+II4>n(T)-4>n(tWdT+ -';-J, n~ll4>n(T)-4>n(tWdT 

1 (,+h 1 (,+h 
= h"J, ([4> (1') - 4> (t)] + ,[4> (1') - 4> (t)] +) dT - h"J, {[4> (1') - 4> (t )]- ,[4> (1') - 4> (t)] -) dT 

1 f'+ h 111+ h = - (4)(T)-4>(t),4>(T)-4>(t))dT-2- ((4>(T)-4>(t)l -,[4>(r)-4>(t)]-)dr-+O 
h , h , 

as h-+O almost everywhere (i.e., except possibly on the set E of Lemma C). Therefore, 4> (t) is the differential coefficient oft/J(t ) in 
the strong sense. 

Lemma E: Let ,p 1 (t ) and t/Jz( t ) be two differentiable vec- I and 
tor-valued functions defined in the interval (a,b ) into a Pontr-
jagin space n satisfying 

a,pl(t) = 4> (t) 
f>t . 1 

and 

Then 

d 
dt (1/I1(t ),t/J2(t)) = (4)I(t ),1/12(1)) + (1/I1(t ),4>2(t I)· 

Proof Consider the difference quotient 
(lIh H (,pl(t + h ),,p2(t + h)) - (,pl(t )''''2(t)) I equal to 

(Ilh ) ((,pl(t + h) - ,pl(t )''''2(t))1 

+ (lIh 1I ("'ttt ),,p2(t + h) - "'z(t)) J 

+ (lIh H ("'I(t + h) - 1/I1(t ),1/I2(t + h) - ,p2(t)) I. 
Since 

~ I ("'I(t + h ) - "'l(t ),"'2(t + h ) - "'2(t)) II 
,h II ,pl(t + h1- 1/I.(t) IIJ II "'2(t + h1- ,p2(t) IIJ 

(8) 

=o(h) (9) 

and the limits of the first two terms in (2) exist as h-+O by the 
weak differentiability of "'l(t), and "'2(t), and are equal to 
(4)I(t )''''2(t)) and (,pl(t )4'2(t)) so (8) holds. 

. Lemma F: Let H be a symmetric operator in a Pontrja
gm space n and let ,p.(t), "'2(t) be in the domain of H for all 
tE(a,b) and satisfy 

81/11(1) = iH1/I (t) 
f>t I 
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Then ("'dt )''''2(t)) is constant for all t, a < t < b. 
Proof Let us calculate (d Idt) ("'I(t )''''2(t)). We have 

d 
dt ("'I(t )''''2(t)) = (iH"'I(t ),t/Jz(t)) + ("'I(t ),iHt/Jz(t)) 

= i("'I(t ),H"'z(t)) - i{"'l(t ),H"'2(t)) 
=0. 

Thus ("'.(t ),"'z(t)) = c. 
Proof of Theorem 1: That A is a symmetric operator 

implies that (AX,Y) = (x,Ay) for any X,yED (A ). This gives [us
ing (8)1 

(AIIX+ +AlzX_,Y+) + (Ant+ + AzzX-,y_) 
= (x +,AIl.Y+ +AlzY_) + (x -,AzIY+ +A2zY-J· 

Putting X _ = y _ = 0, we get (A IIX + ,y +) = (x +,A lLY +) 

so A II is a symmetric operator. If we put X + = y + = 0, it 
follows that A22 is a symmetric operator too. If we put 
X + = YI = 0, we get (AlzX -,J+) = (x -.AzIY+) this will give 
A21 CA Tz. Similarly, if we put X _ = y + = 0, we get 

A I2 CA !I' 

If A 12 is bounded, then A Tz is bounded. This fact to
gether with the relationA zl CA T2 implies thatA 21 is bound
ed. Now let II + r;;;,D (A ). Then D (A I d = n +, and since an 
everywhere defined symmetric operator is self-adjoint and 
bounded, A 11 is self-adjoint and bounded. In this case A ZI is 
also an everywhere defined operator, and, since 
AZI = A - All onn +, then by virtue of the continuity of A II 
and closedness of A we get that A21 is closed. Hence it is 
continuous (bounded) by the closed graph theorem. 
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ProofofTheorem 3: Since A is bounded a solution of(9) 
is 

J/;(t) = f (itA t</J. 
n~O n! 

Fortheproofofuniquenessletusputif;(t) = J/;+(t)( + )J/;_(t), 
where J/;+(t)EIl +, J/;_(t )EIl_. Then (9) can be written in the 
form 

dJ/;+ = i(A"J/;+ +AI2J/;_), 
dt 

dJ/;_ = i(A 2,J/;+ + A 22J/;_), 
dt 

and we have 

~11J/;+(t)ll; = dd (J/;+(t),J/;+(t)) 
dt t 

= (:/+(t),J/;+(t),) + (J/;+(t), :/+(t)) 

= (i[AIIJ/;+(t) +AI2J/;_(t)]'J/;+(t)) 

+ (J/;+(t),i[AIIJ/;+(t) +AI2J/;_(t)]) 

= i{([AIIJ/;+(t) +AI2J/;_(t)]'J/;+(t)) 

- (J/;+(t),[AIIJ/;+(t) +A'2J/;-(t)])} 

= - 2Im(A'2J/;_(t),J/;+(t)), 

whence 

or 

so 

d 
dtllJ/; +(t )11, <IIA nil, IIJ/; _It HI,· 

Similarly, we can obtain 

~IIJ/;_(t )11,<IIA 2 ,11,11J/;+(t )11, = IIA dl,IIJ/;+(t )11,· 
dt 

Let us put IIAdl, = IIA 2 ,11, = M. Then the above in
equalities can be written in the form 

~ 11J/;+(t)II,<MIIJ/;-(tlll" 
dt 

:t 11J/;-(t)II,<MIIJ/;+(tlll,· 

Next let X(t ),y(t I be a pair of real-valued functions satis
fying the following relations: 

~ X(t) = My(t), X (0) = IIJ/;+(O)II" 
dt 

~ y(t) =MX(t), y(O) = IIJ/;-(O)II,· 
dt 

Then we shall prove that IIJ/; +(t )11, <X(t), IIJ/;-(t )11, <y(t) for 
allt>O. For this purpose we put IIJ/;+(tlll, = u(t), 1IJ/;-(t)II, 
= v(t). Clearly u(t );;;.0, v(t );;;.0. For simplicity we may put 

M = 1. Thus we are going to prove that the relations 

1007 J. Math. Phys., Vol. 23, No.6, June 1982 

du 
-<v(t) 
dt 

dv 
-<u(t) 
dt 

dX =y(t) 
dt 

dy = x(t) 
dt 

x(O) = u(O) 

. {U(t )«t), 
Imply () (I vt<Y t , 

y(O) = viOl for all t > O. 

Letusput U(t) = u(t) - x(t land V(t) = v(t) - y(t). Thenwe 
can easily see 

Thus 

dU 
-<V(t), 
dt 

dV 
-<U(t), 
dt 

U(O)= V(O)=O. 

U(t )<1' Vir) dr<1'dr l' U(1J) d1J 

= L (t -1J)U(1J) d1J. (7') 

We have to show that U (t )<0 for t> O. It is enough to 
show that U (t )<0 for 0 < t<a < 1. Let a be a fixed number < 
1 and let us put 

sup[ U(t):O<t<al =A. 

Then by (7') we have 

U (t )<A f (t - 1J) d1J = iA t 2<iA for all t,O < t<a. 

(10) 

This gives A <iA or A <0. This means that U (t )<0. Conse
quently, u(t )<X(t) for all t;;;'O. 

In the same way we can show that v(t )<y(t) for all t;;;.O. 
Next consider the system of differential equations: 

dx } - =My(t) 
dt 

X(O) = y(O) = O. 
dy =MX(t) 
dt 

The general solutions of this system are 

X = AeMI + Be - MI, 

Y = AeMI 
_ Be' M', 

and the initial conditions, X(O) = y(O) = 0, gives that 
A = B = O. So X(t) = O,y(t) = 0 for t;;;'O. Consequently, by 
what we have proved u(t) = 0, v(t) = 0 for all t;;;'O. 

Now let J/;', if;2 both satisfy the equation dt/Jldt = iAJ/;(t) 
andlett/J'(O) = t/J2(0) = </J.Thent/J(t) = t/J'(t) - t/J2(t )alsosatis
fies (10). 

E. Behnam 1007 



                                                                                                                                    

But "'(t ) can be written as follows: 

"'(t) = "'+(tl( + )"'_(t) 

_",1+ (tl( + )"'1_ (t) _ [",2+ (tl( + )~_ (t)] 

_",1+ (t) - ~+ (tl( + )["'1_ (t) - ~_ (t)] 

SO",+(t)=",I+ (t) - ",2+ (t)and"'_(t) = "'1_ (t) _ "'2_ (t)and 
",1+ (0) = ~+ (0), "'1_ (0) = "'2_ (0). Therefore, for all (;;.0, 

",1+ (t) = ",2+ (t), "'1_ (t) = ~_ (t). 

Hence the solution of (10) is unique. 
Next we are going to prove the last part of the theorem. 

Clearly the functions X(t ) and y(t ), defined by 

X(t) = Xo coshMt + Yo sinhMt, 

y(t) = Yo coshMt + Xo sinhMt, 

are the solutions of the system 

{ 

!!.-. X(t) = My(t), 
dt 

d 
dt y(t) = MX(t), 

corresponding to the initial conditions X(O) = X 0' y(O) = Yo. 
Therefore, if we put 11"'+ (OllIJ = X 0' II '" _ (OllIJ = Yo, then by 
what we have proved we get 

"'" +(t )IIJ <X(t), II'" _It )IIJ <y(t) 

for all t;;'O. 
Consequently, 

11",(t )IIJ = II'" +(t l( + )"'_(t )IIJ 

<11"'+(tllI J + 11"'-(t)IIJ 

<X(t) + y(t) 

= (II",+(O)IIJ + II",-(O)IIJ )eMr
. 

In particular if M = IIA dlJ in the above system, then we will 
have 

11"'(t )IIJ <expllA dlJ(lltP + IIJ + IltP -IIJ ) 

= Kr(IIAnliJ )(lltP+IIJ + IltP-IIJ)' 

which completes the proof. 
Proof of Theorem 4: Let Ie" J, IfB J be two complete 

ortho-normal systems in II +, II -, respectively, such that 

e"" =tP+/lltP+ll) iftP+#OandfB" =tPjlltP-IIJ iftP_#O 
and such that the span of all points I e,,;A Ilea J, IfB;A2.J'B J is 
dense in the graphs of A II' Aw respectively. Let S+, S_ 
denote projectors on the spans of finite subsets of Ie" J, IfB J, 
respectively, such that the chosen sets contain e""./B". Let us 
define an operator Bs. s on II, for any choice of sets S +, S_ 
as follows: 

Bs,s = [S+AAIIS+ A12] 
21 S_A22S_ . 

Then for any X,YEII we have 

1008 

Bs,s X = S+AIIS+X + +A I2X + + S_A22S_X_ 

+ A21X +, 

(Bs,s X,y) = (S+AIIS_X + +A I2X -,y +) 

+ (A2IX+ +S_A 22S_X_'y_) 

= (x+,S+Alls+y+ +AI2Y_) 
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+ (x -, S_A22S_y_ +A 2Ly+) 

= (X, Bs , s y), 

as we have seen in the proof of Theorem 1. 
Thus Bs+s is a bounded self-adjoint operator, so on 

account of Theorem 3 the solutions of equation 

dg = iBs s g, g(O) = tP, 
dt . 

(11) 

are bounded over any interval [ - T,T] by a bound which 
does not depend on S +, S _. In particular this is true for the 
solutions "'S. s (t) of (5) with "'S. s (0) = tP = g (0) and' of so
lutionsBs .s "'s.s (t)of(5)withBs.s tP =g(O). 

Further we have 

I :t (Bs .s "'s.s (t),e,,)1 

= I(B\s "'s.s (t), e,,) I 
= I(Bs .s "'s,s (t), Bs .s e,,) I 
<IIBs •s "'5.5 (t)IIJIIBs+s e"IIJ 
<Kr(IIAdIJ )(lItP IIJ)' 

Similarly, we have 

I :t (Bs,s "'s,s (t),fB)I<Kr(IIAdIJHlltPIIJ)' 

Thus the functions (Bs s "'S s (t), e,,) and 
(B s. s "'s. s (t ),fB) are 'unifo~mly bounded with uniformly 
bounded derivatives; therefore, they (i. e., each of them) form 
a family of equicontinuous functions over any compact in
terval [ - T,T]. 

Since a set of uniformly continuous uniformly bounded 
functions is relatively compact in the topology of uniform 
convergence over any compact interval and since the 
function 

(Bs .s "'s.s (t), ea ) [resp.(Bs,s "'s.s (t),fB)] 

is an element of the topological product space of function 
spaces, each of them corresponding to a e" [resp./B]' it fol
lows from Tychenov's theorem that the family (B s + s "'s. s 

(t),ea ) [resp.(Bs .s "'s+s (t),fB)] has a limiting point 
Pa (t) [resp. qB(t n, for any compact interval [ - T, T]. That 
is, for any given € > 0, and any a [resp. /3] and any Twe can 
find a setS + I of a's, indeed a set of projectors [resp. S2 of/3 's] 
such that 

IP,,(t)-(Bs .s "'s.s (t),e,,)I<€, 

IqB(t) - (Bs .s "'s,s (t),fB)1 <€ 
for all tE[ - T, T] and all a'ES+ I [resp. /3 'ES_ I]. 

From the inequalities 

(I) II(Bs,s "'s,s (t),e"W= IIP+Bs,s "'s,s (t)ll; 

<KT (1IAdl) )'lItP II), 
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IIPa(tW and Ilqfj(tW 
a fj 

are bounded and have the same bounds as (I), (II). Hence the 
elements e + (t ), e _ (t ), tfJ + (t ), and tfJ _ (t ) defined by 

e+(t) = Va(t)ea, e_(t) = Iqfj(t)ffj, 
a fj 

tfJ+(t) = ~+ + fe+(U) du, tfJ_(t) = tfJ- + fe-IV) dv 

are in n and satisfy the equations 

8tfJ+(t) = e (t) 
Ot +, 

respectively. 

Next let us put 

tfJ(t) = tfJ+(t) + tfJ_(t), 

and 

e (t) = e +(t) + e -(t). 

Then for any ea we have 

~ (tfJ(t), ea ) = (e (t), ea ) 
dt 

= lim [i(Bs . s tfJs.s (t), ea )] 

= lim[i(tfJs,s (t), Bs.s ea )] 
= i(tfJ(t), Aea ), 

where the limit is along some filter Fin the sets S+, S_. 
This shows that 

(e (t), ea ) - i(tfJ(t), Aea ) = 0 

or 

( :t tfJ(t), ea ) - i (tfJ(t ), Aea ) = 0, 

from which, by the definition of the scalar product in n X n 
[i. e., ([ a, b I, [c, d I) = (a, c) + (b, d )l, we obtain that 

{ 8~~) , _ itfJ(t )} 

is orthogonal to the set of all elements [ea, Aea I. In the 
same way it is orthogonal to the set of all elements [ffj' Affj I. 

Next let us recall that a necessary and sufficient condi
tion for y = A *X for any given X, YEn is that the element 
[ - y, X I En X n be orthogonal to all elements [p, Ap I in the 
graph of A. Now let pEl) (A ). Then 

C! - y,xl. [p, ApI> 

= (- y,p) + (x,Ap) 

=(-y+-y-, 
p+ +P-)+(x+ +X-,AltP+ +A 12P_ +A2tP+ +A22P_) 

= (y+,p+) - (y-,p-) + (x +,AIIP+ +A I 1l'_) 

+ (x_,A 2tP+ +A21l'-), 

and, since for any given E > 0 and any pEl) (A ), we can choose 
a linear combination 1 + of ea and a linear combination 1_ of 
ffj such that 

111'+ -I+IIJ <E, 111'- - CIIJ <E, 
IIAltP+ -AII/+IIJ <E, and IIA21l'- -A2i-IIJ <E, 
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and, since by the hypothesis the linear combinations of [ ea , 

A Ilea I and of Iffj, An/(31 are dense in the graphs of A II' A22 
and since by virtue of the boundedness of A 12 and A 21 the 
valuesofIIA I1l'_ -A 12CIIJ' IIA2tP+ -A21/+IIJ are less 
than EllA 1211)' it follows that if [ - y, X J is orthogonal to all 
[ ea, Ae A J and to all [f(3' Af(3 J, then it is orthogonal to all [p, 
Ap J and soy = A *X' Consequently, ¢(t) is in the domain of 

A * and 8¢ = iA *(t) and the proof is complete: 
8t 

i. e., 

or 

({ ~~ , - itfJ(t )}1{P, AP}). 

fJ¢ = iA *¢(t ). 
Ot 

Proof of Theorem 5: Since A is a self-adjoint operator by 
Theorem 4, there is no doubt about the existence of solution. 
The proof of boundedness and uniqueness is as the proof of 
bounded ness and uniqueness in Theorem 3. 

The proof of the last part follows from 

:t (¢(t), ¢(t)) 

= (iA¢(t), ¢(t)) + (¢(t), IA¢(t)) = 0 

so (¢(t), ¢(t)) is a constant function of t, i. e., (¢(O), ¢(O)) 
=(~,~). 

ProofofTheorem 6: By virtue of Theorem 1, H22 is a 
symmetric operator in n - . H 12' H21 are bounded since H is a 
cross bounded operator. Therefore, by the self-adjointedness 
of HII in n + and the cross-boundedness of H in n, we have 

D(Hltl =D(H2tl = n+, 

D(Hzzl = D(H)nn- = D(Hd = 11-. (12) 

This shows that H 22 is densely defined in n - . 
Closedness: The linear operator H22 in n - can be writ

ten in the form H22 = H - H 12, whereHI2 is bounded in n
(consequently, it is closed) andH is closed in n. HenceH22 is 
closed in n - . 

Now let H be self-adjoint in n. Then, in particular 
D (H I2 ) is dense in n - . This fact with the symmetry of Hand 
the boundedness of HI2 implies that 

(H2tX+,y-) = (X+, H 12y-) <X+En+,y-En-). (13) 

Now suppose that for a certainy-En - there exists ay.
En such that 

(H2iX-, y-) = (x-, y.-), for all X- D (Hn). (14) 

Then for all XEl) (H ) we have 

(HX,y-) = (H2IX+,y-) + (H2iX-,y-) 

= (x+, H 12y-) + (x-, y;-) = (X, H 12y- + y.-). 

This with Hbeing self-adjoint gives thaty-El) (H). Conse
quentlywe havey-El) (Hzz) which, by (14), means thatH22 is 
self-adjoint in n - . 
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Let us, conversely, assume that H22 is self-adjoint in 
n - . Suppose that for a fixed YEn, there exists an element y. 
EII such that, for all XED (H), (HX,Y) = (x,y.). 

1010 

Let y = y+( -i- lY-, X = X+( -i- )X-· Then 

(H22X-,y-) = (H22X-,Y) = ((H -HdX-,Y) 

= (HX-,Y) - (Hllt-,y) 

= (x-,y. - H2Iy+) [xED (Hdl. 

J. Math. Phys., Vol. 23, No.6, June 1982 

This gives thaty-ED (HnJ. Consequently,yED (H), i. e.,His 
self-adjoint in II. 

'J. B. L. Cooper, "Symmetric Operators in Hilbert Space," London Math. 
Soc. Ser. 2, Vol. 50. 

E. Behnam 1010 



                                                                                                                                    

A new method for the asymptotic evaluation of a class of path integrals a) 
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A general method of calculating the asymptotic behavior of a class of Wiener path integrals is 
given. These integrals are averages offunctionals of the "local time." The technique is essentially 
a variation on the well-known "replica" method now widely used in condensed matter physics, 
combined with the Laplace method for evaluating integrals containing a large parameter. The 
leading term is given, and from the construction one sees that the error is typically of order 1/t. 

PACS numbers: 02.50. + s, 02.70. + d 

I. INTRODUCTION 

In this paper we will discuss the asymptotic behavior 
(for large time) of a certain class of Wiener integrals. These 
are the following. Consider a "path" r(t) in d-dimensions, 
and define the "local time" 

1 i' L,(r) = - 8(r - r(r))dr, 
t 0 

(1.1) 

where 8 (r) is the Dirac delta function in d-dimensions. Let 
F, [L,(.)] be a functional of L,. I For example, 

F,[L,(.)] = J L,(r)v(r)dr = +LdrV(r(r)), (1.2) 

where dr is the volume element in d-dimensional Euclidean 
space and the integral goes over all space.} Then the class of 
integrals we consider is 

W ( f)=1 - 'F,[Lkll ,r(t) = rf) 
,r,r -\e r(O)=r ' (1.3) 

where the angular brackets represent the conditional aver
age over all Brownian paths starting at r( r) = r for r = 0 and 
ending at r(r) = r' for r = t. That is, we are studying the 
conditional Wiener average of the functional exp I - tF, }. 

The asymptotic behavior of such an integral for large t 
was first studied in a particular case by Friedberg and my
selfl in connection with an investigation of disordered sys
tems. The method was general but quite heuristic (as will be 
the treatment in this paper). Independently, Donsker and 
Varadhan2 found the general result and strong mathemat
ical proofs. Their result may be stated as follows. Under rea
sonable assumptions about F, and the existence of F 00 , 

lim {- J..lnW,(r,rf)} = Min", IA (¢)} , (1.4) 
,~oo t 1"'."'1 ~ I 

where 

A(¢)==(¢,~2 ¢)+Foo [~(.)], 
- p2=V2 (the Laplacian in d-dimensions), 

(¢, ¢> )== f dr ¢(r)¢> (r). 

(1.5) 

(1.6) 

(1.7) 

Now while (1.4) is satisfactory for many purposes it 
clearly gives only the leading term in the exponential behav-

Bi'fhis research was supported in part by the National Science Foundation. 

ior of W, and not the prefactors, nor any systematic way of 
improving the result. In fact, we shall show (still using typi
cal physicists heuristics) that W, can be systematically ex
panded for large t by a method which gives (1.4) as an almost 
trivial first step. Although this method is very straightfor
ward and elementary in principal it can be fairly tedious to 
carry through. 

The paper is organized as follows. In Sec. II the basic 
formula relating the path integral to a certain limit of a 
"functional integral" is established. In Sec. III it is shown 
how such functional integrals may be evaluated in the limit 
of large t, and the limiting process carried out. 

II. BASIC FORMULA 

We begin with the Feynman-Kac3 representation of the 
Green's function G,(r, rf) of the diffusion equation with ab
sorbers. That is G,(r, rf), which is defined by (t > 0) 

aG,(r,rf) f 

---+HG,(r,r) =0, (2.1) at 
lim G,(r, rf) = 8(r _ rf), 
,~+ 

(2.2) 

with 

(2.3) 

has the representation 

G,(r, rf) = G ~Ol(r, rf)(exp [ _ {' V(r(r))dr] ,r(t) : r
f
), Jo rIO) - r 

(2.4) 

where 

G~OI(r, rf) = exp - - . 1 {(r rf)2} 
(2m )d /2 2t 

(2.5) 

We may also write (2.4) as 

G,(r, rf) = G~O)(r, rf)(e - 'SqroWlro)dro, ;:~~:;} (2.6) 

If H has a complete set of orthonormal eigenfunctions 

H¢I-' = EI-'¢I-' , (2.7) 

the Green's function may also be written4 

G,(r, rf) = I ¢1-'(r)¢I-'(rf)e-'E". (2.8) 
I-' 
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We shall now show that G,(r, r') has still another repre
sentation. Consider the functional integralS 

G,(r, r')=2 ~~ f JJI ~<pAI(r)<pI(r')o ([<p, <p ] - 1) 

xexp! -t[<p,H<Pll, (2.9) 

where <pu(r), (j = 1,2, ... , n is an n-component real field, 

[<p, <p ] = uti f dr <p !(r), (2.10) 

[<p, H<p] = uti f <pu(r)H<pu(r)dr. (2.11) 

~<Pu is the "flat" volume element in the space of functions 
<Pu' This may be taken to be limllsd<pu(s), where the product 
is taken over a discrete set of points s and the lim means 
making these points dense in R d.

6 It may also be chosen as 
lim llf= I dar, where <pu(r) = l:f = la~<p,dr), - 00 <a~ 
< 00, <P;. being a complete orthonormal set of functions and 
the lim means N- 00 in a suitable sense. 

Now put 

<pu(r) = I a: tPJl (r), 
Jl 

Then (2.9) becomes 

G,(r, r') 

= 2 lim foo II daU I a!l)a(l) 
n-->O _ 00 U.Jl Jl Jl ,Jl, Jl, Jl, 

(2.12) 

xexp [ - tI (a:)2EJl]O(I (a:f - l)tPJl ,(r)tPJl,(r). 
(T.P (Til 

(2.13) 

We shall assume that H is bounded from below and therfore 
without any loss of generality that EJl > 0 for all,u, so that the 
a: integrals are well defined (though this is actually not nec
essary). Using the usual representation for the o-function, 

(2.14) 

(2.13) becomes (noticing that,ul must equal,u2 ,u' for non
vanishing terms, and carrying the trivial Gaussian integrals) 

G,(r, r/) 

= 2 lim foo dUJ eiw I tPJl' (r)tPJl, (r/) 
n-->O _ 00 21' Jl' 

( 

l' )n/2 !v 1T ( 1T )(n - \)/2 

X Xt tEJl + iUJ (tEJl + iUJ)3/2 tEJl' + iw 

= foo dUJ eiw I tPJl,(r)tPJl,(r/) 1. 
- 00 21' fL' tEJl' + IUJ 

= L tPfL,(r)tPJl,(r/)e-'E~ 
Jl' 

= G,(r, r/). (2.15) 

Using (2.6), (2.8), (2.9), and (2.15) we now have 
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(
e - 'fL~r.)V(r·)dr·1 r(t ) = r/) 

rIO) = r 

= [G~O)(r,r/)]-12~~f U~I ~<pAI(r)<pI(r')c5([<p,<p] -1) 

Xexp! -t[<p,H<p 11. (2.16) 

Since 

[<p, H<p ] = ~ (<Pu, p; <Pu) + f dr"( ~ <p !(r")V(r"), 

the right-hand side of (2.16) becomes 

[G~O)(r, r,)]-12 ~~fu~1 ~<pAI(r)<pI(r')c5 ([<p, <p] - 1) 

xexp{ - t ~ (<Pu, ~2 <Pu)} 

xexp { - rf ~ <p !(r")V(r")dr''). (2.17) 

Now suppose we multiply both sides of(2.16) by an 
"arbitrary" functional of VIr), r, [V(.)], and integrate over 
V. The left-hand side of (2.16) becomes 

(
e - 'F'[L~')ll r(t) = r/), 

rIO) =r 
where F, is defined by 

(2.18) 

e-'F,[L~')l = f ~Vr,[V(.)]e-'fL~r·)vlr·)dr·. (2.19) 

Using (2.17), we see that exactly the same integral over V 
occurs on the right-hand side of (2.16), with L,(r") replaced 
by l:A !(r"). Therefore, we finally obtain 

(
e - 'F,[q.)ll r(t) = r/) 

rIO) =r 

= [G~O)(r, r/)]-12 ~~ f IJ ~<pu<Pl(r)<pI(r')c5 ([<p, <p] - 1) 

Xexp! - tS I, (2.20) 

S = ~ (<Pu, p; <Pu) + F, [~<P!H]. (2.21) 

This is our main result. Although there are some broad 
restrictions from the derivation on the possible functionals 
F" we believe (2.20) holds for essentially any F, for which 
both sides exist. One can think of (2.19) with V (r") replaced 
by ia(r"), so that it becomes the functional Fourier transform 
of r" and almost any functional may be represented in this 
way. We have not tried to justify more rigorously this type of 
functional analytic continuation, but have checked it in a few 
simple cases. 

Equation (2.20) represents a Wiener path integral in 
terms of a functional integral. There is a great deal of confu
sion in the physics literature about nomenclature: Wiener 
integrals are often called functional integrals and functional 
integrals are often called path integrals. We shall consistent
ly call the Wiener type path integrals, and those of the form 
(2.9) functional integrals. 

We also note the following formula which, while it has 
nothing to do with the main subject of this paper, may be of 
some interest in its own right. We notice that if we put r = r/ 
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in (2.8) and integrate over r that 

I drG,(r,r)=Le-'E~=Z(t), 
IS 

(2.22) 

where Z (t ) is the "partition function" corresponding to H. 
On the other hand, from (2.9) we have 

Z (t) = 2 ~~ I )JI iiJcP,,(f cPI(r~l(r)dr)15 ([cP, cP ] - 1) 

X exp( - t [cP, HcP ]). (2.23) 

Since all terms in (2.23), with the exception of 

I cPI(r~l(r)dr, 
are symmetric in cPI' ... , cPn we may replace this integral by 

1 I nIl - L cP,,(r)cP,,(rjdr = -[cP, cP ] =-
n ,,~ Inn 

on making use of the l5-function in (2.23). Therefore, we find 

Z (t) = 2 lim J... I II iiJcP,,15 ([cP, cP ] - 1) 
n---+O n " 

xexp( - t [cP, HcP ]). (2.24) 

This represents the partition function as a kind of 
"spherical model" for an n-component field, in the limit 
where the number of components goes to zero. 

III. ASYMPTOTIC EXPANSION FOR LARGE t 

We now consider the right-hand side of(2.20) for large t. 
Let 

(3.1) 

where!, approaches zero as t approaches infinity. Then, be
cause of the proportionality of the exponent in (2.20) to t, we 
would expect the leading exponential term to be given by the 
functional integral analog of the method of Laplace for ordi
nary integrals with a large parameter. That is, 

lim { _ J... (e - 'F'I r(t) = r')} = So, 
hoo t rIO) = r 

(3.2) 

where So is the minimum of S 00 subject to the constraint 
[cP, cP] = 1, in the limit n = 0, and 

Soo =~(cP",P; cP,,)+Foo [cP 2
(-)). (3.3) 

(3.4) 

" 
Calling the minimizing function cPo", we have at once 

p2 I5F 00 [cP ~ (-) ] 
2 cPOu(r) + I5cP ~(r) cPo,,(r) = EcPOu(r), (3.5) 

where E is the Lagrange multiplier corresponding to the con
straint [cP, cP] = 1, and I5F 00 /15cP ~(r) is the functional (Fre
chet) derivative of F 00 • Writing 

cPOu(r) = cPo(r)n", (3.6) 

where n" is a (not necessarily constant) unit vector7 

(3.7) 
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We now prove that the minimum of S 00 is achieved 
when n" is an arbitrary constant unit vector. Substituting 
(3.6) in (3.3) we have 

Soo = - J... I dr L cPo(r)n" [n" V2
cPo(r) + 2(Vrn,,) 

2 " 

,(VrcPo(r) + cPo(r)V2n,,] + F 00 [cP ~(.)]. (3.8) 

Applying the gradient operator to (3.7) we obtain 

(3.9) 

(3.10) 

" 
Therefore, (3.8) becomes 

So = - + I dr cPo(r)V2cPo(r) + F 00 [cP ~ H] 

+ J... Idr cP~(r)L (Vrn"f 
2 " 

(3.11) 

Clearly, the minimum of Soo is obtained by making the last 
term on the right-hand side of (3.11) as small as possible. 
Since this term is non-negative its minimum is zero, which is 
attained by making n" an arbitrary constant unit vector. 
From (3.5) and (3.6) for constant n", 

p2 (I5F 00 [cP ~ (-) ] \1-
2 cPo(r) + I5cP ~ (r) ro(r) = EcPo(r), (3.12) 

so that cPo(r) is independent ofthe choice of n". Therefore, 
combining (3.11) and (3.12) we see that So is given by exactly 
the prescription (1.4) of Donsker and Varadhan. 

To go beyond the Donsker-Varadhan result is fairly 
straightforward by the method of Laplace, just as it is for 
ordinary integrals. We write 

(3.13) 

and expand S and the integrand in (2.20) in powers of X". 
There are many separate cases to consider, depending on the 
form ofF, and any invariance properties it may possess. For 
simplicity we consider only the case of F, = F 00 , indepen
dent of t. (If this is not the case, the additional terms are 
easily obtained by expanding F, for large t, and then expand
ing in these corrections.) More important is the fact that 
since F, is a functional of I."cP ~(r) alone, we have seen that 
the minimizing solution is not unique, but contains an arbi
trary constant vector n" in the internal space. 7 This gives rise 
to complications which we are now going to discuss. We also 
mention that if F, is translationally invariant (which is a 
common case in physical applications) the minimizing solu
tion has the form cPo(r - ro)n", where ro is an arbitrary fixed 
point in R d and n" a constant vector in the internal space. 
This extra non uniqueness also requires special treatment, 
which we shall give below. 

To carry out the method of Laplace directly, it is neces
sary to expand the exponent S around the minimizing func
tion according to (3.13). Now this works as long as there are 
no directions in function space away from the point cPo(r)n", 
for which S does not increase. Then the main contribution 
comes from small X" ( -1/ V t ), and the entire expansion 
process makes sense. However, for our problem, because of 
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the rotational invariance of S in the internal space under the 
same rotation at each point r, changes in the minimizing 
solution which just change the direction ofn" have the same 
So. Therefore, there are always directions in function space 
away from tPo(r)n" (given n,,) for which S does not change 
and the components of X" in these directions are not forced 
to be small. To see how to handle this technical difficulty, it 
is easiest to proceed indirectly as follows. 

Let tP A (r) be a complete orthonormal set of functions of 
of which (tPo) is the minimizing solution in (3.13), and write 

tP,,(r) = L aA"tPA(r). 
A 

Since this is an orthogonal transformation we have 

II fIfl tP" = II II daA,,· 
" " A 

Now separate out the tPo term, 

tP,,(r) = ao"tPo(r) + L aA"tPA (r), 
A ".0 

and put 

ao" = aOn,,(OI' ... , On _ I )=aOn,,(O), 
n 

a A" = L e~If3Ak (Ao #0). 
k=1 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Here OI'··On _ I are the n - 1 angles necessary to specify the 
direction of the vector n" in the internal space, and e~ I 
(k = 1, ... , n) are a complete orthonormal set of vectors in the 
internal space. Then (3.15) becomes 

n II fIfltP" = a~ - I daodJJn (0) II II df3Ak' (3.19) 
" A".O k= I 

where dJJn(O) is an element of surface area on a unit sphere 
in n-dimensional space. If in (2.20) we hold the OJ integra
tions till last we can make the further transformation 

n n - 1 

L e~If3Ak = YAOn,,(O) + L YAjt~1(O), (3.20) 
k=1 j=1 

where n,,(O), t ~I(O), ... , t ~ - 11(0) are a complete set of orth
onormal vectors in the internal space. Since this is also an 
orthogonal transformation for fixed 0i' (3.19) and (3.16) 
become 

II fIfltP" = a~ - I daodJJn (0) II ("ff dYAj), 
" A".O j=O 

(3.21) 

tP,,(r) = [aotPo(r) + L YAotP,dr)]n,,(O) 
A ".0 

n-I 

+ L L YAjtPA(r)t~1(O). (3.22) 
A".O j= I 

The constraint [tP, tP] = 1 becomes 
n-I 

[tP, tP ] = a~ + L L rlj = 1. (3.23) 
A".O j=O 

We may write (3.22) in the form (3.13), where 

Xo(r) = ((ao - l)tPo(r) + L YAOtPA (r))n,,(O) 
A ".0 

(3.24) 
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All the y's will be small because in the integrand of (2.20) 
they take us in directions orthogonal to the set of functions 
tPo(r)n,,(O) (for all 0). On the ether hand, from (3.23) (ao > 0), 

( .~J.)1/2 a o = + 1-. L fA 
A ,>,0 

J = 0, . • n - I 

j=O, ... ,n - I 

1 - au = ~L rlj + .... (3.25) 

Thus. we have for the leading term of X" 

X,,(r)= [(-~ L rlj\O(r) + L YAotPA(r)jn,,(o) 
2 A ,>,0 )' A".O 

j= O, ...• n - I 

+ L YAjtP A (r)t ~1(0). (3,26) 
A ,>,1, ... ," - I 
j= \, ... ,n- I 

Now suppose we put (3.13) in S"" and expand inx" to the 
second order. Making use of (3, 12) and the constraint 
[tP, tP] = 1, a simple calculation gives 

S"" = So + S2' (3.27) 

where 

So = (tPo, P; tPo) + F"" (tP~(·)) (3.28) 

and 

S2 = L J drdr'x"(r)x,,,(r')(ruIM Ir'u'), (3.29) 
",'" 

where 

(rulM Ir'u') = (rIML Ir')n"n", 

+ (rIMTlr')(o"", -n"n",), (3.30) 

(rIMTlr')==(riP; Ir') 

+ [(8F"" (tP 2(.))) _ E]O (r _ r'), (3.31) 
otP2(r) ",2=",~ 

(riP; Ir')= - ~ V; o(r - r'). 

Since we are only trying to obtain the leading term of the 
Laplace method, we can drop the ¢>oflu component (3.26) (it 
gives a contribution one order higher in the y's) and write 

X,,(r) = (L YAOtPA(r))n" + L YAjtPA(r)t~l. 
A".O A".O 

j= 1, ... ,11-1 
(3.33) 

Now choose the tPA to be the normalized eigenfunctions of 
M T , i.e., 
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f dr'(rIMTlr')~,dr') =EI ~,dr). (3.34) 

Comparing with (3.12) we see that E r; = 0, E I> 0 
(A. #- 0) since ~o minimizes So. [E is determined by the nonlin
ear eigenvalue equation (3.12) and the requirement that ~o be 
normalizable.] Substituting (3.33) in (3.29) we obtain 

n-I 
S2 = L L rlj EI + L YAOYA'O (~A,ML~A')' (3.35) 

A 7"'Oj= I A,A'7"'O 
Substituting all these results in the right-hand side of 

(2.20) we obtain for the leading term of the Laplace method 

(e - tF ~ {Lk)} I ::~: : :') = [G ~O)(r,r') ] -lIte - tSD~o(r)~o(r'), 
(3.36) 

It = 2 lim f a~ -Idaodfln II dYA
o 

nff dYAj8(a~ - 1) 
n-+O A 7"'0 j= I 

X nl(t9)n l(t9)e - tS, 

= lim (fdfln 
) f II dYAD nff dyAje - tS" (3.37) 

n-+O n A 7"'0 j = I 

since by symmetry we may replace ni (19 ) by 
(1/n) l:"n; = 1/n in the integrand. Using 

..!. f dfl = ..!. 21r"12 - 1 (3.38) 
n n n r(n/2) n-+O 

and doing the integrals over YAj we have 

It = lim( II (tritE IlI/2)n - I f II dYAD 
n7"'O A 7"'0 A 7"'0 

xexp[ - t L YAOYA'O(~A,ML~A')] 
A,A'7"'O 

= ( II (tritE Il1/2) - I II (tritE;) I 12, (3.39) 
A 7"'0 p 

where E; are the eigenvalues of the matrix 
(~A,ML~A')A.,A. '#-0. We may also write (3.39) as 

It = [Det(M 1VDet(Mi)]1/2, (3.40) 

where M T and M L are the matrices of M T and M L in the 
subspace of Hilbert space orthogonal to the state ~O, i.e., the 
matrices taken with respect to the functions ~ A with A. = 0 
excluded. Using a well-known theorem about determinants 
we have 

Det(M') 
_..:.-.....:L=-:... = Det[(M' )-IM']. 
Det(M;") T L 

(3.41) 

Therefore, (3.31), (3.32) and (3.41), (3.40) may be put in the 
form 

It = [Det(8AA , +KU ·)]-1/2 (A.,A.'#-O), (3.42) 

where 

K 2 fd d'( 82Foo(~2H) ) A. ( )A. ( ') 
AA' = EI r r 8¢2(r)8¢2(r') ""=,,,~'I'Or'l'Or 

X¢A' (r)¢A' (r'). (3.43) 

For small Ku ' we may use the Fredholm expansion of the 
determinant in (3.42). 

This completes the calculation of the leading term of 
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the method of Laplace for an F 00 with no further symme
tries. By retaining the higher powers in the y's which have 
been dropped, we obtain corrections of order 1/t or a system
atic expansion in powers of 1/t. The results get quite compli
cated, and we shall not give them here. We mention, howev
er, that in the higher orders there are some complications in 
changing integration variables (see, for example, Gervais 
and JevickiS). 

Finally, we show how to treat the difficulties which 
arise in the case where F t is translationally invariant. Again 
we limit ourselves to F 00 , and discuss only the leading term 
of the Laplace method. By translational invariance we mean 
that S 00 defined by (3.3) has the property that if ~,,(r) is re
placed by~" (r - ro) (ro being a fixed vector in R d) the value 
of S "" does not change. This requires that F "" have the same 
property, since in (3.3) the first term on the right-hand side 
does. This obviously implies 

8F"" [~2H] (8F"" [~2H] ) (3.44) 
8~ 2(r - ro) = 8~ 2(r) ",2(r~2(r _ rD)' 

Therefore, if (3.5) has a solution ~o(r)n" then it also has the 
solution ~o(r - ro)n" with the same value of So. This means 
that there are again directions in function space (obtained by 
changing ro) away from the point ~o(r)n", for which S 00 does 
not change. To see the necessary modifications of our proce
dure we shall first show that M L now has d zero eigenvalues 
with the eigenfunctions 
a~o(r)laxa,a = 1,2, ... ,d,r = (X I,x2""'Xd), Differentiating 
Eq. (3.12) for ~o(r) with respect to Xa we find 

{ 
p2 [( 8F"" ) ]} a~o(r) 
"2 + 8~ 2(r) ""="'~ - E aXa 

{ a 8F"" } + aXa 8~ 2(r) 0 ~o(r) = o. (3.45) 

But, for translationally invariant F"" , 

a ( 8F",,) f ( 8
2 

F"" ) -- --- - 2 dr' A. (r') 
aXa 8~ 2(r) 0 - 8~ 2(r')8~ 2(r) 0 '1'0 

X a~o(r') , (3.46) 
ax~ 

as can be seen at once using (3.44) and taking ro to be an 
infinitesimal vector in the a direction. Therefore, (3.45) 
becomes 

However, comparing with (3.32) this shows the 
[a¢o(r)/axa ](a = 1, ... ,d) are eigenfunctions of ML with ei
genvalues zero. Therefore, the combinations of Y A 0 's which 
correspond to moving X" [see (3.24)] in these directions in 
function space are not limited to small values, and must be 
eliminated from x" for the expansion to make sense. To see 
how to do this, instead of (3.22) we write 
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+ Ly"jtP,,(r-ro)t~i(O), (3.48) 
"".0 

where ro is a fixed vector in Rd. This isjust as satisfactory as 
(3.22), since tP" (r - ro) is just as good a complete orthonor
mal set as tP" (r) is. The volume element is still given by (3.21). 
Nowconsiderthefunctionst/JI' (r) (Il = 1, ... ,d), chosen as lin
ear combinations of the atPo(r)/axa such that 

(t/JI" ,t/JI') = 81'1'" 

[If tPo(r) is a function of Irl alone, then the atPoiaxa are or
thogonal for different a, and all we need do is normalize 
them.] Since tPo is orthogonal to the atPoiaxa, it is equally 
orthogonal to the t/JI" Thus, we can choose as our orthonor

mal basis itP" I =tPO,tPl,tP2,···,t/JI,···,t/Jd = itPXj,t/JI,t/J2, .. ·,t/Jd' 
where X = 0,1,2, .. , ranges over the (incomplete) set offunc
tionstPx· We now wantto eliminate the Yl'o from (3.48). This 
is done by the following (usual) trick. We note that, putting 
~anatPa(r) = n·tP (r), 

f dro )JI 8( f dr n·tP (r)t/JI'(r - ro)) 

= f dro )t 8 ct+ App(xop - Rp)) 

= IDet(App)I-1 

by a well-known result. In (3.49) 

f at/J (r-R) 
App= dr n·tP (r) ----'I'~-

axp 
and R is the solutionS of 

f n·tP (r)t/JI' (r - R)dr = 0, Il = 1, ... ,d. 

(3.49) 

(3.50) 

(3.51) 

Therefore, we can place the left-hand side of (3.49) multi
plied by I Det(A 1'(3 ) I in the functional integral (2.20) without 
changing its value. Using the expansion (3.48) in (2.20) we 
obtain, because of the translational invariance of S, the same 
value as we would get dropping the ro, i.e., our previous 
results for So and S2' Equation (3.48) must also be inserted 
the normalization condition [tP,tP] = 1 (which it leaves un
changed), and in the inserted factors. The 8 function in (3.49) 
becomes rr~ = 1 8(y 1'0)' which means that we can simply set 
the y I' = 0 instead of integrating over them. For the determi
nant of A 1'(3 we need 

A ~(3 = f dr tPo(r) at/JI' = - f dr atPo t/JI' (r). (3.52) 
aX(3 aX(3 

Now 
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(3.55) 

Taking the determinant of both sides of(3.54), we find 
at once 

(3.56) 

where C is the determinant of Cl'a and D the determinant of 
DfJa. Substituting (3.53) in (3.52), we have 

(3.57) 
a 

Again take determinants of both sides of(3.57), 

I Det(A ~)I = IC liD 1= ID 11/2, (3.58) 

by (3.56). 
The rest of the calculation is exactly as in the previous 

case without translational invariance, and (3.36) is simply 
replaced by 

(e-'F~[L~')II:,) 

= [G\O)(r,r,)]-1 (f dro<Po(r - roltPo(r' - ro)) e-tS·i" 

(3.59) 

( 
1T )-d/2 i, = ID 11/2 t [Det(MT)!Det(M~)]1/2, (3.60) 

where M ~ is the matrix of M L in the subspace of Hilbert 
space orthogonal to the states tPo(r),atPo(r)/axa' 

'R. Friedberg and J. M. Luttinger, Phys. Rev. B 12, 4460 (1975). 
2M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 28, I 
(1975); 28, 279 (1975); 28, 525 (1975). See also Proc. Int. Con! on Function 
Space Integration (Oxford V.P., New York, 1974), for a simple prelimi
nary report of the work by Donsker and Varadhan. 

3M. Kac, Probability and Related Topics in Physical Science (Interscience, 
New York, 1959), Vol. I, p. 161 ff. 

'We assume VIr) goes to infinity as Irl---+oo sufficiently rapidly so that the 
spectrum of H is discrete. This is not an essential limitation, but only sim
plifies the presentation. 

'Functional integrals of this sort have been widely used by theoretical physi
cists since the early fifties without, however, mathematically rigorous dis
cussions of the needed limiting processes. Two clear discussion of how one 
operates with them areJ. L. Gervais and A. Jevecki, Nucl. Phys. B 110, 93-
112 (1976); L. D. Faddeev and A. A. Slavnov, Gauge Fields (Benjamin/ 
Cummings, New York, 1980), pp. 59-69. We shall operate in the same 
formal manner as these authors, though it is not absolutely certain that this 
always leads to correct results. 

61t is necessary, of course, to also discretize operators such as H in some 
manner if we are to use this definition. We shall not discuss this here, as it is 
not necessary for our purposes. 

7We mean vector in the n-dimensional vector space at each point r of Rd. 
We shall call this the "internal space" at point r. A constant vector ng in 
this space means one which is independent ofr. 

"This solution exists and is unique in the following sense. Since we are using 
the method of Laplace, n·t/J (r) can be taken as t/Jo(r) in the leading term. Since 
"',,(r) is orthogonal tot/Jo(r), (3.51) will vanish forR = O. We have not found 
it possible to find the conditions such that this is the only root, but have 
found it to be so for all simple examples considered. We shall assume this to 
be the case; if it is not, it is easy to modify the formulas to take this fact into 
account. 
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Classical mechanics is formulated as a kind of deterministic optimal control. The simplest, from 
the optimal control point of view, stochastic generalization of classical mechanics is submitted. 
The connections between stochastic mechanics and quantum mechanics are shown, thanks to the 
stochastic optimal control method. 

PACS numbers: 02.50.Ey, 02.30.Wd 

1. INTRODUCTION 

The aim of this paper is to lay stress on close connec
tions between quantum dynamics (Schrodinger equation) 
and the probabilistic variational principle. First of all, we try 
to show here that, from the optimal control point of view, 
quantum dynamics is the simplest and the most natural gen
eralization of classical mechanics laws of motion. In order to 
gain this destination, we begin with deterministic optimal 
formulation of classical dynamics and apply it to the deriva
tion of the Hamilton-Jacobi equation. This allow us to give 
the formulation of the analogous optimal control problem 
for the stochastic system. Then, applying to this problem 
results of the stochastic control theory we formally obtain 
the Hamilton-Jacobi equation for this system, which is 
equivalent to the Schrodinger equation. 

Contrary to previous stochastic variational derivations 
of the Schrodinger equation 1,2 we use not a positive but an 
imaginal diffusion constant. For our considerations this con
stant is physically required. Unfortunately, in this case, it is 
difficult to keep the mathematical method rigorous. 3 Any
way, a justification of the present method may be given by 
understanding it as a Euclidean method. 

In the paper we introduce only those notions and results 
of the optimal control theory4 which are useful for our 
purposes. 

2. DETERMINISTIC OPTIMAL CONTROL AND 
CLASSICAL MECHANICS 

Let us be given a dynamical system 

x = /(t,x,u), (2.1) 

where te[to,tl]CR is a time, xeR" is a position ofa system, 
ueU (U-a subset of R m) is some parameter, and/is a suffi
ciently regular functionfR I XR "XR m--+R". Let us as
sume also that a set Uk of continuous functions u: [to,t I]--+U 
is given (though a wider classes than Uk may also be consid
ered4). For a fixed function u(t ) from a set Uk the expression 
(2.1) becomes a well defined differential equation and its so
lution Xu (t ) is called a trajectory of a system relevant to a 
control function u(t). In general, any trajectory x(t ) should 
also fulfill some initial and final conditions. 

Moreover, let us connect with a system (2.1) some func
tional J(to,xo,u) = ¢ (to,xo,tl,xu(t I))' depending on a control 
function u and initial conditions to, X o of a trajectory. Now, 

the problem of finding such a control function u(t ) that the 
relevant trajectory Xu (t) given by (2.1) fulfills boundary con
ditions and gives a minimum value for J (to,xo,u) is called a 
deterministic optimal control. 

We have two different ways to solve the optimal control 
problem. The Pontriagin maximum principle4

•
5 is one of 

them and the Bellman principle of dynamical program
ming4

,6,7 is the second. More interesting for our purposes is 
the second method. Thus we describe, in a few words, only 
this one. The crucial notion for the method of dynamical 
programming is the function S (t,x), defined as4 

S(t,x) = inf ¢ (t,x,tl,xu(t.)), (2.2) 
UE,'/ r,x 

where Y I,x C Uk denotes a set of all possible u(t ) functions for 
which trajectories x(t ) equal X for the initial moment t. The 
following equality may be proved4 for this function: 

as (t,x) as (t,x)!( *()) _ 0 ---+--- txu t - . 
at ax' , 

(2.3) 

Here u*(t ) is an optimal control function. We neglect bound
ary conditions for (2.3), as they are not important for our 
considerations. 

Let us concentrate now on the special case of a dynami
cal system (2.1). We assume that 

(i) no restrictions exist for values of a control function 
u(t), i.e., U = R n, 

(ii) Eq. (2.1) is of the simple form 

x = u, (2.4) 
(iii) the functional which constitutes the criterion is giv-

en as 

J(t,x,u) = f"L (t ',x(t '),u(t')) dt', 

where L (t,x,u) is a Lagrange function, 
(iv) tl and X(tl) = XI are fixed values. 

(2.5) 

For the optimal control problem defined above Eq. (2.3) 
becomes 

as (t,x) as (t,x) .*() L ( .*()) 0 ---+---x t + txx t = . 
at ax ' , 

(2.6) 

Taking into account the standard form of the Lagrange 
function, 

L (t,x,u) = (mI2)u 2 
- V(x), (2.7) 

where V(x) is a potential, we may easily obtain the equality 
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as (t,x) 
(2.8) 

ax 

Now, applying (2.7) and (2.8) we have, from (2.6), 

as(t,x) _ _ 1_[aS(t'X)]2 _ V(x) = o. 
at 2m ax 

(2.9) 

It is not difficult to notice that any dynamical system of 
classical Lagrangian mechanics is of the type considered 
above. Moreover, we realize that the action of classical 
mechanics, K 

f" S~m(t,x)= ,L(t',x*(t'),x*(t'))dt', (2.10) 

treated as a function of the trajectories initial conditions t,x, '} 
and the S (t,x) function, defined for the system considered 
above, are identical. This helps us to see that S ~m (t,x) fulfills 
Eq. (2.9). Equation (2.9) for S ~m (t,x) is, of course, well known 
in classical mechanics and is called the Hamilton-Jacobi 
equation [for "initial conditions" action function S ~m (t,x)]. 

Thus, we· may really regard classical Lagrangian me
chanics as a section of deterministic optimal control. 

3. STOCHASTIC OPTIMAL CONTROL AND QUANTUM 
MECHANICS 

Let us now consider a situation when a dynamical sys
tem undergoes deterministic as well as stochastic excita
tions. The purely stochastic excitation may be represented, 
in the best way, by a white noise. Thus, the most natural 
generalization of the equation of motion (2.1) is4 

x =/(t,x,u) + u(t,x,u)y, (3.1) 

where/. t, x, u, x(t), and u (t) are variables identical as in (2.1), 
Y is the n-dimensional white noise, i.e., the generalized de
rivative of the Wiener process, 10 and u (t,x,u) is a function 
interpreted as a diffusion coefficient. We restrict ourselves to 
such a stochastic system of type (3.1) which is the simplest 
probabilistic generalization of the classical mechanical one. 
As the dynamical equation (2.4) in the optimal control for
mulation of classical mechanics is x = u so its simplest ran
dom equivalent, in accordance with (3.1), should have a form 

x = u + a y, (3.2) 

where a is some constant matrix. For a purpose which will be 
clearlaterwe take a = ( - if!lm)I/2J, whereIis the unity ma
trix. The natural generalization of the criterion (2.5) is 

J(t,x,u) = E,x {f"L (t ',x(t '),u(t 'I) dt'}, (3.3) 

where E,x [ I denotes a kind of a mean value4
•" and u(t ) is a 

so-called feedback control function4 u(t) = u(t,x(t I). The 
mean value operation E,x is uniquely determined by a sto
chastic process x(t) fulfilling (3.2) and the initial condition 
x( t ) = x (x is considered here as a common, nonrandom vari
able). We may define a nonrandom action function S (t,x) for 
any stochastic system the same way as in (2.2). We have l2 

S(t,x) = infJ(t,x,u). (3.4) 
U 

It may be proved that the function S(t,x) fulfills, for a general 
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system (3.1) and a criterion (3.3), the equation4 

as(t x) "---'- + AU (t )S(t,x) + L (t,x,u*(t)) = 0, 
at 

where 

n a2 

A U"(t) = ! I aij(t,x,u*(t ))--
;J= I ax;aXj 

n a 
+ I.t;(t,x,u*(t ))-, 

;~I ax; 

(3.5) 

(3.6) 

a;j(t,x,u) is the ij element of the O"(t,x,u)uT(t,x,u) matrix, 
.t;(t,x,u) is the ith element of a vector function/(t,x,u), 

i,j = 1,2, ... ,n, 

u*(t) = u*(t,x*(t)) = u*(t,x) is a feedback optimal control 
function. If we consider a simple stochastic generalization 
(3.2) of a classical mechanical system we shall get the follow
ing simplified version of Eq. (3.5): 

as(t,x) _.!!!...- f a2S(t,x) 

at 2m; = I ax; ax; 

+ f u'!'(t )as(t,x) + L (t,x,u*(t)) = O. (3.7) 
;= I ax; 

Let us now consider the following equation, which is equiv
alent to (3.7( 

_as_(_t,x_) + min {-_if!_ f _a
2
_S--,-(t_,x-,-) + u_aS_(_t,X_) + L (t,x,U)} 

at UER" 2m; = I ax; ax; ax 

=0. (3.8) 

For the standard form (2.7) of the Lagrange function, (3.8) 
transforms into 

as(t,x) 

at 

. {-if! ~ a2
S(t,x) + as (t,x) + m 2 V()} +mm -~ u --- -u - X 

UER n 2mi=! aXiaXi ax 2 

=0. (3.9) 

We easily get that the minimum value for the expression in 
the bracket above is gained for 

u T = _ ~ as(t,x) , (3.10) 
m ax 

where uT is a transposition of a column vector u. Thus it is 
clear from (3.7), (3.8), and (3.10) that 

*T( ) _ *1"( ) _ 1 as(t,x) u t - u t,x - - - ---. 
m ax 

(3.11) 

Applying (3.11) into (3.7) we get finally 

as(t,x) _.!!!...-f a 2S(t,X) __ 1_ 

at 2mi= I aXiaxi 2m 

X it! [a~~:x) r -V(x) = o. (3.12) 

The crucial fact ofthis paper is that Eq. (3.12) is a kind of 
Schr6dinger equation. Namely, if to a common form of 
Schr6dinger equation, 
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i"at/J(t,x) = _.!!.- I a
2
t/J(t,x) + V(x)tf(t,x), 

at 2mi~ I aXiaXi 

we apply a substitution 

t/J(t,x) = exp{ - (i/fi)Sqm (t,x)}, 

we shall obtain 

aSqm(t,x) ifi ~ a2Sqm (t,x) --'---- + - £..J 
at 2mi~ I aXiaXi 2m 

(3.13) 

(3.14) 

xitJ as;x~t,X) r -V(x) = O. (3.15) 

Thus we see now that the last expression is identical to (3.12). 
It is worth noticing at last that for fi-O Eqs. (3.12) and 

(3.15) tend to a classical limit given in (2.7). 

4. DISCUSSION 

Let us notice that S(t,x) is a complex valued function. 
Thus it seems convincing to interpret the function t/J(t,x) 
= exp! (i/fi)S(t,x) J identically as in common quantum me

chanics, i.e., that 1 tf(t,x) 12 is a probability density function for 
a system to be in position x at time t. Briefly speaking, we 
accept the standard interpretation of quantum mechanics 
and the problem of hidden variables does not exist here. This 
makes us, however, understand complex valued stochastic 
processesx(t ) andx(t ) to be only theoretically useful variables 
~onnected to the system under consideration and not give 
them a physical interpretation of velocity and position. This 
interpretation explains the fact that processesx(t ) andx(t ) do 
not determine the state of the system. 
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It is worth noticing, at last, that we shall avoid bother
ing our head about the complex space-time if complex val
ued trajectories are understood as starting from a real posi
tion X.

13 In this caseS(t,x) is a complex valued function given 
on the real space-tim.e. 
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In this paper the Nelson's stochastic mechanics is extended to general diffusion motions. A 
representation theorem is proved which gives a one-to-one correspondence between solutions of 
certain Schr6dinger equations and diffusion processes satisfying appropriate regularity 
conditions. Exploiting results of stochastic mechanics on Riemannian manifolds it is shown that 
the real part of the Schr6dinger equations corresponding to the considered diffusions can be 
interpreted as Newton's second law where the force is produced by generalized electromagnetic 
potentials. 

PACS numbers: 02.50.Ey, 02.40.Ky 

I. INTRODUCTION 

Suppose that the motion of a particle is modeled by a 
diffusion taking values in R3 with diffusion coefficient 
(fllm)J, h being the Planck's constant, m the mass of the 
particle, and J the 3 X 3 identity matrix. Then, defining in a 
convenient fashion the stochastic kinematical variables, we 
know from Nelson's work on stochastic mechanics 1.2 that 
the continuity equation of the process and Newton's second 
law rna = F, where a is a certain mean acceleration and F the 
classical force, can be transformed by means of a change of 
variables into the corresponding Schr6dinger equation. The 
theory has been developed for the cases when F is propor
tional to the gradient of some scalar potential Vor comes 
from an electromagnetic potential (d,</J ). 

The present work is mainly concerned with systems 
with a finite number of degrees of freedom such that the time 
evolution of the configuration variables, for given initial con
ditions, can be well described by a diffusion process. This 
process satisfies an Ito stochastic differential equation with 
general diffusion matrix. Our main result is that any general 
n-dimensional diffusion, provided some regularity condi
tions are satisfied, has a mean acceleration which comes 
from a gauge invariant class on n + I-vector potentials. 

In Nelson's work the fact that the mean acceleration a is 
proportional to the classical force plays the role of a con
straint and determines the drift of the diffusion process. In 
this paper the reverse line of reasoning is followed. First the 
kinematics proposed by Nelson is generalized to diffusions 
having general diffusion matrix. Then a theorem is proved 
which provides, for any given diffusion, a correspondence 
between diffusion processes and solutions of Schr6dinger 
equations where the Hamiltonians come in general from 
n + I-vector potentials. Under some regularity conditions 
the correspondence is seen to be one-to-one, provided a sto
chastic process is considered to be defined by all its joint 
finite-dimensional distributions. In our setting the process is 
determined by the Markov property and by all its transition 
probabilities. 

The case of a strictly stationary process leads to real
time-independent Schr6dinger equations, the eigenvalues of 
which are the expected values of the kinetic terms and of the 

potential energy. If the process represents the time evolution 
of the values of the configuration variables of some physical 
system one can also seek a physical interpretation. The 
imaginary part of the Schr6dinger equation represents the 
continuity equation of the given process. The real part is 
expected to represent Newton's second law, where F is the 
"Lorentz force" produced by the n + I-vector potential. It 
turns out that if the diffusion matrix is constant with respect 
to the values taken by the process (nonlocal diffusion) one 
finds directly a Lorentz-force type expression for F. 3

,4 

For a general local diffusion one needs to exploit meth
ods of stochastic mechanics on Riemannian manifolds.5

-
7 

The idea is that of associating in a canonical way a Rieman
nian manifold M to the diffusion matrix of the process. Then 
the given diffusion, which takes values in the Euclidean 
space, can be considered as a coordinate representation of a 
non local diffusion taking values on M. 

In this setting it becomes possible to prove that the 
mean acceleration of such a diffusion is in fact proportional 
to a Lorentz force. 

II. BASIC THEOREMS FOR DIFFUSION PROCESSES 
TAKING VALUES IN n-DIMENSONAL EUCLIDEAN 
SPACES 

Consider the diffusion process x, described by Ito sto
chastic differential equation 

dx, =b+(x"t)dt+G+(x"t)dw" (2.1) 
with probability density p(x,t,), which is assumed to be posi
tive onX X [0,00), X~Rn. w, is the standard m-dimensional 
Brownian motion, independent of xo, and b + and G + are, 
respectively, n-vector- and n X m matrix-valued functions of 
x and t, satisfying the usual conditions that insure the exis
tence and uniqueness of the solutions of(2.1). 8 When G (x ,t ) is 
not constant with respect to x we shall call x, a "local 
diffusion." 

We define the mean forward and backward derivatives 
of a functionf(x,t) of x and t by 

D J(x"t) = limg"x,..!... (f(x, +.:l ,t + L1 ) - f(x"t)], 
.:lID L1 

(2.2) 
D --f(x"t) = limg"x,..!... (f(x"t) - f(x, -.:l ,r - L1 )), 

.:lID L1 
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where Iff'x, denotes the conditional expectation given x,. 
(h.) Assume that x, admits a backward representation 

through the reversed Ito equation 

dx, = b_(x"t )dt + G _(x"t )dw~, (2.3) 

where w~ has the same properties as w, except that the incre
ments w~ - w: are independent of x, for s';;;t. From (2.1) and 
hi one immediately has D+x, = b+ andD_x, = b_. The 
probability density of x, is then solution of the two Fokker
Planck equations 

ap = -div(pb+)+~aA(G+G:)ijP' (2.4) 
at 

ap = -div(pb_)-!aA(G_G~)ijP' (2.5) 
at 

The problem of constructing the backward representation 
(2.3) has been solved for non local diffusions taking values in 
Euclidean spaces with diffusion matrix proportional to the 
identity l.2 and also in n-dimensional Riemannian mani
folds. 5

-
7 The method is here extended to general diffusions 

taking values in Euclidean spaces. 
We make use of the following theorem2: 
Theorem 1: Let D + f and D _ f exist as a limit in L I for 

any fEC"'. Then iff and g are real-valued functions having 
compact support in X X [0, 00 ) one has 

d 
- Iff'I f(x"t )g(x"t) J = Iff' I (D + f(x"t )g(x"t) 
dt 

+ f(x, ,t )(D _g(x, ,t )) J. (2.6) 

• 
Supposefandg can be expanded in Taylor series. One has 
from (2.1) and (2.3) 

D+f=(:t +b+jaj +!(G+G: )ijaA)f, (2.7) 

D-f=(:t +b_jaj-~(G_G~)ijaA)f, (2.8) 

and denoting by D t+ , the formal adjoint of D +, as defined 
by (2.7), from Theorem 1 the following equality holds: 

If: ",jDt+ (gp)dxdt = -I (jD-g~ dxdt (2.9) 

or, formally, for all xEX and tE[O, 00) 

D_ = -p-IDt+ p. (2.10) 

Standard calculations involving (2.4) yield 

D_g= (!..- +b+jaj - ..!..-aj(G+G:)ijpaj 
at p 

- ~(G+G: )ijaA)g (2.11) 

so that from (2.8) 

G_G~ = G+G:, (2.12) 

b_ j =b+ j -(lIp)aj [(G+G:)ijP]. (2.13) 

Denoting G + G: simply by GG T, the "current velocity" 
v(x, ,t )== [(D + + D _ )/2 lx, and the "osmotic velocity" 
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U(x"t)=[(D+ - D_)/2lx, have components 

Vj = b+
j 
- b_

j 
= b +j _ +..!..-aj [(GGT)ij p], 

2 p (2.14) 

Uj = b+ j -b_ j 
= ..!..-..!..-aj[(GGT)ijp]. 

2 2 p 
(2.15) 

(h2) Assume D +b _ and D _b + exist as limits in L I and 
b + j and b _ j are sufficiently smooth for D + and D _ to act 
on them as the differential operators defined by (2.7) and 
(2.8). In this case the "mean acceleration" a(x"t) 
=!(D +D _ + D _D +)x, can be written in terms of v and U by 

D+b_ j +D_b+ j 

2 

= !..- Vj + VjajV j - {!(GG T)kjakajUj + UjajuJ. (2.16) 
at 

We can now state the main fact concerning processes in Eu
clidean spaces in the form of the following representation 
theorem. 

Theorem 2: Let x, be a diffusion process described by 
(2.1) having probability density p(x,t ) which does not vanish 
on X X [0, 00). Let assumption hi hold and assume (h3) that 
the m X m matrix-valued function GG T is strictly positive 
for all xEX and tE[O, 00 ). Then denoting by S the set of all real
valued differentiable functions S (x,t ) of x and t, there exists a 
classofn + I-vector potentials !(As,tPS)JSES that is invariant 
under the gauge transformation 

As-As' =As + grad(S' - S), 
(2.17) 

,J. ,,J.' _,J. _ a(S' - S) 
'l'S~S -'I'S at' 

such that the operator 

Jf" = !(iaj + A f)(GG T)ij(iaj + A J) + tPs + a(t), (2.18) 

where a(t ) is an arbitrary real function of the time, deter
mines the evolution of the wave function ¢ p 1l2ejS through 
the Schr6dinger equation 

(2.19) 

Conversely, given any solution ¢' = eR ' + j(S' + S) of (2.19) 
there exists a unique diffusion process x; satisfying the Ito 
equation 

dx; = b '+ (x; ,t )dt + G '(x,t )dw, (2.20) 

that is uniquely defined up to an orthogonal transformation 
of G' which satisfies the conditions 

G'G'T =GG T, 

p'= 1¢'1 2
, 

v' = GG T [V(S' + S) - As ]. 

(2.21a) 

(2.21b) 

(2.21c) 

Proof By hi the current velocity v of the process x, is 
well defined for all (x,t )EX X [0, 00 ) and h3 allows one to de
fine the vector field 

(2.22) 

Substituting (2.22) in (2.18) and writing (2.19) for ¢ = pl/2e
jS 
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one gets, separating imaginary and real parts, 

~ = - div(vp), (2.23) 

<Ps = ~{a; [(GG T);AR ] + (GG T);ARajR 

- (GG T)ij IVIV) _ as - a(t), (2.24) 
at 

where R =! In p. 
Equation (2.23) represents the correct continuity equa

tion of x,, as follows from (2.4) and (2.5). The sought gauge
invariant class of n + I-vector potentials is defined by (2.22) 
and (2.24). Conversely, given any solution t/J'=eR ' + irS' + SI of 
the Schrodinger equation (2.19) and (2.18), one has that the 
diffusion process x; described by the Ito stochastic differen
tial equation 

dx; = b '+ (x;,t }dt + GTdw" (2.25) 

where T is any m X m orthogonal matrix and b '+ is the vec
tor field with components 

(b '+); = (GG T)ij(aj(S' + S) -A J) + ~~aj [(GGT),j p], 
2 p 

(2.26) 
satisfies (2.21). 

The uniqueness of the diffusion process easily follows 
from the fact that if any other diffusion x;' with density 
p" = p' and matrix diffusion G " = GTsatisfies (2.2Ic) then 
one has v" = v' and thus by (2.15) b'~ = v" + u" 
= v' + u' = b '+ . Then, since the drift b '+ and covariance 
matrix GG T uniquely determine the evolution of transition 
probability densities through the Fokker-Planck equation, 
and since (2.2Ib) also defines the initial probability density, 
by the Markov property all joint finite dimensional distribu
tions are uniquely determined. 

• 
In Nelson's stochastic mechanics the analogous Schro-

dinger equation for n = 3, GG T = (film)I, where I is the 
3 X 3 identity matrix, fi Plank's constant, and m the mass of a 
particle subjected to the electromagnetic field (M',rP ), is de
ri ved by constraining the mean acceleration a to satisfy New
ton's second law rna = F, where F is the Lorentz force pro
duced by (M',rP ). In that case the real part of the Schrodinger 
equation is simply an integrated version of Newton's second 
law. 

It can be shown3.4 that for nonlocal diffusions satisfying 

hi' h3' and h2 one has 

ap = (GGT)Pk{ -akrPs - :rAt +v;[akAf-a;An} 

(2.27) 

that, for n = 3 and GG T = I (I being the identity matrix) is 
the familiar Lorentz's force due to the electromagnetic po
tential (As,rP s). In fact, by taking the gradient of both sides of 
(2.24) and denoting ajR by r; and (GG T)ij- I Vj by Z; one gets 

akrPs = !aka; [(GG TVj] + ~ak [(GG TJur;rj ] 

- !ak [(GG T)ijZ;Zj] - ~ (akS). (2.28) at 
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Recalling that for any n X n symmetric matrix Q and YEan 
one has 

!ak(QijYiYj) = (Qij yA)Yk + QijYk(ak Yi - a; Yk) (2.29) 

and that r is a gradient and Z = VS - AS, (2.28) becomes 

akrPs = WI: [a;(GG TVj ] + [(GG TViaj h 
- [(GG T)ijzA ]Zk 

+ (GG T)ijZj [akA; - aiA t] - ~ (aks). (2.30) at 
Thus the multiplication by (GG T)pk and summation over 
k 's, together with the substitutions GG T r==.u and GG TZ=V, 
give the desired result. 

For general diffusions taking values in Euclidean spaces 
the problem of the connection between the real part of the 
Schrodinger equation (2.19) and Newton's second law is not 
simple. It will be solved in Sec. IV, exploiting some results 
concerning stochastic mechanics on Riemannian 
manifolds. 5-7 

Ill. STRICTLY STATIONARY CASE 

Consider a diffusion XI with time-independent prob
ability density p(x,t ) pIx), 'V tE[O, 00 ), that is assumed not to 
vanish on X ~ an, and assume it is the solution of the time
independent Ito stochastic differential equation 

(3.1) 

with respect to the initial condition x(o) = XO' where Xo is a 
random variable having probability density equal top(x). Let 
hi and h3 hold. Then applying Theorem 2 for Sk =kt and 
separating variables one finds that pi /2 satisfies the time
independent Schrodinger equation 

{WV + Ask)(GG T)ij(iV + As.} + rPs. + k - E }pl/2 = 0, 
(3.2) 

where (As., rPs.) does not depend on tandEis areal constant. 
Recalling (2.24) one can see that rPo=rPs + asia, is gauge 
independent. (3.2) can be rewritten as 

{ - ~aj(GG T)ijaj + !v;(GG TL; IVj + rPo} pl!2 = E pl/2. (3.3) 

The constantE is fixed by averaging both sides of(3.3). Inte
grating after multiplication by pl!2 and recalling (2.15) one 
gets 

The integrand on the right side of (3.4) plays the role of "en
ergy function". We want now briefly to discuss the case 
when GG T is not strictly positive for all (x,t lEX X [0, 00 ). Ac
tually assumption h3 is crucial in giving the law (2.26) that 
constructs the drift from a given wave function. On the other 
side it would be meaningless if at the deterministic limit the 
energy function does go to infinity. In fact by the definition 
(2.15) of u the osmotic kinetic term remains finite also if 
singular values of the matrix-valued function G (x)G (X)T are 
allowed. Furthermore by the definition (2.24) of rPs, which is 
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true ifhl and h3 hold, one has, in the strictly stationary case, 

!vi(GG T)ij IVj + f/Jo - E = !ai [(GG T)ijajR ] 

+ (GG T)ijaiRajR. (3.5) 

Thus if one considers the limit (GG T)_(GOG [), where 
GoG [ is not positive definite for all (x,t leX X [0, 00 ) and the 
limit process is again a diffusion satisfying hi' then the sum 
of the terms on the left-hand side remains finite for all 
(x,t )eXo X [0, 00 ), Xo being the set where the limit probability 
density does not vanish. This implies, in these assumptions, 
that the energy function is well defined up to an additive 
constant and that (3.3) remains correct. 

Finally, one can note that the form of the energy func
tion suggests that the natural metric in considering the dyna
mics of general diffusions is that defined by the metric tensor 
gij(x) = [(G (x)G T(X))-I lij' 

IV. EXTENSION OF THE REPRESENTATION THEOREM 
AND PHYSICAL INTERPRETATION FOR NON LOCAL 
DIFFUSIONS ON RIEMANNIAN MANIFOLDS 

Let M be an n-dimensional Riemannian manifold with 
metric tensor gij(x). Let q, be a diffusion process on M, satis
fying the stochastic equation in the Ito sense.9 

dq, = h+(q"t)dt+ dw,. (4.1) 

where w, is the Brownian motion on M, which satisfies the 
Ito stochastic differential equation 

dw; = mi(w,)dt + dk(w,)dw'k' (4.2) 

where w, is the standard n-dimensional Brownian motion 
and mi and ~ are related to the tensor gij by the equalities 

m i - _ loikr i 
- 26 jk' 

dko{ =gij, 

rjk being the Christoffel symbols andgijgij = oij' 

(4.3) 

(4.4) 

(h ; ) Assume that the process q, admits the backward 
representation 

_A ..:-:. 

dq, - b_(q"t)dt + dw" (4.5) 

where /if:' is the backward representation of w,. Defining the 
invariant probability density of q, by the equality 

(4.6) 

whereF(q) is any function of the process, it can be shown by 
standard techniques that it satisfies the two Fokker-Planck 
equations 

dp d' IJ:b
A

) IA A - = - IVM\f' + +~MP, 
at 

ap d' (AbA) I A A -at = - lVM P - - ~M P, 

(4.7) 

(4.8) 

where divM y~V~/=lgl-1/2ai(lgl)1/2/ and..::1 M =V~ Vi" 
=(lgl)l12ai(lgl)I/2gijaj' VM denoting covariant derivative. 

The main difficulty in extending stochastic mechanics 
to processes taking values on manifolds is connected with the 
definition of the mean forward and backward derivatives. In 
fact the generalization of (2.2), when/is a vector-valued 
function, implies that one needs some notion of transport of 
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/(q'H ,t +..::1 )fromq(t +..::1 )toq(t )andof/(q(t ),t)fromq, to 
q,+tJ . 

The problem has been solved in Refs. 4 and 5 by intro
ducing the notion of "stochastic geodesic displacement" . We 
refer directly to Refs. 6 or 7for the definition. Let T ~.q2 F (q tl 
denote the stochastic geodesic displacement ofF (q I) from q I 
to q2' We define the mean forward and backward derivatives 
by 

X [T~H.q,F(q,+tJ,t+..::1) -F(q"t)], 

(4.9) 

D_F(q"t) = limI&'Q'(lI..::1) 
tJlO 

X [T~"q,_ .. F(q"t) - F(q, _ tJ ,t -..::1 )] 

so that, with suitable assumptions on F, one has4
•
s 

(4.10) 

(4.11) 

where ..::1 D is the Laplace--de Rham operator, given by 

(4.12) 

Iiij being }he ~urvatur~ tensor associated with g. One has 
D + q, = !? +, D _ fj, = b _ and, following the same line as in 
Sec. II, b + and b _ are related by the equality 

(4.13) 

for all qEQ where p does not vanish and tErO, 00 ). 

Ch;) Ass};lme D +h _ and D _h + exist a~limits ig" L I and 
that b + and b _ are sufficiently smooth for D + and D _ to act 
on them as the operators defined by (4.10) and (4.11). Then 

A A A A 

the mean acceleration a = !(D+D_ +D_D+)q, can be writ-
ten in the form 

ai = av
i 

+ (zYVM)Vi _ !{(..::1 D U)i + (UiVM)Ui}, 
at J J 

(4.14) 

where Vi = hi + hi /2 and ui = hi - hi /2. + - +-
In the spirit of Theorem 2 one can state the following. 
Theorem 3: Let q, be a diffusion process on M described 

by (4.1) and let its invariant density p not vanish on Q~ M for 
any tE[O, (0). Let assumption (hi) hold. Then there exists a 
class of n + I-vector potentials [(A S ,f/J s ) l SES where § is the 
set of all real-valued differentiable functions of q and t which 
are invariant under the gauge transformations (2.17) such 
that the operator 

2 = !Kij(iV~ +A f)(iVr +A J) + f/Js + a(t) (4.15) 

determines the evolution of the wave function ¢ = pl/2eiS 

through the Schrodinger equation 

i a¢ =2¢. 
at 

(4.16) 

Conversely, given any solution ¢' = (p,)1/2ei(S' + S) of (4.16) 
there exists an unique diffusion process q; satisfying the Ito 
equation on M, 

dq; = b ;(q;,t )dt + dw" (4.17) 
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where W, satisfies (4.2) and is defined up to an orthogonal 
transformation of the matrix with elements dk , such that 

p(q',t) = 1¢(q',tW, 

v; = V~(s' +S) -As. (4.18) 

Proof The proof is analogous to that of Theorem 2: 
Separating the real and imaginary parts of (4.16), making the 
substitution ¢ = pl/2eiS, and with 

(4.19) 

where vis well defined by h; for all qeQ and te[O, 00) one gets 

ap d' (A A) (420) - = - IVM v·p , . at 
{ 

" i MR" I A'A as ( ) tPs =! .dMR + V M Vj - !U'Vj - at - at. (4.21) 

Again (4.20) is the correct continuity equation for q" as fol
lows from (4.7), (4.8), and the definition of V. The sought 
gauge invariant class is defined by (4.19) and (4.21). The con
verse part of the theorem runs exactly as in Theorem 2 and 
will be omitted. 

• 
The nonlocality on 00 of the diffusion q, allows one to 

interpret (4.21) as the integrated version of Newton 's second 
law. With the same line followed to get (2.27) one finds] 

A [ aA k Ai M M] ak = - aktP - -at + v(VkAi - Vi A k ) • (4.22) 

One can see, 5 using Hamilton equations, that the right
hand side of(4.22) is the intrinsic time differentiation of gkjij, 
provided q is identified with Vi. 

v. NEWTON'S SECOND LAW FOR LOCAL DIFFUSIONS 
ON EUCLIDEAN SPACES 

We consider in this section a local diffusion x, described 
by (1.1) with matrix diffusion G independent of t (the time
dependent case could also be treated), and let h I and h] hold. 
Then by Theorem 2 the wave function if; = p J IZeiS satisfies 
the Schr6dinger equation 

where GG T is independent of t. 
Consider now an n-dimensional Riemannian manifold 

with metric tensor g defined by the equality 

g'j(x) = [(G (x)G T(X))-I Lj • (5.2) 

Then one can easily prove that the wavefunction ¢ = pl!2e,S, 
where ,0 = Igl-l/2 p, satisfies the Schr6dinger equation on 
00, 

i a¢ = !(iV}M +A~)(iVr + A f) + tPs +,ug l¢, (5.3) at 
where,ug is a correction term depending only on the metric 
tensor g. In fact consider the diffusion process q, represented 
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by ¢, which has invariant probability density ,0 and current 
velocity Vi = V~S - A~. Its continuity equation is 

ap = _ divM(pv) = -lgl-1/2ai((lgl)1/2 pfY). (5.4) at 
By the definition ofp, and since by (4.18) and (2.21)gijvj = Vi> 
(5.4) becomes 

: = - ai(p'Vi) = - div(p·v) (5.5) 

and then the imaginary part of(5.1) implies the imaginary 
part of (5.3) and vice versa. 

Finally, replacing R with R + ! Inlgl l/2 in the real part 
of (5.1) one finds 

as 
at 
= - ~!lgl-1/2ai [(lgl)1/2gija}R] + gijai Raj R - gijViVj I 

(5.6) 

where fLg is defined by 

,ug = H ai [g'jaj (pn Igil 12)] + g'}ai (pn Igil /2)aj (pn Ig11/2) I. 
(5.7) 

Weare now in a position to give the physical interpretation 
of the real part ofEq. (5.1): ifin place of the Euclidean metric 
we endow IRN with the metricg(x) = (G (x)G (X)T)-I or, 
which is the same, we consider IRN as the coordinate space of 
an n-dimensional Riemannian manifold with metric tensor 
(GG T)- J, then the local diffusion x, on IRN

, which is repre
sented by the solution if; = p I 12eiS of the Schr6dinger equa
tion (2.19)-(2.18) related to the vector potential (As,tPs), 
plays the role of the coordinate representation of the nonlo
cal diffusion q, on 00, described by Eqs. (4.1 )-(4.4) and repre
sented by ¢ = pAl 12eiS. By (4.22) the mean acceleration of q, 

A A 

satisfies Newton's second law {j cc F, where F is the classical 
force generated by the vector potential (As,tPs + ,ug). 
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It is shown that the decomposition of three-dimensional Cartesian tensors into their parts which 
are irreducible under the rotation group is made conceptuaIly simple by explicitly expressing 
these parts in an embedded form. 

PACS numbers: 02.90. + p, 03.40. - t, 02.20. + b, 46.20. + e 

I. INTRODUCTION 

Since any irreducible tensor of weight w transforms un
der rotation as a tensor of rank w, it is often advantageous to 
be able to express any given tensor explicitly as the sum of its 
irreducible parts. A general Cartesian tensor of rank r (r>2) 
can be reduced into irreducible tensors of weights r and less. 
Thus, a general third-rank tensor reduces into irreducible 
parts as follows: one of weight 0, three of weight 1, two of 
weight 2, and one of weight 3. A general fourth-rank tensor 
can be reduced into the following irreducible parts: three of 
weight 0, six of weight 1, six of weight 2, three of weight 3, 
and one of weight 4. The one, or more, irreducible tensors 
which make up the weight-w irreducible part of a reducible 
tensor of rank r is called the isotypicl subspace of weight w. 

In the case ofrank-2 tensors the reduction is unique and 
well known. The third-rank tensor and special fourth-rank 
tensors have been reduced in more than one way. 1-5 Russ6 

and J erphagnon, Chemla, and Bonneville 7 have given explic
it reductions for the general third- and fourth-rank tensors. 
Different reduction schemes in general lead to different re
ductions of those isotypic spaces that are composed of more 
than one tensor. The results of the various reductions are 
linearly related to one another, but the relationships are usu
ally not obvious. 

There is a way of visualizing the reduction which is 
conceptually very simple. We shall use this, somewhat heu
ristic, approach as a vehicle for presenting the terminology 
and symbolism needed for our further considerations. 

The components of a general reducible Cartesian tensor 
of rank r will be represented by the symbol Til.i, ..... i,' where 
the subscripts take the values x, y, and z. 

We shall have occasion to use three different symbols 
for the components of an irreducible tensor of weight w. 

One symbol is t ~:~2 ..... ;jn), where the superscript r indi
cates that these components are from a reducible tensor of 
rank r and are, therefore, expressible as linear homogeneous 
functions of the components of Til.i, .... i,. The (n) is to distin
guish between the various irreducible tensors making up the 
isotypic space of weight wand takes on numerical values 1,2, 
.... This notation gives the irreducible tensor in its natural 
form, in which the tensor is completely symmetric and trace
less in its indices i l ,i2,oo.,iw' 

Only 2w + 1 of the 3 w components t ~:G ... iJn) are inde
pendent. It is often convenient to use only one sUbscript to 
distinguish between the components of an independent set. 

We shall use the notation t ~W(n) (q = 1,2,00', 2w + 1), where 
we have chosen and numbered the components as shown in 
Table I. The remaining of the 3 W components are expressible 
in terms ofthese by the conditions ofthe complete symmetry 
and tracelessness. 

We sometimes have need to express an irreducible ten-
sor of rank r and weight w as a rank-r tensor formed by 
embedding a weight-w irreducible tensor in a rank-r tensor 
space. For such a structure we use the symbol <:G ... iJn). 

For the whole isotypic space of weight w (in embedded 

form) we use t~:G ... i,. Thus, we have 

t~:G·"i, = IrjJ~··:i,(n), (1 ) 

" 
where the subscriptsil,i2,oo.,jr are the iI' i2,.oo,ir in some or
der, which varies with n. The reducible tensor is given by 

T . . = "'-'t r
•
w 

. 1,'2"",. L ,,12"'1,.." 
(2) 

W 

Embedding to give the r·W(n) is obtained by an appropriate 
combination of the t ~;~ ... ;jn) with unit tensors 6 and the al
ternating tensor E. For example, in the case of the second 
rank tensor the results are the simple ones given below. The 
label (n) is not needed here because there is only one irreduci
ble tensor of each weight. We use the summation conven
tion, in which a repeated index implies summation over that 
index. 

T 2 .o = t 2·°0 .. , 
I) lJ 

t 2.1 - t 2.I E ;j - s sij' 

T.2.2 = t 2 .. 2 • 
lj Ij 

Equation (2) becomes 

TABLE I. Definition of the independent components t ;.w = t ;;~i". 

t ',W 
q 

t ;,) t ~:2 
'J 

I ~:3 
yk t ~jtl 

X xx xxy xxxy 
2 y xy xxz xxxz 
3 z xz xyy xxyy 
4 yy xyz xxzz 
5 yz xzz xyyy 
6 yyz xzzz 
7 yzz yyyz 
8 yyzz 
9 yzzz 
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T _t2,O£ +t 2,l c +t 22 
ij - Ui) s ~sij ij • (3) 

For the reducible tensor of rank r, Eq, (2) represents 3 r 

equations in 3 r unknowns, The reduction process corre
sponds to the solving of these equations for the unknowns 

t ~:G' ... (" (n) in terms of the T.", ... ", This has been done, and the 
results have been given elsewhere6 in complete detail for ten
sors through ranks 4. 

Of course, if the reverse process is desired, that is, if the 
irreducible components are known and one wishes to obtain 
the reducible rank-r tensor corresponding to these, then sub
stitution into Eq. (2) gives the required result. 

II. SOME PROPERTIES OF ISOTYPIC SUBSPACES 

In this section we consider briefly some general aspect 
of isotypic subspaces with special attention to third- and 
fourth-rank tensors. First, however, we make note of the 
following points: 

For all ranks r, the isotypic subspace of weight a is com
posed of the rotation tensors of rank r, that is, the tensors of 
rank r that are invariant under all proper rotations. x The 
rotation tensors through rank four are well known and often 
used.9 SmithS has given a method for obtaining the indepen
dent rotation tensors of any rank. 

For cases in which improper rotations must be consid
ered, and, therefore, the distinction between polar (also 
called true) and axial (also called pseudo-) tensors becomes 
important, the following rule applies 1.7: If the rank of the 
tensor and the weight of its irreducible part differ by an even 
(odd) number, then the tensor and its irreducible part have 
the same (opposite) character. 

Gel'fand et al. 1 have obtained an equation whose solu
tions are the tensors <r .. ,)n). We can use that equation to 
check that the tensors we obtain by our embedding process 
are actually irreducible tensors of the desired rank and 
weight. 

A. Third-rank tensors 

For rank 3 the general equation given by Gel'fand et al. 
becomes 

£ 3.2 + " 73.w + £ 3,w 73.w 3.w 73.w 
UUTssk O'j iss UkiTsjs - jik - Tikj - kji 

(4) 

From Eq. (4) follow various properties of the irreducible 
third-rank tensors of different weights in embedded form. 
Among these properties a general one is the following: Ex
cept for w = 1, these tensors are traceless. A particular result 
is that for w = a the tensor is skew-symmetric, but this fol
lows directly from other considerations also [See Eq. (5), and 
note that in general the minimum required symmetry of any 
particular <:G' ... " is given explicitly by the embedded form]. 

Weight a: All rotation tensors of rank 9 3 are multiples of 
the alternating tensor Cljk' Therefore, the irreducible tensor 
of weight zero is given by 

f 3•
k
O = t 3.0C "

k lJ IJ ' 

where t 3.0 is a scalar. 
Weight 1: The isotypic space of weight 1 can be ex

pressed as follows: 
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(5) 

f3.1 = t 3•1(1)0 + (3,1(2)0 + (3.1(3)0 
Ilk l ;k ) ,k k 'i' (6) 

where t ;.I(n) (n = 1,2,3) are vectors. All vectors are irredu
cible rank-I, weight-l tensors. Since the tensors on the right 
in Eq. (6) are formed by the embedding of vectors, and since 
they satisfy Eq. (4), they must be irreducible tensors of rank 3 
and weight 1. Therefore, it follows that Eq. (6) represents a 
resolution of the weight-! isotypic space. 

Weight 2: There are three obvious ways that irreducible 
rank-2 and weight-2 tensors can be embedded in third-rank 
space, but they are independent only in pairs. The three pos-
'b'l' . 3.2 3.2 d t 3.2 h t b' d . Sl I Itles are t I, CSjk' t js Cslk' an ks cSlj' were 0 e Irre UCI-
ble the tensor t ~.2 must be symmetric and traceless. Among 
the three possible resolutions that can be obtained by taking 
these tensors in pairs, one is 

T- .1.2 t .1.2( I)c + t.1·2(2)c 
iiI.:. = i\" C"\jJ... .I'" 'Csik· 

(7) 

All of these resolutions divide the isotypic subspace into two 
parts, each of which belongs to a tensor that is skew-symmet
ric in a pair of indices. Many other resolutions are possible. 
For example, this subspace can be resolved into the sum of a 
tensor that is symmetric in a pair of indices and one that is 
skew-symmetric in the same pair of indices. Gel'fand et al. 1 

resolve the subspace by assuming cyclic symmetry. All the 
various resol utions are, of course, linear combinations of one 
another. 

Weight 3: This is simply the unique rank-3 and weight-3 
irreducible tensor t ~'i} in the natural form and is symmetric 
and traceless with respect to each pair of indices. 

B. Fourth-rank tensors 

The equation given by Gel'fand et al. I becomes in this 

case 

4."'+[1 ( +1) 4]4.w-a - 7 ijlk 2W W - 7ljkl - • (8) 

Some general results that we have derived from this equation 
are the following: 

(i) Except when w = a, all double traces are zero. 
(ii) All single traces are zero when w = 3 or 4. 
(iii) Single traces are zero when w = a and the other two 

indices are different. 
(iv) Single traces are skew-symmetric in the other two 

indices for w = I. 
(v) Single traces are symmetric in the other two indices 

when w = 2. 
Since the general procedure is the same as that for the 

resolution of the third-rank tensor, we give the following 
results with little comment. 

Weight a: There are three independent rotation tensors 
of rank 4, and they give the following resolution of the rank-
4, weight-a, subspace: 

f~~, = t 4 ,O(1)8ljokl + t4,O(2)OikOjl + t 4
,0(3)0i/Ojk' (9) 

Weight 1: Vectors can be embedded in a fourth-rank 
space six ways, giving the following resolution: 

M, C. Russ and C. A. Hollingsworth 1026 



                                                                                                                                    

Tif11 = t~,I(I)ESijokl + t~,1(2)EsjkOjl + t~,1(3)EsjkOi/ 
+ t~,1(4)Esi/Ojk + t~,1(5)E-!iIOjk + t~,1(6)EskIOij' 

(10) 

Weight 2: Irreducible rank-2, weight-2 tensors can be 
embedded in rank-4 space in six ways, giving the following 
resolution: 

T~i, = t~·2(I)ok' + tik2(2)ojl + t;/(3)8i/ + ti/(4)ojk 

+ t;·2(5)8ik + t!l(6)8ij' (11) 

Weight 3: Irreducible tensors of rank and weight three 
can be embedded in rank-4 space to give fourth-rank irredu
cible tensors in several (not all independent) ways. This is 
done by using the alternating tensor E ijk' It happens that to 
be independent these tensors must have a common index in 
Ejjk . For example, in the following case} is the common 
index: 

(12) 
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Weight 4: This is the unique rank-4 and weight-4 tensor 
44' . 1 ~ t ;jkl in Its natura lorm. 

\ l. M. Oel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the 
Rotation and Lorentz Groups and Their Applications (Macmillan, New 
York, 1963). 

2J. A. R. Coope, R. F. Snider, and F. R. McCourt, J. Chern. Phys. 43, 2269 
(1965). 

3J. A. R. Coope and R. F. Snider, J. Math. Phys. 11, 1003 (1970). 
4H. J. Juretschke, Crystal Physics: Macroscopic Physics of Anisotropic Solids 
(Benjamin, Reading, Mass., 1974). 

'P. R. Morris, J. App!. Phys. 40, 447 (1969). 
OM. C. Russ, PhD. thesis, University of PittSburgh, 1975. 
7J. Jerphagnon, D. Chemla, and R. BonneviIle, Adv. in Phys. 27,609 (1978). 
In addition to giving explicit expressions for the reduction of tensors of 
ranks 3 and 4, this paper contains a good discussion of the application of 
irreducible tensors and the relationship between their Cartesian and 
spherical forms. 

80. F. Smith, Tensor 19, 79 (1968). 
9For example, see O. Temple, Cartesian Tensors (Methuen, London, 1960); 
also, L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous 
Media (Addison-Wesley, New York, 1960), p. 381. 
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Properties of three-dimensional Cartesian tensors. II. Arbitrarily oriented 
tensors expressed in generalized spherical functions. Ranks through 4 

Muchere C. Russ and C. A. Hollingsworth 
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Explicit expressions for the rotation of Cartesian tensors of ranks through 4 are obtained. These 
are given in terms of the irreducible components and the generalized spherical functions. They 
can be obtained in terms of the reducible components by the use of results which were obtained 
previously. As a simple illustration of an application of the results, an expression is obtained for 
the energy of an octupole as a function of the orientation of the octupole in an inhomogeneous 
field. 

PACS numbers: 02.90. + p, 03.40. - t,02.20. + b,46.20. + e 

I. INTRODUCTION 

In application of tensors to physical problems it is often 
necessary to know the components of a given tensor in a 
coordinate system that differs by an arbitrary rotation from 
the one for which the components were given. For example, 
the components may be known for a coordinate system fixed 
in some "body" and the expressions for the components may 
be needed in a "laboratory" system. These expressions are 
given by the equations for the transformation of tensors. 
Thus, if we designate the components ofa tensor in the body 
system by Bi", ... and those in the laboratory system by Lj,i, , 
then we have 

(I) 

R is the orthogonal matrix representing the rotation which 
takes the body system into the laboratory system, and the 
repeated index summation convention has been used. The 
result expressed by Eq. (1) can take a number of different 
forms, depending upon how the rotation R is expressed. All 
of these results are rather unwieldy for tensors of ranks 
greater than 2. One form which can be convenient for many 
purposes is that in which the componentsLj,j, are ex
pressed in terms of the generalized spherical functions 1.2 

D :~'m (a(3r) ofthe Euler angles (a(3r) which describe the rota
tion R. For a tensor of rank r we would have 

r lL' U' 

L. = ~ ~ 
h12··· £.. L.. L A i:j~ .. ;m'mD :~'m (a(3r), (2) 

tL'= 0 tn'---" -w 

where the coefficients A iJ:' ... ;m'm are functions of the compo
nents Bi,i,. , and they are always the same functions for any 
given weight. It is the purpose of this paper to give these 
functions for tensors of ranks through 4. 

II. METHOD OF CALCULATION 

There are several different methods that could, in prin
ciple, be used to obtain the coefficients in Eq. (2). However, 
for ranks greater than 2 most of these methods would involve 
much tedious algebra. The method to be described in this 
section was relatively easy for ranks through 4. Much of the 
advantage provided by this method resulted from the use of 
the tensors in explicitly reduced form, and these forms are 
given in Paper I of this series :1 for tensors through rank 4. 

In its general aspects the calculation goes as follows: 
The irreducible Cartesian tensor of rank wand weight w is 
transformed to the so-called spherical basis. 1 The tensor is 
rotated in the spherical basis, where the effect of rotation is 
given explicitly in terms of the generalized functions D ~'m 
(a(3r). The rotated tensor is then returned to the Cartesian 
system. This gives the rotated irreducible Cartesian tensor in 
terms of the functions D ~'m (a(3r). Since any Cartesian ten
sor of rank r (r<4) has already been expressed explicitly3 in 
terms of its irreducible tensors of weight w (w<r), the desired 
result has been obtained. 

A few further comments about the procedure outlined 
above seems warranted. The transformation from the Carte
sian basis to the spherical basis can be effected by the use of 
the following unitary transformation: 

[
-1 -i 0] 

U=)2 0 ~i ~:. (3) 

Upon transformation to the spherical basis each of the com
ponents (3 W in number) of a rank-w, weight-w tensor be
comes some scalar times one of the spherical harmonics Y ~ 
(m = - w, ... ,O, ... ,w). In the spherical basis, therefore, each 
component transforms under proper rotation according to 
the law l 

TABLE I. Values of P:. The value zero is given for w = I, q = 3, because 

the only nonzero value of u;lml is for m = 0, and whenever m = 0 we take 

P: = o. 

0: 2 3 4 

1 -1 + 1 +1 -1 
2 +1 -1 +1 -1 
3 0 -1 -1 +1 
4 +1 -1 +1 
5 +1 -1 -1 
6 +1 -1 
7 + 1 +1 
8 +1 
9 +1 
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TABLE II. Values of r,:;,. 

o 
I 
2 
3 
4 

-1/\12 
1/2 

2 3 

- (1/21v172 V314 
- 1/2 - v15/8 
1/4 \16/8 

-1/8 

RYW = "'D"', (a(Jy)Yw, 
In L mm m' 

m' 

4 

V70/16 
v'14/8 
-Vi/8 
VY8 
-1/16 

(4) 

The return to a Cartesian basis is effected by the use of 
the unitary transformation U -', which is the conjugate of 
the transpose of U. 

We can designate the 2w + 1 independent components 
of the irreducible rank-r, weight-w, Cartesian tensors (origi
nal and rotated, respectively) by b ;.W(n) and I ;,W(n), where the 
indices p and q take the in tegral values from 1 to 2w + 1. The 
index (n) is to distinguish between the different irreducible 
tensors of rank r and weight w, since for w < rand r> 2 (ex
cept for r = 3 and w = 0) there are more than one of these 
irreducible tensors. With this notation the results of the pre
sent calculation can be expressed as follows: 

I ;,W(n) = IIa:m'mD ~'m (a(Jy) , (5) 
m' m 

where the coefficients a;m'm are the same functions of the 
components b ~W(n) for all irreducible tensors of weight w. 
The effects of rand n come in implicitly through the b ~W(n), 
which are functions of the rank-r components Bitil ... i" and 
different values of (n) correspond to different functions. The 

TABLE III. Valuesof~ml' 

:< 
0 
1 

o 
1 
2 

o 
1 
2 
3 

o 
1 
2 
3 
4 

2 

0 0 
1 -i 

-V273 0 
o 0 
1 -i 

o 
- il\ll5 
o 

o 
o 
-il\l7 
o 

-2/\15 
o 
V273 
o 

o 
- 31\114 
o 
1/\12 
o 

3 

-\12 
0 

o 
-I 
o 

o 
1/\115 
o 
1 

-21\170 
o 
o 
o 
1 
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4 

w=1 

w=2 

- yIl7j 
o 
-I 

w=3 

o 
o 
-iV273 
o 

w=4 

81\170 
o 
-21\17 
o 
o 

5 

o 
i 
o 

functions A ;:% ... ;m'm in Eq. (2) can be obtained from the func
tions a;m'm by embedding the irreducible components in the 
rank-r space.3 The functions a;m'm are given in the next sec
tion, and the functions b ~W(n) are already available.3 

III. RESULTS 
We define the independent components b ~'W(n) and 

1~·W(n) according to the scheme that was used previously.3 It 
turns out that Eqs. (5) can be expressed in the following way: 

I ~w = I y~, ~ml N:;'~ [ D ~'m (a(Jy) + (J;D ~'( _ m) (a(Jy)], 
m'lml 

where N:;'~ are functions of the components b ;'W(n) and 
satisfy 

(6) 

(7) 

where the asterisk indicates complex conjugation. y~" a qlml ' 

and (J : are numerical coefficients, and they satisfy 

yga~ = I, (8) 

(9) 

Values of these numerical coefficients are given in Tables I, 
II, and III, and the functions N:;'~ are in Eqs. (10)-( 14); these 
functions hold for all r;;'w. The composite coefficients 
y~,a~ml N:;'~ can befactored into coefficients~" a:lml' and 
N:;'~ in many different ways. We have chosen a factoring that 
seems to be convenient: 

(10) 

N6' = b;", 
N~" = b ~., + ib ;-'; (11) 

6 7 8 9 

o 
-4/\115 
o 

-21\15 
o 
-V273 
o 

o 
4il\ll5 
o 

o 

o 
o 
-il\l7 
o 
-i 

o 
4/\114 
o 
o 
o 

o 

o 
3il\ll4 
o 
i\l12 
o 

81\170 
o 
21\17 
o 
o 

o 
- 4il\ll4 
o 
o 
o 
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N '(/ = b ~,2 + b ~2, 

N~,2 = b? + ib?, (12) 
N;-2 = b ? + 2ib ;,2 _ b ~2; 

N;;3 = _ (b ;,3 + b ~,3), 
N~,3 = b ;,3 + ib ;,3, (13) 
N ;,3 = b ;,3 + 2ib ~3 _ b ~3, 
N;,3 = 4ib ~,3 _ 4b ;,3 _ b ;,3 + ib ;-3; 

N;;4=bt+bt, 
N ~,4 = b ~4 + ib ~,4, 
N;,4 = - 2ib ~,4 + b t - 2ib ;,4 - b ~'\ (14) 
N;,4 = 4b;-4 + 3b ~4 _ 4ib ;,4 _ 3ib ~,4, 
Nt = 4ib ~,4 - 8b ;,4 - b t - 4ib ;,4 - b ~,4, 

The coefficients given in Tables II and III correspond to 
the Euler angles as defined by Rose, I and we have taken a, (3, 
and r to be the angles required to bring the body coordinates 
into coincidence with the laboratory coordinates, Therefore, 
(3 and a are the ordinary spherical angles (polar and azi
muthal, respectively) giving the laboratory z axis in the body 
coordinates, It will sometimes be more convenient to use the 
angles representing the orientation of the body coordinates 
in the laboratory coordinates, i.e" to use the rotation re
quired to bring the laboratory coordinates into coincidence 
with the body coordinates, We designate these latter Euler 
angles, ¢, 0, and X, It follows that ¢, 0, X are, respectively, 
- r, - (3, and - a, ° and ¢ are the polar and azimuthal 

angles (respectively) of the body z axis in the laboratory co
ordinates, The results given in Tables II and III then apply if 
D ~!., (¢oX ) replaces D ~'m (a(3r) in Eqs, (6), 

IV. APPLICATION TO THE ENERGY OF AN OCTUPOLE 

We illustrate a simple application of the preceding re
sults by considering an equation for the energy of an octu
pole as function of the orientation of the octupole in a field 
whose potential has nonzero third-order derivatives. 

The octupole is a completely symmetric third-rank ten
sor aijk' It interacts with the third-order gradient <Pijk of the 
potential <P, These gradient terms are also the components of 
a completely symmetric tensor. The energy of interaction of 
the octupole and the field can be expressed as the following 
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scalar product4
: 

U - a <P - 6 3,lcp 3,1 + 6 3,34> 3,3 (15) 
- Uk ijk - Uk Uk ijk ijk , 

where the symbols 6 t~ ,etc., designate the isotypic spaces, If 
we use the notation o~'w and ¢ ~,w to represent the irreducible 
components, we have 

6 3. 14> 3,1 = 9(03,1'" 3,1 + 03,1", 3,1 + 03,1", .1,1) (16) 
Ijk Ijk I 'I' I 2 'I' 2 3 'I' 3 , 

6 3,36 3,3 = 403,3", 3,3 + 403,3.J. 3,3 + 403,3", 3,3 + 603,3",3,.1 
Ijk Ijk I 'I' I 2 'I' 2 3 'I' 3 4 'I' 4 

+ 4o~,3¢ ~,3 + 4o~,3¢ ~,3 + 4o~,3¢ j,3 

+ oj"¢ ~,3 + 0~,3¢ j,3 + oi,3¢ ~,3 + o?¢ i· J 

( 17) 

Suppose that these tensors are expressed in a coordinate 
system which has been defined for the field tensor <PUk and 
that the octupole components, in a coordinate system de
fined for the octupole, are B'/k (reducible) and b ~,w (irreduci
ble), If the Euler angles a, (3, r are the angles through which 
the octupole coordinates must be rotated to obtain coinci
dence with the field coordinates, then the components o~,w 
that go into Eqs, (16) and (17) are given by Eqs. (6), (11), and 
(13), Substitution ofEqs. (16) and (17) into Eq, (15) then gives 
U as a function of the orientation of the field coordinates in 
the octupole system (that is, a and (3 are the spherical angles 
of the field z axis in the octupole coordinates), Substitution of 
D ~!., (¢oX ) in place of D ~'m (a(3r) gives an equation express
ing U in terms of the orientation of the octupole coordinates 
in the field coordinates (that is, ¢ and ° are the spherical 
angles of the octupole z axis in the field coordinates), 

1M, E. Rose, Elementay Theory of Angular Momentum IWiley, New York, 
1957). 

20. M. Brink and G. R, Satchler, Angular Momentum, 2nd ed. IOxford, 
London, 1968). 

3MuchereC. Russ and C. A, Hollingsworth, J. Math. Phys. 22,1025(1981), 
Part I. 

'We should note that rnutipole tensors are often defined so that they are 
traceless and are, therefore, irreducible. For an octupole tensor so defined 
only the weight-3 part would occur in Eq. liS). If <P obeys the Laplace 
equation, then (p tl is zero, and 0 tl has no effect anyway, 
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averages 
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Results from the two earlier papers in this series are used to investigate some average tensorial 
properties of systems in terms of the tensorial properties of their subsystems. Specia~ attention is 
given to the Boltzmann distribution in which the orientation energy of a subsystem is assumed to 
be expressible as a power series in the components of a single vector which is fixed in the 
laboratory system. The orientation probability density is obtained in general form for 
subsystems with no symmetry (point group e I)' and they are given in more explicit form for a 
few cases of higher symmetry. General expressions for tensor averages are given, and they are 
applied to a special case as an example. 

PACS numbers: 02.90. + p, 05.90. + m, 03.40. - t 

I. INTRODUCTION 

In this paper we shall use some results given in earlier 
publications \,2 to calculate some average tensorial properties 
of systems in terms of the tensorial properties of their subsys
tems, For convenience we restrict our consideration to sys
tems with only one type of subsystem. Let L j ,,, and B j " be the 
tensor components of a subsystem in the laboratory and sub
system (body) coordinates, respectively. Let I ~w and b ;.w be 
the corresponding irreducible components. ' Suppose that 
the angular orientations of the subsystems relative to the 
laboratory basis are given in terms of the probability density 
W(a/3y), or W(¢OX), where a,/3,y and ¢,O,X are the Euler 
angles defined previously.2 Further, suppose that W is ex
panded in terms of the generalized spherical functions as 
follows: 

W(¢Ox) = I. g::;'m D::;'m(a/3y) 
wm'm 

= I. g::;'m D ~'!:,. (¢OX)· 
wm'm 

Also, we have 

I "w - "w D W (/3) - "IV D w* (A.O ) q - Laqm'm m'm a r - Laqm'm mm' 'f' X· 
m'm m'm 

Averaging over all the subsystems gives 

(I ~w> = JI ~wW dfl 

(1) 

(2) 

817"2 "IV ".u'- 817"2" w* W (3) = -2--1 k..aqm'mom'm = -2--1 k..aqm,gm'm. W+ m'm W+ m'm 

The averages (L j", > can be obtained from the expressions 
which give the tensor components in terms of their irreduci
ble parts.' 

Any indicial symmetry possessed by the tensors, and 
any geometrical symmetry possessed by the subsystems, will 
provide simplification via the coefficients a:m'm' while any 
geometrical symmetry possessed by W will affect the coeffi
cientsg:;;'m' We note the following important special cases of 
the effects of geometrical symmetry: Ifthe subsystems have a 
en axis, then all the a~;"'m with W < n are zero unless m' = O. 

If W has a en axis, then all g:~'m with W < n are zero unless 
m = O. If the subsystems have a center of inversion, then 
only the a~m'm with even ware nonzero. If W has a center of 
inversion, then only theg~'m with even ware nonzero. Note 
that 

and that this first term in Eq. (1) corresponds to random 
orientation, 

(4) 

Often the quantities of interest are composed of scalar 
products of the property tensors L"" of the subsystems and 
some physical tensors F, ... , Gj ", , etc., fixed in the laboratory 
coordinates. The averages of such scalar products are the 
scalar products of the averages (L j". > with the tensors 
Fj", , G,." , etc. Some examples of this type are considered in 
the following sections. In order to keep the algebra from 
becoming too cumbersome, we shall consider only Boltz
mann distributions in which the orientation energy is as
sumed to be a function of a single vector which is fixed in the 
laboratory coordinates. Extension to more complicated 
problems would, in many cases, be straightforward in princi
ple. Our considerations are limited to ranks 4 and below, 
since explicit expressions for the reducible tensors in terms 
of the irreducible components are not available for higher 
ranks, 

II. THE PROBABILITY DENSITY FUNCTION 

We assume that the orientation energy u can be ex
pressed as a power series in the components of some vector F, 
which is fixed in the laboratory system. For convenience we 
take the laboratory z axis to be in the direction of F, so that 
the series can be expressed in terms of Fz ( = F) as follows: 

u = - (LzF + L zzF 2 + L zzzF 3 + LzzzzF4 + ... ), (5) 

where the coefficients L z ... are the components of some prop
erty tensor of the subsystems. 

We have, taking ¢ = 0 because of the cylindrical sym
metry, 
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W(tPOx) = (l/q) exp( - ulkT) 

= (l/q)Ih '::.'oDg'!,(tPOX), 
wm' 

(6) 
(11) 

L = 3/ 3,1 _/ 3,3 _/ 3,3 
zxz 3 2 6t 

where q is a partition function given by L = 3/ 4,0 - 6(/4,2 + /4,2) _/4,4 _/4,4 
zzzz 1 4 4 8 . 

q = f exp[ - ulkT] dfJ = 8rh?x" 

and the coefficients in Eq. (1) are given by 

(7) The irreducible components 1 ~w are known2 in terms of the 
subsystem irreducible components b ~w and the functions 
D '::.'m' In turn, the components b ~w are known I in terms of 
the reducible subsystem components Bi ... . Expressions for q 
and the coefficients of h '::.'0 can now be obtained. The most 
general results are those for subsystems with no geometric 
symmetry (point group Cd. These results are given in the 
next subsection. All the results for subsystems with symme
try can be obtained by direct substitution into these general 
results. This is illustrated subsequently by considering 
examples. 

g'::.,o = h '::.'o/q· 

We also use the power series 

W(tPOx) = (l/q)ICnFn, 

where by the Maclaurin expansion we have 

Co = 1, 

C I =LJkT, 

Cz = !(Lz lkT)2 + LzJkT, 

C3 = f,(LJkT)3 + LzL zJ(kT)2 + Lzzz/kT, 

C4 = -14(Lz/kT)4 + !(L ;Lzz )/(kT)3 

+ !(2LzL zzz + L;z )/(kT)2 + Lzzzz/kT. 

(8) 

(9) 

(10) 

A. Subsystems with no geometric symmetry (point 
groupe,) 

It is found that 

h ~ m'O = (- It'h '::."'0' 

and we use the following notation: 

4 HW 
h tv _ ~ m's 

m'O - L--' 
s~o(kT)S 

(12) 

(13) Since Eq. (5) is also a Maclaurin series, the tensors L z ... 

must be completely symmetric in their indices. Therefore, 

L z =n,l, 
The expressions for the nonzero H '::.'s and for q are listed 
below in terms of the N;;'':' given previousll: 

1032 

H?x, = 1, 

Hg 1 = N~,oF2 + 3Ni/F4, 

Hgz = [N \'W l,l* + (N 6· 1)2]F2/6 + [30N~'W 6,1 + 15Nr1*N :,1 

+ 15N~,IN\,I* + N~,z*N~,2 + 3(N~,2)Z + 15(N~,Of]F4/30, 
Hg

3 
= [N~,2*(N:,1)2 + N~,2(N:,I.)2 + 1O(N6,1)2N~'o 

+ 2N~,zN:,I*N:,1 - 4N~,2(N~,1)2 + lONl,I*N:,IN~,O]F4/60, 
H~ = [N\,I*f(N\,1)2 + 2Nl,IN\,I*(Nb,I)2 + (N6,1)4]F4/120, 

H II = (- Nl,lF - 3N~,IF3)/\!'2, 

Hl2 = (-N~'Wl,l* - 2Ni,2Nb· 1 -N~'Wl,l- 5Nl,IN~,O)F3/5\!'2, 

H\3 = [- (N\,1)2N\,I* -Nl,I(Nb,I)2]F3/1O\!'2, 

Hbl =Nb,IF+ 3N~,IF3, 

H62 = (Nt,2*N\,1 + Nt,2N\,I* - 2N~,2Nb,1 + 5N6,IN~,O)F3/5, 

H 63 = [N \"N l,I*N b,l + (N b· 1nF3/1O, 

Hil = Ni,2F 2/\!'6 + (\!'6)Ni,2F 4
, 

H~2 = (N \,1)2F 2/2\!'6 + [3N~'W \,1* + 6N~,3N b,l - 3N~·3N \,1 + 42N~'Wl,1 
+ 4(N~,2)2 + 14N;,2N~'o + 4N~,2N~·2](\!'6)F4/84, 

H;3 = [3N;·Wl·1*N\,1 + N;,2(N6,1)2 + 4N~'W:'W6" + 2N~,2(N\,1)2 
+ 7(N:·lfN~·0](\!'6)F4/84, 

Hi4 = [(N \,1)3N \,1* + lO(N :.1)2(N 6,lf](\!'6)F 4 /1680, 
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Hil = - (v6)Ni·2F2/3 - 2(v6)Ni·2F 4, 

Hi2 = - Nl·Wb· IF 2Iv6 + (- 3N~·3Nl·I* - 6N~·3Nb·1 + 3N~·3NlI - 21N~·Wb·1 

- 21N~·Wl·I - 2N~·2Ni·2* - 2Ni·2N~·2 + 14Ni·2N~·O)(v2)F4/42, 
Hi3 = [N~·2Nl·I*Nb·1 + 2Ni·2Nl· I*Nl· I - Ni·2*(Nl· I)2 - 3Ni·2(Nb· I)2 

+ N2.2N I.IN 1.1 _ 7N I.IN 1.IN 2.O](, /6)F4/42 
010 IOOV , 

H~4 = [ - (Nl·I)2Nl· I*N b·1 - Nl· I(Nb· I)3](V6)F4/84, 

H~I = - N~·2F2 _ 6N~·2F4, 

H~2 = [- Nl·I*Nl· I + 2(Nb· I)2]F2/6 + [9N~·3*Nl·I + 9N~·3Nl·I* + 18N~·3Nb·1 
+ 84N~·INb·1 - 21N~·I*Nl·I - 21Ni·Wl· I* - 2N~·2*N~·2 + 4N~·2*N~·2 
- 42N~·2N~·o + 6(N~·2)2]F4/42, 

H~3 = [ - N~·2*(Nl·I)2 - N~·2(N l·l*f + 2N;·2*Nl·Wb·1 + 2N;·2Nl· I*N b·1 

_ 5N~·2Nl·I*Nl·I - llN~·2(Nb·I)2 -7Nl·I*Nl·W~·o 

+ 14(N b·I)2N~·O]F4/42, 

H~ = [ - (Nl· I*f(Nl· I)2 + Nl·Wl· I*(Nb· I)2 + 2(Nb· I)4]F4/84, 

Hjl = Nj,3F 3/2V5, 

Hj2 = -N~·Wl·IF3/2V5, 

Hj3 = - (Nl· I)3F3/12v5, 

H~I = 3N~·3F3Iv30, 

H~2 = (N~.2Nb·1 + 2N;·2Nl· I)F3Iv30, 

H~3 = (Nl·I)2Nb· IF 3/2v30, 

H~I = - (v3)N~·3F3/2, 

H~2 = (N~·2Nl·I* - 8N;·2Nb·1 + 6N~·2Nl·I)F3/1OV3, 
H~3 = [(N l·lfN l·l* - 4Nl· I(Nb· I)2]F3/20v3, 

H~I =N~·3F\ 

H~2 = [ - N;·2*N l·1 - N;·2Nl· I* - 3N~·2Nb·1 ]F 3/5, 

H~3 = [- 3Nl·Wl·I*Nb·1 + 2(Nb· I)3]F3/30, 

H!I = N!·4F 4Iv70, 

H!2 = [2Nj·3N l·1 + (N~.2nF4/2v70, 
H!3 = N~·2(N l·I)2F4/2V70, 

H~ = (N l·I)4F4/24V70, 

Hjl = 2Nj·4F4Iv35, 

Hj2 = ( - Nj·3N b·1 - 3N~·3N l·1 - 2N~·2N;·2)F4/2V35, 

Hj3 = [ - N;·2(N l·I)2 - N~·2N l'W b·1 ]F4/2V35, 

Hj4 = - (Nl·TNb·IF4/12v35, 

Hil = (vlO)Ni.4F 4/5, 

Hi2 = [-Nj·3Nl· I* + 12N~·3Nb·1 + 15N~·3*Nl·I + 8(N;·2)2 

- 6N~·2N~·2]F4/14VlO, 

Hi3 = [- N~·2Nl·INl·I* + 8N;·2Nl·Wb·1 + 2N~·2(Nb·I)2 
- 3N~·2(N:·I)2]F4/14VlO, 

Hi4 = [- (Nl·I)3Nl· I* + 6(Nl· I)2(Nb· I)2]F4/86vlO, 

Hil = - 2Ni·4F 4Iv5, 
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+ 6N~·2N :.IN b· 1 ]F 4/14VS, 

Hi4 = [6(N~·1)2N~·I*Nb·J - 8N:· J(Nb· 1)3]F4/172VS, 

Hill = - Nri.4F 4
, 

H4 = [_ lSN 3
.
3*N 1.J _ lSN 3.3N J·1* + 40N 3•3N 1• J + N2.2*N2.2 02 J J I I 0022 

- 16Ni·2*Ni·2 + 18(Nk2)]F4/70, 

H63 = [N~·2*(N:.1)2 + N~·2(N:.l*f - 16Ni·2*N:·Wb· 1 - 16Ni,2N~,I*Nb,1 

+ 12N~,2N~,I*N:,1 _ 24N~,2(Nb,I)2]F4/140, 

H~ = [3(N:,lf(N:,l*)2 - 24N:,lN:,l*(Nb,I)2 + 8(Nb,l)4]F4/840. 

The partition function is 

q = Srli + N~,oF2IkT + [F2/6(kT)2](N:,lN~,l* + (Nb,lf] 

+ 3N6,oF41kT + [F 4/1O(kTf] [lSN6'Wb,l + SN~,l*N:,1 + SN~'W:,I* 
+ N~,2*N~,2/3 + (N~,2)2 + 5(N~,Of] + [F4/60(kT)3] [N~,2*(N ~,1)2 

+N~,2(N:,l*)2 + 2N~,2N~,l*N:,l _ 4N~·2(Nb,I)2 + lON:,l*N:'W~'o 
+ lO(N b,l)2N~'O] + [F4/120(kT)4] [(N :,I*)2(N ~,1)2 

+ 2N:'W:,I*(Nb,I)2 + (Nb,l)4]}. 

B. Subsystems with point symmetries T, 0, and Oh 

Since the tensors Bj ... are symmetric in their indices, the 
independent components are related as follows3

: 

Bxx = Byy = Bzz , 

Bxxxx = Byyyy = Bzzzz ' 

Bxxyy = Bxxzz = Byyzz · 

(14) 

The nonzero irreducible components b ~w are given by the 
following relations: 

b 2,0 = Bxx , 

b 4.O(n) = (2Bxxyy + Bxxxx)/S, n=1,2,3, (IS) 

b 4,4-b 4,4-b 4.4-(3B B )IS 3-4-8- xxyy-xxxx' 

The following results for q and the nonzero coefficients 
h ~'o are obtained by use of the results given in Sec. IIA: 

q = Sri 1 + (b 2.o/2kT)2 + H(3b 4,O/2kT)] 

+ (b 2,O/2kT)2]F4 + ... J, (16) 

h 60 = - b j,4F4/(2kT) + "', 
h!o =h"-40 = -(-V'70)bj.4F4/(28kT)+.... (17) 

c. Subsystems with point symmetries Dnh with n>5 

In this case we have the independent components 
Bzz ' Bzzzz , and the following4

: 

Bxx = Byy , 

Bxxxx = Byyyy = 3Bxxyy ' (18) 

Also, we have 

b 2,0 = (2Bxx + Bzz )/3, 

b i,2 = b ~.2 = (Bxx - Bzz )/3, 

b 4,O(n) = (8Bxxyy + 4Bxxzz + Bzzzzi/1S, n = 1,2,3, (19) 
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b 4.2(n)=b 4,2( )=(4B -B -B )/21 -1 6 1 4 n xxyy xxzz zzzz ,n - " .. , 
b 4,4 = -!b 4,4 = -!b 4,4 - (3B - 6B B )/3S .3 4 4 4 8 - xxyy xxzz + zzzz , 

q = 817'2 1 + __ F2 { 
b 2.0 

2kT 
+ [S(b 2,0)2 + 4(b i,2)2 

40(kT)2 
3b 4.0] } 

+ 4kT F4 + .... (20) 

The nonzero coefficients h ~'o are 

h ~ = _ b i·2F 2 + [ (b i· 2
)2 _ b 2.ob i·2 

_ 3b i·
2 

]F4 ... 
kT 7(kT)2 2(kT)2 kT +, 

(21) 

4 [ 9(b i· 2
)2 2b j.4] 4 

h 00 = 3S(kTf + -u F + .... 

III. TENSOR AVERAGES 

Suppose that !/'j ... are tensor properties of the subsys
tems expressed in the laboratory coordinates. They will in 
general depend upon the vector F and so can be expressed 
(through terms of rank 4) as follows: 

!/'j = L j + Lj;zF + L j;zzF 2 + i,';zzzF 3 + "', 
J A A A 2 

,!/ jj = Lij + Lij;zF + Ljj;zzF + "', 
,:.:t'ijk = Lijk + i,jk;J + "', (22) 

!/' ijk! = [ijkl + "', 
where the tensors Lj ... have the circumflex accent to ~istin
guish them from the tensors in Eq. (S). The tensors L j ... are 
completely symmetric in the indices which are to the right of 
the semicolon. The type of symmetry which applies to indi
ces on the left of the semicolon is that of the !t" j .... 

The following averages can be nonzero when W(¢8X) 
has the cylindrical symmetry possessed by the functions in 
Sec. II: 
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(Lxx;zz) = (~y;zz), (Lzz;zz ); 

(Lxxz ) = (Lyyz ), (Lzzz ), 

(Lxxz;z) = (Lyyz;z) , (Lzzz.z); 

(Lxxzz ) = (Lyyzz ), (LzzzJ, 

(Lxxxx) = (Lyyyy) = 3 (Lxxyy ). 

In what follows we use iiit)q(n) to r~resent the irreduci
ble components of the reducible tensor Li, ... iR;iR, , ... i,' whereR 
is the rank of X'i ... i

R 
and is needed as an additional label to 

identify the Li ... t~ which the irreducible component belongs. 
We use biit)q(n) to represent the irreducible components in 
the subsystem coordinates. The reducible components of 
I;, ... iR;i

R
, , ••. i, in the subsystem coordinates are designated 

Bi, ... iH;iR.I,··ir" 

The following constitutes an outline of a convenient 
procedure for calculating the averages (X' i ... ): 

(i) The indicial symmetry of the tensor X'i ... and the 
geometric symmetry of the subsystem are used t~.obtain the 
relationships between the nonzero components Bi, ... i

R
;, .•• 

(ii) The ~nzero components b iit)q(n) are obtained in 
terms of the Bi, ... i

R
; .... 

(iii) The iiit)q (n) are expressed in terms of the b rit)q (n) 
and the D ::;'m . 

(iv) The Li, ... i
R

, ... are expresed in terms of the liit)q(n). 
(v) Expressions 

,Yi, .. i
R 

= I A ;''!'mD::;'::,,(¢OX) (23) 

are then obtain;'d,';here the coefficients are linear combina
tions of the coefficients a:m'm occurring in Eq. (2). (Actually 
the coefficients A ;''!'m should bear the indices; \ ... ; R also, but 
we have suppressed these.) Note that Eq. (23) may be useful 
per se, since it gives the tensor X'i ... as a function of the 
orientation of the subsystem relative to the vector F. 

(vi) The tensor average is given by 

( Y' ) - 8r " (_I_} r.w* w 
i, .. ·i R - ~ 2 I m'mgm'm' 

rwmm W + 
(24) 

The averages can all be expressed as the sum of a zero
weight part that corresponds to random orientation of the 
subsystems and does not, therefore, show an explicit tem
perature dependence and of a nonrandom part that shows an 
explicit temperature dependence. That is, we can write 

( (P ) ( )0 ( ) T 
,2 il, .. i R = L it "' iH + L i1 "' iR ' (25) 

where 

(26) 

and 

( if) T _ 8 2 " ( I )A r,W* W <.L it, .. i n - 1T ~ --- m'mgm'm. 
r,w#O,m'm 2w + I 

(27) 

It should be noted that the explicit temperature depen
dence indicated by the notation in Eq. (25) does not necessar-
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ily express the total effect of the temperature, since in general 
the tensor components Bi ... will have a temperature depen
dence, which we are not considering in our present 
treatment. 

Example 

As an illustration we given the results for the case of 
completely symmetric X'i ... and subsystem symmetries 0 
and 0h' (These two symmetries give the same results for 
completely symmetric X'i .... ) 

The results are as follows5
: 

(X'z)O = bfi? + 3bti?F3 + "', 
(X'z)T = 4bti~bj,4F7/(21kT) + ... ; (28) 

(X' xx)O = (X' yy)O = b~? + b~?(I)F2 + "', 
(X'zz)O = bfi? + [b~?(I) + 2b~?(2)]F2 + "', 
(X'zJT= -2(X'xx)T= _2(X'yy)T 

= 4b~~bj·4F6/(21kT) ... , (29) 

(X' zzz)O = 3(X' xxz)O = 3 (X' yyz)O = 3b tj?F + "', 
(X'zzz)T = - 2(X'xxz)T = - 2(X'yyz)T 

= 4bj~bj,4F5/(21kT) + ... ; (30) 

( X' zzzz ) ° = (X' xxxx ) 0 = (X' yyyy ) 0 

= 3 (X' XXyy)O = 3(X' xxzz)O = 3 (X' yyzJo 
~40 

= 3b(4) + "', 
( X' zzzz> T = ~ ( X' xxxx ) T = ~ ( X' yyyy ) T = 8 ( X' xxyy V 

= - 2(X'xxzz)T = - 2(X'yyzz)T 

= 4b~~bj,4F4/(21kT) + .... (31) 

IV. A DESCRIPTION OF POSSIBLE APPLICATIONS 

In order to give the foregoing results more concrete sig
nificance, we shall briefly discuss some possible applications 
and explain the physical meanings of the various tensors that 
occur. 

Perhaps the simplest examples are those in which the 
subsystem is a molecule (or small particle) in a strong, homo
geneous, static electric field. In this case Fz is the static field, 
and Eq. (5) gives the energy U of the molecule in the field as a 
function of the magnitude of the field and the orientation of 
the molecule relative to the field. L z, L zz , L zzz ' and L zzzz are 
the dipole moment, the polarizability, and the first and sec
ond hyperpolarizabilities,6 respectively, in the absence of the 
field and expressed in the laboratory coordinates. They are 
completely symmetric tensors. I ~w are the irreducible com
ponents of these tensors. The corresponding tensors in the 
molecular coordinates are B i ... and b ~w. 

The tensors X'i ... are some properties of the molecule in 
the presence of the static field. We shall consider two exam
ples of these. 

First, suppose that X' i' X' U' Y' Uk' and X' Ukl are the 
dipole and higher multipole moments of the molecule in the 
static field. Equations .122) give these moments as functions 
offield. 6 The tensors L i ... (no semicolon) are the multipole 
moments in the absence of the field. The tensors L; ... (with 
semicolon) give the effect of the field on the moments. The 
irreducible tensors corresponding to L; ... with and without 
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the semicolon, respectively, are ifR}q(r = R ) and 
i;"it)q(n) (r#R ). The (n) must be indicated in the last of the 
preceding tensors because those tensors are not in general 
symmetric in indices that occur on opposite sides of the semi
colon. The analogous notations for the tensors in the molec
ular coordinates are iii.;;... (with and without semicolon), b fR')q 
andb (it)q(n). Once the L i ... in Eqs. (22) have been expressed in 
terms of the b ~w and the b (it)q(n), this equation gives the 
multi poles as functions of the static field and the angular 
orientations of the molecule relative to that field's direction. 
The molecular multipoles are usually (but not always) de
fined as irreducible tensors.6

•
7 Usually only those with 

weight equal to the rank are considered. They are, therefore, 
usually the tensors b fRfq. If one is interested in the interac
tion of the molecule with fields that satisfies Laplace's equa
tion, the tensors b fR')q with w#R have no effect. The tensors 
b (it)q(n) (r#R ) give the effect of the static field on the multi
pole of rank R, and they are symmetric in the sets of R indi
ces and r-R indices separately, but not with respect to inter
change of indices between these sets. 

The tensor averages (2'j ... ) would be the time averages 
of the multipoles of an individual molecule, or the ensemble 
averages of a system of independent molecules, with a Boltz
mann distribution of angular orientations in the field. 

As a second illustration of the possible meanings of the 
tensors 2' i ... , suppose that they are frequency-dependent po
larizabilities and hyperpolarizabilities. That is, suppose they 
represent the response of the molecule to a periodic field, 
which may be in an arbitrary direction relative to the static 
field Fz • Equations (22) then express the effect of the static 
field upon these frequency dependent tensors. L ... (no semi
colon) are these tensor in the absence of the static field; b fR')q 
are the corresponding i.r.reducible tensors in the molecular 
coordinates. Once the L i ... (with and without the semicolon) 
have been expressed in terms of the molecular tensors 
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b ;.w, b fR,)q' and b (R)q(n), then Eqs. (22) give the frequency 
dependent polarizabilites and hyperpolarizabilities 2' i ... as 
functions of the magnitude of the static field and the orienta
tion of the molecule relative to that field. The anisotropy 
produced by the static field leads to the Kerr effect. If the 
periodic field is of sufficiently high frequency, even though it 
may be a strong field, its effect on the Boltzmann distribu
tion produced by the static field can be neglected. (2' i ... ) are 
the averages of the frequency-dependent polarizabiIities and 
hyperpolarizabilities. 

Finally, we mention that the partition function q holds 
for any system of independent subsystems whose energies 
depend upon a vector in accordance with Eq. (5), provided 
these subsystems are free to attain thermal equilibrium with 
respect to the energy u. 

1M. C. Russ and C. A. Hollingsworth, J. Math. Phys. 22, 1025 (1981), Part 
I. 

2M. C. Russ and C. A. Hollingsworth, J. Math. Phys. 22, 1028 (1981), Part 
II. 

l A convenient table giving the relationships between the nonzero compo
nents of tensors through rank 4 and for each of the 32 point groups is given 
by R. R. Bires, Symmetry and Magnetism (North-Holland, Amsterdam, 
1964). 

4Since Dn. is the same as D~. for tensors of ranks less than n, one can use 
the point group Do •. See A. A. Reznik and C. A. Hollingsworth, J. Chern. 

Phys. 59, 2054 (1973). 
'Because of high symmetry of these subsystems it would be necessary to 
consider ranks through 8 to obtain a zero-weight term with a power of F 
equal to that of the lowest power in the nonrandom terms. 

6Actually the hyperpolarizabilities are defined as 2Luz and 6Lzm . See, for 
example, A. D. Buckingham, Quart. Rev. 13,183 (1959); also in Vol. XII 
of Advances in Chemical Physics (Wiley, Interscience, New York, 1967). 

7J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of 
Gases and Liquids (Wiley, New York, 1954). 
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A new procedure for deriving integrable Hamiltonians and their constants of the motion is 
introduced. We term this procedure the truncation program. Integrable Hamiltonians occurring 
in the truncation program possess constants of the motion which are polynomials in a 
perturbation parameter E. The relationship between this program and the Whittaker program in 
two degrees offreedom is discussed. Integrable Hamiltonians occurring in the Whittaker 
program (a generalization of Whittaker's work) possess constants of the motion which are 
polynomials in the momentum coordinates. Many previously known integrable Hamiltonians 
are derived. A new family of integrable double resonance Hamiltonians and a new family of 
integrable Hamiltonians of the form (Pi + p~ )/2 + V(q., q2) are derived. 

PACS numbers: 03.20. + i 

I. INTRODUCTION: INTEGRABLE HAMILTONIANS IN 
TWO DEGREES OF FREEDOM 

In spite of the scarcity of integrable Hamiltonians rela
tive to nonintegrable Hamiltonians, I several have been dis
covered either by construction2

-4 or by accident. 5,6 What fol
lows is a partial list of these Hamiltonians and some 
references to other systems in two and more degrees of 
freedom. 

The first systematic construction procedure was intro
duced by Whittaker. 2 He found all integrable Hamiltonians 
oftheform 

2 2 
C'fP= PI +P2 V( ) 
dl 2 + E ql' q2 , 

such that the second constant of the motion is linear or qua
dratic in momentum. Drach3 considered Hamiltonians of 
the form 

JY = P2P;' (ql' q2) + €V( q., q2)' 

and found all those which possessed constants of the motion 
which also were quadratic in momentum. In addition, he 
found a few with the same form such that the second con
stant of the motion is cubic in momentum. Havas4 (and refer
ences contained therein) listed all Hamiltonians of the form 

JY=gl\pi +gl7P1P2+g27P~ +€V(q .. q2)' 

where the g ij are functions of q I and q2' such that the Hamil
ton-Jacobi equation separates after a coordinate transfor
mation in the q plane. This is a generalization of Whittaker's 
work because all of Havas' constants of the motion are also 
quadratic in the momentum. 

In addition to the above integrable systems, others were 
obtained less systematically. The Toda lattice,5 

p2 +p2 
JY= 1 2 2 + deq, + Vlq, +eq,-v'Jq, +e- 2q,], 

for example, is an integrable (yet nonseparable in the sense 
noted above) Hamiltonian with a second constant of the mo
tion which is cubic in the momentum. Additional, possibly 

alPresent address: Fermi National Accelerator Lab, Box 500, Batavia, Illi-
nois 60510. 

nonseparable, integrable Hamiltonians have since been dis
covered. 6 The property shared by the systems in Ref. 6 is that 
the second constant of the motion is a polynomial inpi and 
P2' Consequently, the class of integrable Hamiltonians, of 
the form gl1Pi + gl2P1P2 + g27P~ + €V( ql' q2)' possessing 
this property contains all previously known integrable Ham
iltonians of this type. 

Single resonance Hamiltonians? comprise the last fam
ily of known integrable Hamiltonians: 

JY = H (11,12) + ! V M(II' I 2)eiMn."" 
M= - co 

where n·tP = nltPl + n2tP2' The second constant ofthe mo
tion, in this case, is given by K = n2Il - n 112' 

In this paper, a systematic method is presented which is 
used not only to construct many of the above systems, but in 
addition, it is used to construct whole new families of inte
grable Hamiltonians. At the foundation of the method is the 
perturbation theory of McNamara and Whiteman8 as ap
plied to Hamiltonians of the form JY = H (11,12) 

+ € V (II '/2' tP I' tP2)' In their papers, a perturbation expansion 
in € for the second constant of the motion is developed. In the 
present paper, the condition that the second constant of the 
motion be a polynomial in € of finite order is imposed (i.e., 
the perturbation expansion truncates). As a consequence, H, 
V, and the zero-order invariant (which is perturbed into the 
second constant of the motion) are required to satisfy special 
partial differential equations. In some cases, these equations 
can be solved to obtain families of integrable Hamiltonians. 

This method motivates the introduction of what we 
term the truncation program. The goal of the truncation pro
gram of order L is to derive all integrable Hamiltonians of 
the form H + € V (where H is integrable) such that the con
stants of the motion are polynomials in € of order <.L. 

Another method for deriving integrable Hamiltonians, 
we term the Whittaker program (a generalization of Whit
taker's work2). The goal of the Whittaker program of order 
M is to find all integrable Hamiltonians of the form 
(Pi + ... + p~ )/2 + V(q!>· .. ,qn) such that theN constants of 
the motion are polynomials in the momentum coordinates of 
order <.M. In this paper, the relationship between the trun-
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cation program and the Whittaker program is discussed in 
the case of two degrees of freedom. 

The organization of the paper is as follows. In Sec. II, 
Poisson coordinates are introduced. These coordinates are 
used in Sec. III to construct an operator which maps invar
iants of H into those for H + £ V. It is shown that this opera
tor possesses an undesirable property: It maps discontinuous 
functions into continuous functions. A new operator lacking 
this property is introduced in Sec. IV. It is shown under 
certain conditions that this operator also maps invariants of 
H into those for H + € V. In Sec. V, it is shown how this 
operator can be used to obtain integrable Hamiltonians and 
their second constants of the motion. The constants of the 
motion which result are shown to be polynomials in € of 
finite order. In Sec. VI, integrable Hamiltonians of the form 
(Pi + p~ )/2 + € V ( q l' ql) are considered. It is shown that if 
the second constant of the motion is a polynomial in € of 
finite order, that under one further assumption it also is a 
polynomial in momentum of finite order. In Sec. VII, sample 
potentials V satisfying these properties are derived. 

II. POISSON COORDINATES FROM ACTION ANGLE 
COORDINATES 

An integrable Hamiltonian H in N degrees of freedom 
possesses N constants of the motion! In' n = 1, ... ,N I. For 
such systems, there is an action-angle coordinate system 
such that 

(1 ) 

and 

(2) 

(where!, J are the Poisson brackets). The tPn coordinates are 
angle coordinates on the invariant torus generated by 
{In = I~,n = 1, ... ,N}. The time evolution on a torus is ob
tained by integrating 

dtPN dt =wn(I), (3) 

wherewn(I)=aH laIn' 
In addition to the In' there are N-l more time-indepen

dent invariants given by 

tPn = ~ - tPn + 1, n = 1, ... ,N - 1. (4) 
Wn Wn + 1 

The above quantities are invariants in the sense that 
dtPJdt = 0 [as can readily be verified using (3)]. To be a 
constant of the motion, however, it is necessary that the in
variant be differentiable everywhere on the phase space 
manifold.9 Clearly the tPn are not differentiable everywhere 
for they fail to be continuous at ¢n = O. Nevertheless, the 
invariants tPn can in special cases be used to form constants 
of the motion. For example, assume that 
H = H(mJ II + m2 I!.I3"'''/N) (where m l , m1 are integers). 
then an extra (i.e., in addition to 11, .•• ,1 N) constant of the 
motion is given by 

K = (Itlm ,/2(Izt,/2 sin (m1¢1 - m l¢2)' (5) 

A new canonical coordinate system can be introduced 
which uses as coordinates the 2N-1 invariants and an addi-
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tional coordinate termed a time coordinate. 10 A time coordi
nate Tis a function on phase space defined by dT Idt = 1, 
i.e., it is conjugate to H when used as a coordinate: 

{T,H}= dT =1. 
dt 

(6) 

For example, one choice for the time coordinate associated 
with (2) is given by 

T= A. (7) 
WI 

In general, it can be shown 10 that a new canonical coordinate 
system (On' Fn, n = 1, ... ,N, where (Bn, Fm I = 8nm ), which 
we term a Poisson coordinate system, can be formed from 
the invariants and T such that 

(8) 

()! = T, (9) 

with the remaining coordinates (Bn, Fn, n = 2, ... ,N) being 
invariants: 

\en,H 1 =0, 

\Fn,HI =0. 

(10) 

(11 ) 

The relationship (needed in a later section) between rpn' 
en' and rp n is obtained using two generating functions of the 
second kind, II 

N 

S! = IFI(I)e l , (12) 
I = I 

IV 

Sz = III(F)¢I' (13) 
1= ! 

where the FI are chosen to be arbitrary differentiable func
tions of the II with the restriction that they be functionally 
independent and FI = H. Since the FI are N independent 
functions of the II' the I, are likewise N independent func
tions of the Fl' Consequently, the coordinates conjugate to 
the F, are obtained from 

e - aS2 (14) 
n - aF ' 

n 

NaIl 
en = I¢,-. (15) 

1= I aFn 

Alternatively, the angle coordinates ¢n can be expressed in 
terms of the en coordinates (rpn = aStlaIn ): 

N aFt 
rp" = 2: ()t -. (16) ,= laIn 

The invariants tPn are simply linear combinations of the Bn 
(n=2, ... ,N). 

III. INVARIANTS OF H + cV 

Given the invariants of H (namely F", .. ,FN , fJ2 , ... ,eN ), 

an expression can be obtained for the invariants of H + E V 
(where Vis a differentiable function on phase space and € is a 
tracking parameter).8 An invariant denoted by ,~, of 
H + €Vmustsatisfy 

\5Y,H+£V) =0. (17) 

In Poisson coordinates, (17) becomes 
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a% - + E[%, vI = o. 
aT 

(18) 

Integration of (18) with respect to T, holding the remaining 
Poisson coordinates fixed, yields 

iT a% iT 
dT- + E dT[%, VI = 0, 

To aT To 
(19) 

where To is a constant. Application of the fundamental theo
rem of calculus to (19) yields 

%IT-%ITo +E(dT[%, VI =0. (20) 
JTo 

Equation (20) can be rewritten as 

R (%) = %ITo' 

where R ( ) is an operator defined by 

R (%) = % - ED (%), 

with 

D(%) = (dT[ V, %1. 
JTo 

(21) 

(22) 

(23) 

Equation (21) shows that R maps invariants of H + EVinto 
invariants of H. This follows because % 1 To depends only on 
the remaining 2N-l coordinates, which are also invariants of 
H: i.e., 

(24) 

where K (, , ... ) is an arbitrary function of its arguments. In 
addition, the solution to (18) exists and is unique (assuming 
the boundary condition %1 To = K).'2 Consequently, Eq. 
(24) can be inverted to obtain 

% = R -'(K). (25) 

Equation (25) shows that R -I maps invariants of H into in
variants of H + EV [the perturbative expansion of(25) ap
pears in Ref. 8]. 

Since constants of the motion must be continuous func
tions, it is desirable that all operators, such as Rand D, map 
continuous functions into continuous functions. The main 
disadvantage of R, however, is that it maps continuous func
tions into discontinuous functions. Consider, for example, 
an N = 2 system where V = sin(cP, + cP2)' Assuming To = 0, 
one obtains using (21) 

R (H + EV) = H + EVI7;,=O' (26) 

where 

[ 

aF2 + aF2 ] 
VI 7;, = 0 = sin aF:

I, ~;2 (UJ2cPI - UJ l cP2)' 
-UJ2- -UJ I 
all aI2 

(27) 

The Hamiltonian H + E Vis continuous, yet a necessary con
dition for VI 7;, to be continuous is that UJ2, UJ I be commensu
rable. This is not the case if H is nonlinear in the action 
coordinates. Consequently, R maps continuous functions 
into discontinuous functions for most H. Using R - I, there
fore, the constants of the motion for H + E V can only be 
generated from discontinuous invariants. 

This is the motivation for seeking an operator which 
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maps continuous functions into continuous functions. Such 
as operator is constructed in the next section. 

IV. DOMAIN AND EXISTENCE OF A-I 
A new operation 15 (in terms of which R = 1 - ED ), 

analogous to D, is defined here by showing explicitly how it 
operates on C 00 functions. LetA (cP,I) be such a function, then 

A(cP.I)= f (28) 

where An, ... nN is a Coo function of the In. For simplicity of 
notation, (28) can be rewritten as 

(29) 
n 

where n = (n" •.. ,nN) and n·cP = nlcPl + + nNcPN' Like
wise, the Fourier expansion for V is given by 

(30) 

with Vo = O. (For the purposes of this paper, it is no loss of 
generality to assume Vo = 0, because the Vo component can 
be absorbed into H, i.e., H_H + EVo.) 

The result of operating D ( ) on A is obtained by calcu
lating [ V, A I, converting it to Poisson coordinates using 
(16), and integrating with respect to T(equivalently 81) hold
ing the remaining Poisson coordinates fixed. The resulting 
expression is given by 

D(A) = r ~ ei
{3 •• (J [ein.wT - ein,wTo] + Zo(T - To), 

n7"O n·UJ 

where 
aH 

+ n -
N aIN' 

(31) 

(32) 

Zn = r[VI VI .A I _ n -A I _ n VI_ n • Vd, (33) 
I 

N N aF 
Pn ·8== L 81' L -I' ny, (34) 

I' = 2 v= I alv 
a a 

VI = II - + ... + IN -, (35) 
all aIN 

and H is assumed to be nondegenerate. \3 Since the lower 
limit of integration in (23) causes the mapping of continuous 
functions into discontinuous functions, one is motivated to 
consider the following operator (analogous to D): 

h Z. 
D (A )= L _n em."', (36) 

n7"O n·UJ 

where the ZoTterm is deleted from (31) because the function 
T is also discontinuous. Assuming (36) converges, 15 maps 
continuous functions into continuous functions. 

A new operator R (analogous to R ), defined by 

R =1 - ED, (37) 

possesses an essential property similar to R, i.e., it maps con
stants of the motion for H + E Vinto constants of the motion 
for H. More explicitly: If A is a constant of the motion for 
H + E V, one finds that 

R (A) =Ao. (38) 
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This follows from 

O=IA,H+€V} 

= L (n·wA n - €Zn) ein.,p, 
n 

which implies 

n.wAn - €Zn = O. 

(39) 

(40) 

(41) 

Substitution of (41) into (36) and usin$ (37) yields (38). Since 
Ao is a constant of the motion for H, R maps constants of the 
motion of H + € V into constants of the motion of H. This 
still holds when H is partially degenerate (V m • H = 0 for 
fixed m and all II' ... ,IN): i.e, one can show that 

Ii. (A) = ! ALm eiLm.",. (42) 
L = - 00 

Owing to V m • H = 0, the rhs of (42) is a constant of the 
motion for H. 

Of greater interest is to obtain constants of the motion 
for H + €Vfrom those for H. For this, the inverse (ifitexists) 
of Ii. must be obtained. The operator Ii. -I exists on a family 
of domains defined by 

nL={A IDL(A) = O}, (43) 

as can be seen from the following considerations. Consider 
the following expression: 

~ L-I ~ 

R L-
I= L ~D'. (44) 

,~ I 

The operator Ii. L- I is equal to Ii. - I on n L because 

~ ~ ~~ L-I ~ L ~ 

R L- I R = RR L I = L €ID 1_ L €'D I 

1=0 ,= I 

= 1-~DL, 

and the rhs of (46) is equal to the identity on n L' 

(45) 

(46) 

The domains nL are not empty. One can show, for ex
ample, that the function 

L-I 

f(H)= L CIH I, (47) 
1=0 

is in n L where the CI are constants. As a consequence, one 
obtains the unsurprising result that 

Ii. 2-
I (H) = H + €V, (48) 

i.e, Ii. 2" I maps the old Hamiltonian H into the new Hamil
tonian, H + €V. Are there other KEflL such that 
IK,H} = O,andsuchthatK =1= f(H)?Ifso, then an additional 
constant of the motion for H + € V is given by 

% = Ii. 1-: I(K). (49) 

In the next section of this paper, conditions on H and V are 
obtained (in special cases) such that n L contains such func
tions. Families of Hamiltonians are then derived which satis
fy these conditions. 

V. CONSTRUCTION OF INTEGRABLE HAMILTONIANS: 
V(¢>I,¢>2,11,12) 

In two degrees offreedom, only one additional constant 
of the motion, besides the Hamiltonian, is required for the 
system to be integrable. Such Hamiltonians can be con
structed by demanding that H, V, and K satisfy the following 
conditions: 
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DL(K) =0, 

IK,H} =0, 

(50) 

(51) 

whereK =1= f(H). Hidden in (50) and (51) are partial differen
tial equations for H, V, and K. When these equations can be 
solved, new families of integrable Hamiltonians result. This 
procedure is termed the truncation program of order L be
cause the second constant of the motion (49) is a polynomial 
in € of order <L. In this section, the L = 1 and L = 2 cases 
are considered. 

Consider (50) and (51) for L = 1 and H nondegenerate. 
1,:he general solution to (51) is K = K (11,12), Applying 
D to K (11,12) and substituting the result into (50) 
yields V .K 

0= L Vn _n - ein.",. (52) 
n Vn·H 

Setting each Fourier coefficient to zero yields 

V ·K 0= V _n_ 

n Vn.H 

for each n. The trivial solution to (53) is V n·K = 0 and 

(53) 

V m oK = 0, where nand m are not parallel. In this case, K is 
the constant function which is of no interest because the 
constant function is a constant of the motion for all Hamilto
nians. The only nontrivial solution is V m·K = 0 for a fixed 
direction m, with Vn = 0 for n nonparallel to m. The result
ing family of integrable Hamiltonians is the well-known sin
gle resonance Hamiltonians 7 given by 

%=H+€ ! VNeiNm."" (54) 
N= ~ 00 

with Hand VN being arbitrary functions off l and 12 , and the 
second constant of the motion is given by 

(55) 

where 

1m =m2 I I -m I I 2 • (56) 

There are no other nontrivial solutions to (52), and 
therefore the Hamiltonians (54) are the only L = 1 integrable 
Hamiltonians for H nondegenerate. 

There exists additional L = 1 integrable Hamiltonians, 
however, for H degenerate [H = H(lm)]' One such family is 
given by 

n 

with the second invariant given by 

K = sin(m.¢> + V m • .,p), 

(57) 

(58) 

where Vn ( ) is arbitrary and.,p( 11,12) is arbitrary. This family 
is new yet it has not been derived here. For this reason it does 
not necessarily exhaust all L = 1 integrable Hamiltonians 
for degenerate H. It is exhibited here only to demonstrate 
that there are additional classes of L = 1 integrable Hamilto
nians beyond those of the form of (54). 

Next consider Eqs. (50) and (51) for L = 2, with H non
degenerate. The equations for resulting from (50) and (51) for 
L = 2, assuming all Fourier terms in (30) are nonzero, are 
intractable. Nevertheless, the equations which result when V 
contains only two Fourier components, 
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(59) 

can be solved to obtain the dependences of Vn, V m ,on' and 
om on II and 12 , Under these assumptions, one obtains 

15(K) = Bn sin(n . rP + on) + Bm sin(m . rP + om)' (60) 

where 

(61) 

B = V V m • K. (62) 
m m Vm.H 

Equating Fourier coefficients of the 15 2 = 0 equation equal 
to zero results in the following partial differential equations 
(p.d. eqs.): 

Vn Vn .Bn -Bn Vn · Vn =0, (63) 

Vm Vm .Bm -Bm Vm . Vm = 0, (64) 

Vn Vn ·Bm -Bn Vn · Vm =0, (65) 

Vm Vm .Bn -Bm Vm • Vn =0, (66) 

(Vn Bm - Vm Bn) (V n . om - V m . on) = O. (67) 

The solution to (63) and (64) is obtained by rewriting them as 

Vn Bn Vn 10g(~: )=0, (68) 

V m B m V m log (!: ) = O. 

The solution to (68) and (69) is 

Bn = In (In) Vn, 

Bm = 1m (Jm) Vm, 

(69) 

(70) 

(71) 

where In ( ) and 1m ( ) are arbitrary functions, J m is given by 
(56), and 

(72) 

Substitution of(70) and (71) into (65) and (66) and solving for 
Vn and V m yields 

(73) 

(74) 

where hm ( ) and hn ( ) are arbitrary functions. Equation (67) is 
solved for on and om by observing that it is similar to the 
divergence equal zero equation in electromagnetism. Thus, 

on =Vn .t/J, 
om = Vm • t/J, 

(75) 

(76) 

where t/J( 11'/2) is arbitrary. By substituting (70) and (71) into 
(61) and (62), the following equations result: 

In Vn ·H= Vn ·K, (77) 

1m Vm ·H= Vm .K. (78) 

These equations are solved by rewriting them as 
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Vn ·(fnH-K)=O, 

Vm ·(fmH-K)=O. 

J. Math. Phys., Vol. 23, No.6, June 1982 

(79) 

(80) 

The solution is 

InH -K =gn(Jn), 

Im H -K=gm(Jm), 

(81) 

(82) 

wheregn ( ) andgm ( ) are arbitrary. Solving (81) and (82) for H 
and Kyields 

H=gn -gm, 
In - 1m 

K = In gm - 1m gn . 

1m - In 

(83) 

(84) 

The final form for this family of integrable Hamiltonians is 
given by 

JY' = H + E[Vn sin(n· rP + on) + Vm sin(m. rP + om)]' 

(85) 

whereH, Vn, Vm,on,andom are given by (83), (73), (74),(75), 
and (76), respectively, and the second constant of the motion 
is given by 

.r = K + E[Bn sin(n· rP + on) + Bm sin(m. rP + om)]' 

where K, Bn, and Bm are given by (84), (70), and (71), 
respectively. 

(86) 

The family of Hamiltonians given by (85) does not nec
essarily exhaust the L = 2 integrable Hamiltonians even for 
H nondegenerate. This family, however, does represent all 
the L = 2 integrable Hamiltonians when V contains only 
two Fourier components (H nondegenerate). Furthermore, 
it represents a new family of integrable Hamiltonians which 
is not previously found in the literature. 

VI. POTENTIAL SYSTEMS: V(qt,q2) 

In this section, all integrable Hamiltonians of the form 

pi +pi 
JY' = + EV(QI,Q2), (87) 

2 

where H = (Pi + pi )/2, are considered such that the second 
constant of the motion is a polynomial in E of finite order l4

: 

(88) 

where Vand the K, are assumed to be independent of E (i.e., 
the perturbation expansion in E truncates). An expression for 
the K, is obtained in this section, but the form for some of the 
potentials is derived in the following section within the con
text of the Whittaker program of order M. In the Whittaker 
program (which we generalized from Whittaker's work2

), 

integrable Hamiltonians are sought such that the second 
constant of the motion is a polynomial inpi andp2 of order 
<,M. The purpose of this section is to show, under one fur
ther assumption, that (88) is also a polynomial inpi andp2 of 
order <,3L, and thus occurs in the Whittaker program of 
order M = 3L. 

In order that (88) be a constant of the motion for (87), it 
must satisfy I Y, JY'j = 0, i.e., 

(89) 
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(90) 

where Vand KI are assumed to be independent of t, Eq. (90) 
implies 

0= (H,KoL 

0= (V,KL j, 

0= (H,KI + I j + ( V,KI j, 

for O<,J<L - 1. 

(91) 

(92) 

(93) 

The general expression for function KI satisfying (93) is 
obtained by induction on the general solution to (92). Equa
tion (92) is a p.d. eq. for KL : 

aVaKL aVaKL ---+---=0, (94) 
aql api aq2 ap2 

with a general solution given by 

KL = Bdql,q2'S), 

where B L ( , ,) is arbitrary, and 

(95) 

S = PI V2 - P2 VI' (96) 

with vl=av laql' v2=av laq2' VI2 = a2v laq laq2' etc. By 
induction, Eq. (93) is a p.d. eq. for K I, given KI + I : 

aKI aKI 
VI-+ V2-= (KJ+pHj. (97) 

api ap2 

By changing variables from PI andp2 to sand 1/, where 

1/ = alPI + a2P2 (98) 

(a I and a2 are constants), Eq. (97) becomes 

aKI [KI+ I,H j 

a1/ A 
(99) 

where A = a I VI + a2 V2• Equation (99) is then integrated to 
obtain the general expression for K I : 

f>i I [(KI+I,Hj] 
KI = d1/ A q"q,.S-constant + BI(QI,q2'S), 

(100) 

where B I ( , , ) is arbitrary and O<I<L - 1. 
The general expression for functions KI satisfying (92) 

and (93) is given by (100) and depends on theL + 1 arbitrary 
functions B I ( , , ) and the potential V. The final conditions on 
theB I and Yare obtained by substituting Eq. (100), for 1 = 0, 
into (91). 

For arbitrary L, these conditions are complicated and 
are not considered here except in the L = 0 case. In this case, 
the conditions are simple, and the corresponding potentials 
can be obtained. Consider (91) for L = 0: 

(101) 

Equation (10 1) is solved by the method of Frobenius by ex
panding K O(QI,Q2'S) in a power series: 

Ko = f blS
I

, 
I~O 

(102) 

where the bl depend only on QI,Q2' Substitution of (102) into 
(10 1) yields 
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(103) 

(104) 

(105) 

(106) 

ab l V ab l 
- 2 + b l Vn - - VI - b l VII = O. (107) 
aQ2 aQI 

There are higher-order terms, but they are not displayed 
because it will be seen that (104)-( 107) completely determine 
V (up to an arbitrary function). Besides, the higher-order 
equations are satisfied if bl = 0 for 1>2. 

Equations (105) and (106) are rewritten as 

a 
- (b l V2) = 0, (108) 
aQI 

a 
-(blVd = 0, (109) 
aQ2 

and integrated to obtain 

b l V2 = 12(Q2) , 

blVI =nQI)' 

( 110) 

( 111) 

where/2 ( ) and/l ( ) are arbitrary functions. After rewriting 
(107) as 

and substituting (110) and (111) into (112), one obtains 

V2 dl2 VI dll _ 0 ------ . 
12 dQ2 II dQI 

By dividing (110) by (111), a second equation for V is 
obtained: 

II V2 - VI 12 = 0 . 

( 112) 

(113) 

(114) 

Equations (113) and (114) are two homogeneous equations 
for VI and V2• The only nontrivial solution is when the deter
minant is zero, i.e., 

d/2 _ dll =0. 
dQ2 dql 

(115) 

Separation of variables yields the solution 

II = 2aQI + CI , (116) 

12 = 2aQ2 + C2 , (117) 
where a, CI , and C2 are constants. Substitution of (116) and 
(117) into (114) yields a partial differential equation for V 
with the general solution given by 
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(118) 

whereF[] is arbitrary. The functional form forb l is obtained 
from (110): 

_ (dF)-1 bl - , 
dp 

(119) 

wherep = a(q~ + q~) + Clql + C2q2' Thus, the second con
stant of the motion is given by 

=bls, 

= C2PI - CIP2 - 2a(qIP2 - q2PI)' 

(120) 

(121) 

This family of integrable Hamiltonians (a #0) all have cylin
drical symmetry about a point in the q plane and represents 
all the L = 0 integrable Hamiltonians. 

The L = 1 integrable Hamiltonians are tedious to ob
tain using the above techniques. Consequently, the remain
der of this section is concerned not with deriving potentials, 
but with showing, under a special assumption in the L> 1 
case, that the second constant of the motion is a polynomial 
in PI and P2 (or equivalently in Sand 7J) of order <,3L. Not 
until Sec. VII will the corresponding potentials be derived 
within the Whittaker program. 

It is first shown that the second constant of the motion, 
given by (88), is a polynomial in 7J of order <,3L. This is 
shown using mathematical induction that K

" 
given by (100), 

is a polynomial in 7J of order <,3(L - /). The function K L' 

given by (95), is independent of 7J and therefore is a polyno
mial of order zero in 7J. The next step in the proof is to as
sume that the function K, + I [generated inductively from K L 

using (100)] is a polynomial in 7J of order <,3(L -/- 1): 
3(L-I-11 

K, + I = L am 7Jm , (122) 
m=O 

where am = am(ql' q2'S); Eq. (100) becomes 

f'" 1 3(L - 1- II 
K, = d7J'T m~o 7Jm!am,H1 +BMI,q2,S)·(123) 

Computation of ! am ,H I in the S,7J coordinate yields 

(124) 

where 

m _ aam 1 [2 2 
C 2 - as A2 (VI - V 2)V12+ VIV2(V22- Vltl], (125) 

c;= ~ aam + ~ aam +..L aam 
A aql A aq2 A 2 as 

x [2(Vla2 + a I V2)V12 + (a2 V2 - a I Vt!(V22 - Vll )], 

(126) 

(127) 

Since the C's are independent of7J, Eq. (123) becomes 

1 3(L - 1 - 1) C ~7Jm + 3 C '('7Jm + 2 

K , =- L +~..:......--
A m=O m+3 m+2 
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Equation (128) is a polynomial in 7J of order < 3(L - /). As a 
consequence, the second constant of the motion given by (88) 
is also a polynomial in 7J of order < 3L, as was to be shown. 

Under one further assumption, it is now shown by in
duction that (88) is a polynomial in both sand 7J (and there
fore P I and P2) of order < 3L. Condition (91) implies that 

(129) 

where 0 = qtP2 - q1PI ( = angular momentum) andK (, ,) is 
arbitrary. If one assumes that K (, ,) is a polynomial in its 
arguments (or equivalently in 7J and S ) or order < 3L, then Ko 
must also be a polynomial in 7J and S or order < 3L. The next 
step in the proof is to assume that K, is a polynomial in 7J and 
S of order < 3L - 2/. It remains to be shown that K, + I is a 
polynomial in sand 7J of order <3L - 2(/ + 1)<3L (for 
1>0). Inspection of(125)-(128) reveals that C'(' is a polyno
mial in S or order <,3L - m - i - 2/- 1, and thus am is a 
polynomial in S of order <3L - m - 2/. This and (122) im
ply that K, + I is a polynomial in 7J and S of order 
< 3L - 2(/ + 1). As a consequence, the second constant of 
the motion given by (88) is a polynomial inpI andp2 of order 
<,3L, as was to be shown. 

If the assumption that K in (129) is a polynomial in 
momentum of order <3L is relaxed, then it can be shown (in 
the Appendix) that the potential V must satisfy one or more 
partial differential equations. In addition to these, V must 
also satisfy other partial differential equations, as derived in 
the next section. Should too many restrictions be imposed on 
V, the only solution is the trivial V = constant solution. To 
avoid this possibility, the above assumption on K is made. 

The purpose of the above analysis is to show the rela
tionship between the integrable Hamiltonians derived with
in the truncation program and those obtained within the 
Whittaker program: i.e., under the assumption that Ko is a 
polynomial in momentum, both programs generate con
stants of the motion which are polynomials in the momen
tum coordinates. This represents a large class of integrable 
Hamiltonians, and it contains all previously known integra
ble Hamiltonians (in two degrees offreedom) of the form 
(87). In the next section, some L = 1 integrable Hamilto
nians are derived not within the truncation program but 
within the Whittaker program. 

VII. THE WHITTAKER PROGRAM: M = 2,3 

In this section, p.d. eqs. are derived which the potential 
V must satisfy in order that there exists a second constant of 
the motion which is a polynomial in momentum of order 
<,3. 15 In addition, some solutions to these equations are 
exhibited. 

Consider first the case of M = 2 (second constant of the 
motion is quadratic in the momentum). The second constant 
of the motion is assumed to take the form 

% = ap~ + bp~ + CPtP2 + epI + iP2 + g, (130) 

where a, b, c, e,/, andgdepend onlyonql andq2' When the 
coefficients ofp7p~ in the equation! % ,JY'1 = 0 are set 
equal to zero, the following partial differential equations 
result: 
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~=o, 
aql 

(131) 

~=O, 
aq2 

(132) 

ab + ~ =0, 
aql aq2 

(133) 

~ + ~ =0, 
aql aq2 

(134) 

~=O 
aql ' 

(135) 

aj =0, 
aq2 

(136) 

aj + ~ =0, 
aql aq2 

(137) 

1 ag 
(138) - - - 2a VI - C V2 = 0, 

€ aql 

1 ag 
(139) - - - 2b V2 - C VI = 0, 

€ aq2 

eVI + jV2 = O. (140) 

Assume e = j = 0; otherwise the potential V resulting from 
solving (135)-(137), (140) is identical to (118). Equations 
(131 )-( 134) have the general solution 

a = ao + a Iq2 + a2qL 

b=bo+blql +a2q~, 

C = Co - b lq2 - alql - 2a2qlq2' 

(141) 

(142) 

(143) 

where ao, aI' a2, bo, b l, and Co are constants. Application of 
integrability conditions to (138) and (139) yield the following 
p.d. eq. for V: 

a a 
- (2aVI + cV2) + - (2bV2 + cVI). (144) 
aq2 aq, 

When the partial derivatives in (144) are carried out, the 
following second order p.d. eq. for V results: 

c( a
2

v _ a2V)+2(b_a)~ +(~ -2~) av 
aq~ aq~ aq,aq2 aql aq2 aq, 

+ (2~ - ~) av =0. (145) 
aql aq2 aq2 

The functiong is obtained by solving (145) for V, substituting 
it into (138) and (139), and integrating. The second constant 
of the motion is then given by (130). 

Whittaker2 obtained the general solution to (145) and 
the second constant of the motion. More useful, however, is 
that all separable potentials in two dimensions satisfy (145). 
This follows4 from the fact that if the Hamilton-Jacobi equa
tion separates (separates after a coordinate transformation in 
the q plane) a constant of the motion exists which is second 
order inp, andp2' A necessary condition then, for a potential 
to be separable, is if the constants in (141)-(143) can be cho
sen so that V satisfies (145). Equation (145) provides a check 
of the separability of potentials, derived in the Whittaker 
program of order 3. 

The p.d. eqs. satisfied by the M = 3 potentials is derived 
similarly to (148). The second constant of the motion is as-
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sumed to take the form 

Y=Ap~ +Bpip2+CpIP~ +Ep~ +Fp, + Gp2' (146) 

where A, B, C, E, F, and G depend only on ql and q2' The 
even powers of PI andp2 are absent from (146) because the 
equations resulting from these are identical to (131 )-( 140), 
and solving them would result in (145) independent of the 
cubic terms in (146). Equating the coefficients ofp7p'{' in the 
I Y, JYJ = 0 equation to zero results in the following p.d. 
eqs: 

aA =0, 
aq, 

aE =0 
aq2 ' 

aB + aA =0, 
aql aq2 

ac + aB =0, 
aq, aq2 

aE + ac =0, 
aq, aq2 

1 aF 
-- -3AV,-BV2 =0, 
€ aq, 

1 aG 
- - - 3EV2 - CVI = 0, 
€ aqz 

~ (aG + aF) _ 2BV, _ 2CV2 = 0, 
€ aq, aq2 

FV, + GV2=0. 

Equations (147)-( 151) have a polynomial solution: 

A =Ao +A,q2 +A2q~ +A3qi, 

(147) 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 

(154) 

(155) 

(156) 

B = Bo + B,q2 + E2q~ - A,q, - 2A2qlq2 - 3A3q~ q" 
(157) 

C = Co - B,q, + A2q~ - E,q2 - 2E2q,q2 + 3A3q2q~, 
(158) 

( 159) 

whereAo, A "A2, Eo, E" E 2, Bo, Co, B" andA 3 are constants. 
Equation (155) is solved by defining a function Z: 

F=€ZV2, (160) 

G = - €ZV,. (161) 

Substitution of(160) and (161) into (152)-(154) yields 

az 
ZV'2+ -V2 -3AVI -BV2 =0, (162) 

aq, 
az 

- ZV12 - - V, - 3EV2 - CV, = 0, (163) 
aq2 

az az 
Z(V22 - V,,) + - V2 - - V, - 2BV, - 2CV2 = O. 

aq2 aq, 
(164) 

Adding (162) and (157) yields 

V,(3A + C + az) + V2(3E + B _ az) = o. (165) 
aq2 aq, 

This equation can be solved for Z by first introducing a new 
function Y such that 
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ay =-3A-C, (166) 
aq2 
ay 
- =3E+B. (167) 
aql 

Such a function exists by virtue of(147)-(151), and integra
tion of (166) and (167) yields 

(3EI -AI) 2 E 3 
Y=Zo+(3Eo+Bo)ql+ 2 ql + 2ql 

C ) (3A I - Ed 2 A 3 - (3Ao + 0 q2 - 2 q2 - 2q2 

2 2 3A3 (2 2 )2 -A2qlq2+ E2qlq2 +Blqlq2- -4- ql +q2 , 

(168) 

where Zo is a constant. In terms of Yand V, the general 
solution to (165) is 

Z=Y+<1>(V), (169) 

where <1> ( ) is arbitrary. Substitution of (169) into (162) and 
(164) yields two nonlinear p.d. eqs. which V must satisfy: 

a2tP(V) 
YV21 +3EV2-3AVI = - --, 

aq laq2 
Y (V22 - VII) - 3(A + C) V2 - 3(E + B ) VI 

= - -- tP(V), (
a

2 
a2) 

aq~ aq~ 

(170) 

(171) 

where dtPldV =<1> (V). 
For each choice oftP(V),Eqs. (170) and (171) are the p.d. 

eqs. which V must satisfy in order that there exists a second 
constant of the motion which is cubic in the momentum. 
Unlike the M = 2 case, there is no general solution available. 
Nevertheless, a few particular solutions can be exhibited. 
The Toda Lattice,5 

V = a +Eq, + VJq, + a_eq, - V3q, + f3e - 2q" (172) 

is a solution when all the constants in (156)-( 159), (168), and 
tP are set to zero except Ao = 1, Co = - 3, Zo = 3. This po
tential is nonseparable, as can be verified by showing that it 
does not satisfy (145). 

A new nonseparable potential satisfying (170) and (171) 
is 

(173) 

when again tP = 0 and all constants are zero except 
Ao = 1, Co = ~. This potential is nonseparable, as can be 
checked by showing that it does not satisfy (145). The second 
constant of the motion is given by 

% = 2p~ + 3PIfJ~ + 3€PI [2(q~ + O)q2 - 2/3 

- 3q24/3] + 18€P2qlq21/3. (174) 

Not all potentials which satisfy (170) and (171) are non
separable. In the case of all cosntants and tP = 0 except 
Bo = 1, the potential is given by 

V=q~+4q~+Oql-2, (175) 

and the second constant of the motion is given by 

% =P~P2 + 2€[4qlq2P1 - P2q~ + P20ql-2] . (176) 

The Hamiltonian constructed from this potential has a con-
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stant of the motion which is cubic in the momentum, and it 
must also possess a constant of the motion which is quadra
dic in the momentum (P~ + 8€q~, for example) due to the 
Hamilton-Jacobi equation separating in a Cartesian coordi
nate system. 

The Hamiltonians occurring in the Whittaker program 
of order 2 and 3 are identical to the L = 1 Hamiltonians 
considered in Sec. VI. This follows because all the second 
constants of motion occurring in the Whittaker program of 
order M = 2, 3 [(130) and (140)) are first order in €[see (138), 
(139), (160), and (161)], and all the second constants of the 
motion in the L = 1 case in Sec. VI are polynomials in P I and 
P2 of order .;;;3. 

Potentials (172), (173), and (175) by no means exhaust 
the L = 1 potentials. Solving (170) and (171) for other 
choices of the constants in (156)-( 159) is a method for obtain
ing novel integrable potentials. Potential (173) is, in fact, 
such a potential. 
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APPENDIX 

In this appendix, it is shown that if Kin (129), for L = 1, 
is a polynomial in its arguments of order ;>4, then V must 
satisfy a subsidiary (i.e., in addition to those in the text) par
tial differential equation(s). Recall the form for Ko = K, 

K = Bo + biT] + b 2T]2 + b 2T]3, (AI) 

where Bo' bl' b2, b3 depend only on 5, ql' and q2' Since 
K (PI' P2' ql P2 - q2pd has no terms in T] of order> 3, one 
obtains 

- K=O ( a )4 
aT] q,q,.S - const • 

(A2) 

By changing from the coordinates T] and 5 to PI andp2' Eq. 
(A2) becomes 

[ VII~I +V21~1 
apl p,,()- const ap2 P,.()- const 

+ (q I V2-q2 Vd I~ I ]4.K =0, (A3) ae P,. p, _ const 

where e = qlfJ2 - q2PI' 
When (A3) is evaluated atpi = P2 = 0, a p.d. eq. for V 

results. Take, for example, the case of K independent of e. 
Then (A3) becomes 

A Vi + 4BV~ V2 + 6CVi V~ + 4EVI Vi + GVi = 0, 
(A4) 

where A = J4K lapii p, =p,=o, B = J4K lap~aplip, =p,=o, 
etc. Equation (A4) is a p.d. eq. for V with a general solution 
given by 

V=f(aql + f3q2) , (A5) 

wheref( ) is arbitrary and a, f3 satisfy 
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0= Aa4 + 4/3a3/3 + 6Ca2B 2 + 4Ea/3 3 + G/3 4
• (A6) 

For the more general case, K (Pl'PZ' 0), Eq. (A3) isa p.d. eq. in 
V of the form 

(A7) 

where F( , , ) is a fourth-order polynomial in its arguments. 
If K is assumed to be a polynomial in its arguments of 

order >5, then the condition 

(AS) 

results in a second p.d. eq. for V of the form (A 7). By induc
tion, one concludes that if K is a polynomial in its arguments 
of order N>4, then V must satisfy N - 3 subsidiary p.d. eqs. 
Furthermore, these arguments can be generalized for the 
L > 1 case of (129), i.e., if K is a polynomial in its arguments 
of order N>3L + 1, then V must satisfy N - 3L subsidiary 
p.d. eqs. 
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The theory of dyadic Green functions for a transient electromagnetic field, which obeys the 
vector wave equation, is presented within the framework of the theory of distributions. First, the 
elementary solution of the scalar wave equation is derived, and then it is used to find the general 
solution of that equation. After establishing the equivalence between Maxwell's equations and 
the time-dependent vector wave equation, the dyadic elementary solution is derived and applied 
to solve the equation. Further properties of dyadic Green functions for the wave equation are 
derived within the heuristic approach to the theory of Green's functions. The paper includes a 
collection offormulas from the theory of distributions intended to help readers who are not 
familiar with the subject. 

PACS numbers: 03.S0.De, 03.40.Kf, 02.30. + g 

I. INTRODUCTION 

Transient electromagnetic fields obey a set of partial 
differential equations, Maxwell's equations, that can be re
duced to the vector wave equation. 

Green functions are often used in the solution of linear 
partial differential equations such as the wave equation. 
These functions correspond to solutions of differential equa
tions with impulsive sources; sometimes they satisfy homo
geneous boundary conditions and have causality or the radi
ation condition built into them. The source (a Dirac delta 
function) and some Green functions are not functions in the 
usual sense of the word; they are generalized functions or 
distributions. Delta functions were used in physics before 
they received a firm mathematical foundation, 1.2 and they 
continue to be used in a heuristic manner for most applica
tions. Such a situation can easily lead to ambiguous or incor
rect results, and a mathematically well-defined theory such 
as the theory of distributions should be used whenever prac
ticable; unfortunately, many scientists and engineers are un
familiar with the power and elegance of the theory of distri
butions. An excellent example of its effective use can be 
found in the theory of gratings. 3 

One of us4 used the heuristic approach to derive integral 
equations for transient electromagnetic fields. The short
comings of such a method were particularly evident in the 
determination of the free-space dyadic Green function. One 
of the aims of this paper is to present a proper derivation of 
this Green function. 

Although Green functions for the scalar wave equation 
can be used to write integral equations for the electric and 
magnetic vector fields, dyadic Green functions provide a 
more natural way to relate a vector field to its vector sources 
and offer greater flexibility in solving a vector wave equa
tion. Dyadic Green functions for the vector Helmholtz equa
tions are developed in detail by Tai5; the free-space Green 
function for this equation is expressed in terms of the ele
mentary solution of the scalar Helmholtz equation, which is 
a locally integrable function, and its derivatives. The corre-

·'On leave from Laboratoire d'Optique Electromagnetique, Faculte des Sci
ences et Techniques de St. Jerome, Rue H. Poincare, 13397 Marseille, 
France. 
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sponding treatment ofthe time-dependent equation involves 
derivatives of distributions. Generalized functions are also 
used to define the derivatives of the Green function for the 
scalar Helmholtz equation.6 

We propose to introduce the basic concepts used in the 
computation of Green functions via the theory of distribu
tions by presenting the analysis of the scalar wave equation 
in Sec. II. In Sec. III we briefly discuss the equivalence of 
Maxwell's equations and the vector wave equation, and then 
introduce dyadic Green functions. We find the elementary 
solution of the vector wave equation, which is essentially the 
free-space dyadic Green function, and show how it is applied 
to solve that equation. 

To assist the reader who is not familiar with the theory 
of distributions, we collect in Appendix A some of the most 
important definitions and properties of distributions that we 
use in this paper. 

There are some aspects of the heuristic approach to 
Green functions, such as homogeneous boundary condi
tions, that are not easily expressed in the language of distri
butions. Nevertheless, when a Green function that obeys ho
mogeneous boundary conditions can be found, the solution 
of the differential equations is reduced to integrals over 
known functions. These Green functions and their symme
try properties are discussed in Appendix B. 

We hope this paper will encourage other scientists and 
engineers to make wider use of a powerful tool: generalized 
functions or distributions. 

II. THE SCALAR WAVE EQUATION 

There are many kinds of phenomena in acoustics, elec
tromagnetism, elasticity, and other branches of physics that 
are described by a function of space and time 1/1 that obeys the 
partial differential equation 

01/l(x) = a(x), (1) 

where x stands for the four-vector (et,x), a(x) is the appropri
ate source term, and the d' Alembertian is defined by 

(2) 

In this paper we focus our attention on the electromagnetic 
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field; applications to other fields require only minor changes. 
The solutions of the wave equation can be found with 

the help of retarded Green functions GR (x,x'). They satisfy 

o GR (x,x') = 8(4)(x - x'), (3) 

GR(x,x') = 0, t<t', (4) 

where the source in Eq. (3) is the four-dimensional Dirac 
delta distribution and Eq. (4) expresses the physical condi
tion of causality. Since the source of the Green function is a 
distribution, we should use the theory of distributions to find 
such a function, which actually may itself be a distribution. 

Closely related to the free-space Green function is the 
elementary solution ofEq. (1), which satisfies, in the sense of 
distributions as defined in Appendix A, 

o :1 (x) = 8(4)(x), (5) 

:1 (x) =0, t<O, (6) 

and we can find the free-space Green function from 

G ~)(x,x') = :1 (x - x'). (7) 

To find :1 , we assume that it is a tempered distribution and 
find its Fourier transform %. Equations (A43) and (A44) 
allow us to reduce Eq. (5) to 

( - UJ2/c2 + k 2)%(k,UJ) = (21T)-2. (8) 

To solve for :1 , we have to specify which reciprocal of 
k2 

- UJ 2lc2 we must choose. The causality condition (6), 
when compared to Eq. (AS 1 ), indicates that we should add a 
small positive imaginary part to UJ, and set 

%(k,UJ) = (21T)-2 [k2 - (UJ + iEflc2]-I, (9) 

if we use Y _ for the inverse Fourier transform of the time 
variable; it is understood that E will tend to zero after the 
appropriate integrations are performed, a limit that is well 
defined in the theory of distributions. In the complex UJ 
plane, the poles at UJ = ± Iklc are moved slightly below the 
real axis and, since we are using e - iwt in the inverse Fourier 
transform, the contour can be closed around the upper half
plane for t < ° without changing the integral, which vanishes 
because no singularities are enclosed in the contour. 

Actually, we know that :1(x) is not a function, and, 
when the inverse Fourier transform is calculated by integra
tions, we have to use integrals that are mathematically ill 
defined to obtain delta distributions. For this reason, and 
because we can use the result in the computation of the dya
dic elementary solution, we first derive the inverse Fourier 
transform of 

K (k,UJ) = (UJ + iE)-2[k 2 - (UJ + iE)2/e2]-1 

= k -2(UJ + iE)-2 - k -2[(UJ + iEf - k 2 e2] - t, (10) 

where k = Ikl; the transform of K is a function. Then :!J (x) 
can be obtained by differentiation, and the derivatives al
ways exist for distributions. By convention we change the 
sign of the space part in the exponential, and compute the 
inverse Fourier transform 

F(x,t) = (21T)-2 f d 3k dUJ exp[ - i(UJt - k·x)] K (k,UJ). (11) 

Equation (AS2) gives 
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f~ 00 dUJ e - iwl (UJ + iE)-2 = - 21T to (t), (12) 

where 0 ( t ) is the unit step function. To find the inverse trans
form of k -2, we use Eq. (ASS) to derive 

f~ "" d 3k eik
.
x k -2 = 41T r- I L" dk sin(kr)k -I, (13) 

where r = Ixl. The integrand of the convergent integral on 
the right-hand side ofEq. (13) is an even function of k, so that 
we do not change the value of the integral if we extend the 
range of integration to - 00 and divide by 2. The integrand 
is not singular at the origin, and so we can deform the con
tour or add a small negative imaginary part to k; then Eq. 
(ASl) gives 

(14) 

and Eq. (13) becomes 

f~ "" d 3k eik
.
x k -2 = 2rr-I[O(r) - O( - r)] = 2r r- I. 

(15) 

Similarly, we compute 

f ~ 00 dUJ e - ,wI [(UJ + iE)2 - k 2e2] - I 

= - 21T sin(ket )(ke)-IO ( t), 

f~ 00 d 3 k ei 
k·x sin(ket )k - 3 

= 41Tr- 1 100 

dk sin(ket) sin(kr)k -2, 

f~ 00 dk cos(ku)(k - iE)-2 = - 1Tlul, 

(16) 

( 17) 

(18) 

roo 00 dk sin(ket) sin(kr)k -2 = ~ 1T(let + rl-Iet - rl), 

(19) 

whence, collecting all the necessary terms, we find 

F(x,t) = ~1T 0 (t )r-I(lt + ric I - It - ric I - 2t), (20) 

which can be rewritten as 

F(x,t) = - 1Tr- l (t - ric) 0 (t - ric). 

By Eqs. (9) and (A43), we can set 

:1 = _ (21T)-2
a2 

F 
at 2' 

and we have 

a F = _ 1Tr- 1 0 (t _ :.), 
at e 

(21) 

(22) 

(23) 

a
2 

F = -1T r- 18 (t _ :.), (24) 
at 2 e 

where we have used Eq' (A 14). Thus, the elementary solution 
of the wave equation is 

:!J (x) = (41T r)-I 8(t - ric). (25) 

We note that lIr corresponds to an integrable singularity, 
and we can rigorously define this distribution by its value on 
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a test function ¢" 

( f§ ,¢, > = (00 dt (41Tt ) -Ii dS ¢' (x,t ), (26) 
Jo rs(ct) 

where we use S (a) to denote the sphere of radius a centered at 
the origin. The support of this distribution, as defined in the 
Appendix A, is the future light cone given by 

(27) 

In Ref. 7 we find an elegant direct proof that the distribution 
f§ defined by Eq. (26) actually satisfies Eq. (5). Since the 
integration is only over positive values of t, ( f§ ,¢, > vanishes 
whenever the support of ¢' lies in the region t < 0, so that the 
distribution f§ vanishes for t < O. Also in Ref. 7 we find the 
solution of the Cauchy initial value problem for the homo
geneous wave equation. 

If the source a(x) is given for all space and time, we can 
find the solution ofEq. (1) by a convolution product as de
fined in Eq. (A32). We write 

t/J = f§ *&, (28) 

where we use the inverted caret to indicate that the source is 
a distribution that can include singular terms. We use Eqs. 
(A39), (5), and (A36) to verify that t/J satisfies the wave 
equation, 

(29) 

T~e convolution product is well defined when the support of 
a IS bounded below, but this is not a necessary condition; we 
assume that a is a locally integrable function that vanishes 
sufficiently rapidly when t_ - 00 to define the integrals in 
what follows. We use the definitions (26) and (A32) to write 

( f§ *a,¢, > = ( f§(s ),( a(S '),¢, (s + s')), (30) 

(f§*a,¢,> =loo dT! duloo d4s'a(s')¢,(s+s'), 
o 41TT rs (CT) - 00 

(31) 

where 5 = (CT,~), S' = (CT' ,~'), and du is the surface element 
in ~-space. We change the variable 5 ' to x - 5 and keep 5 to 
obtain 

( f§ *a,¢, > = - du d 4X a(x - s) ¢' (xH32) 
l

OO dT i loo 
o 41TT S(CT) - 00 

We now change the order of integration and replace 5 by 
x - x', keeping x, and find 

( ~*a,¢' > 
= d 4x dS' a(x') ¢' (x), I"" [ It dt ' f ] 

- 00 - 00 41T(t - t') S{x,c{t - t')) (33) 

1049 J. Math, Phys., Vol. 23, No.6, June 1982 

where S (x,a) represents the sphere of radius a centered at x. 
Consequently we can write Eq. (28) as 

It dt' i t/J(x) = dS' a(x'). 
_ 00 41T(t - t') S!x.c(t -1')! 

(34) 

When the unknown field t/J is defined only in a region of 
space V bounded by a surface S, and, when the sources are 

given starting at a time to, we also have to specify the initial 
values of the field and its time derivative, and either the field 
or the normal derivative on S. In this case, we can extend the 
function t/J by assuming that it is zero outside Vand for times 
before to. Then the given values become jumps in the func
tion and its derivatives, and we use Eqs. (A14) and (A21) to 
write, if the normal Ii points out of V, 

Ot/J = ! Ot/Jl + c- 2 t/J(x,to) 8'(t - to) 

+ ~ at/J(x, to) 8 (t - t ) 
c2 at () 

+ V·[lit/J8(S)] + ~~ 8(S) = a, (35) 

where the curly brackets indicate derivatives in the sense of 
functions. From Eq. (28) we can derive 

1 a~ t/J = ~ *a + 2" -- *t/J(x,to) 8(t - to) 
C at 

+ 1 (£2 at/J(x, to) lI( ) 
-,y * u t - to 
c2 at 

+ a~ *t/J8(S) + ~*at/J 8(S). 
an an 

(36) 

which is equivalent to the well-known formula 

t/J(x) = r dt' ( dV' a(x') G~)(x,x') 
)'0 Jv 

_ ~ r dV'[t/J(X' ) aG~)(~,X') _ at/J(~/) G~) (X,X')] 
C J v at at t ' = to 

_ r dt'! dS'[t/J(X,)aG~)(~,X') _ at/J(~') G~)(X'X')]. 
l rs an an 

(37) 

Equation (36) or (37) can be used to compute t/J by integra
tions only if t/J and at/JI an are both known on S. Since only 
one of these boundary values is required to determine t/J, Eq. 
(37) reduces to an integral equation for the function onSthat 
is not given when we let x approach the surface from the 
outside, where t/J vanishes. If two arbitrary functions are giv
enonSfor t/Jandat/Jlan, and Eq. (37) is used to compute t/J(x), 
this function does not vanish outside V unless the given func
tions satisfy the above-mentioned integral equation; the 
jumps in t/J and at/Jlan will be as given, but the boundary 
conditions will not be satisfied. 
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III. MAXWELL'S EQUATIONS AND DYADIC GREEN 
FUNCTIONS 

The free-space Maxwell equations for the electromag
netic fields E and Bare 

V.E=£', 
Eo 

VXE= _aB, 
at 

V·B = 0, 

V B 
. aE 

x =JLoJ +JLoEo-, at 

(38) 

(39) 

(40) 

(41) 

where the sources are the current density j and the charge 
density p, and Eo andJLo are the permittivity and permeability 
of the vacuum which are related to the speed of light by 
EoJLo = c- 2

• These equations are consistent only if the equa
tion that expresses charge conservation, 

ap + V.i = 0 at .. , (42) 

is satisfied. Consequently, the charge density has to be given 
only at the initial time to, and we can find it at other times 
from 

p(x,t) = p(x,to) - r' dt ' V·j (x,t '). 
J," 

(43) 

It should also be remembered that only Eqs. (39) and (41) are 
equations of motion, while (38) and (40) are constraints that 

I 

the initial values of E and B have to satisfy; for later times, 
the equations of motion and charge conservation ensure that 
these constraints are satisfied. 

If we restrict the fields to a region Vbounded by a sur
face S, we need to know boundary values of the fields. The 
normal component of one field can be obtained from the 
tangential component of the other field by means of the 
relations 

~ (fl·E) = - c2 Vs·(flXB) -~, at Eo 
(44) 

~ (fl·B) = Vs·(flxE), 
at 

(45) 

where fl is the normal to Sand Vs is the surface gradient 
operator. Furthermore, the energy balance equation, 

f dSfl·EXB 

= _ ~ ~ f dV(B2 + E:) _ JLo f dVj.E, (46) 
2 dtJv c Jv 

when applied to the difference of two solutions of Maxwell's 
equations with the same sources, initial values, and bound
ary values, implies that the fields are uniquely determined by 
the current density, the initial values ofE and B subject to 
the constraints, and the tangential component of either 
EorB. 

We can express the fields in terms of the sources, initial 
values, and boundary values by means of the equations4 

E(x) = r'dt' f dV' [JLoj(X,)aGR(~'X') + pIx') V' GR(X,X')] _ f dV' [~E(X') aGR(~'X') - B(x')XV' GR(X,X')] , 
J.. Jv at Eo Jv c at '~'o 

+ r' dt'[ 1. dS'E(x').V'GR(x,x') _ 1. dS'.E(x') V'GR(x,x') _ 1. dS'.V'GR(x,x')E(x') _ 1. dS'XB(x') aGR(~'X')], (47) J.. Ys Ys Ys Ys at 
B(x)=JLJ'dt' f dV'j(x')XV'GR(X,X')-~ f dV' [E(X')XV'GR(X'X')+B(X,)aGR(~'X')], 

Jtn Jv c Jv at t = til 

+ r' dt' [~1. dS'XE(x') aGR(~,x') _ 1.dS'.V'GR(x,x')B(x') + 1. dS'B(x').V'GR(x,x') - 1. dS'·B(x') V'GR(x,x')], J.. c Ys at Ys Ys js 

where GR(x,x') is a Green function for the scalar wave 
equation. 

An alternative approach to the solution of Maxwell's 
equations is their reduction to a single vector wave equation. 
We now show how this equation can be solved with the help 
of dyadic Green functions. 

We eliminate B from Eqs. (39) and (41) to obtain 

1 a2E aj - - + VX(VXE) = - JLo-. (49) 
c2 at 2 at 
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(48) 

The initial value of the time derivative ofE is obtained from 
B through Eq. (41). The boundary conditions on the field E 
are given either as the tangential component ofE or the tan
gential component ofVXE, which can be obtained from the 
tangential component ofB through Eq. (39). Once the field E 
is determined, the field B can be found from Eq. (39) and its 
initial value; these fields satisfy Maxwell's equations. 

The elementary solution of the vector wave equation is 
a dyadic Q that satisfies 
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(50) 

where I is the unit 3 X 3 dyadic, and the causality condition 

a(x) =0, t<O. (51) 

We can find the elementary solution following the procedure 
in Sec. II. If U is the Fourier transform of a, it satisfies 

- (w2lc2)U - kX(kXU) = (21T)-21. (52) 

Scalar multiplication by k on the left allows us to find k·U, 
which is then substituted into the expansion of the triple 
vector product. We again add a small positive imaginary 
part to w to satisfy the causality condition (51), and solve for 
U to find 

U(k,w) = _1_ (w + iE)21 - c
2
k k . (53) 

4r (w + iEf[k2 - (w + iE)2Ic2] 

The denominator, apart from the numerical factor, is pre
cisely the function K (k,w) in Eq. (10). Equation (A43) then 
implies that 

a(x,t) = 4~ [ - I a 2 :r(:,t) + c2V V F(x,t) l (54) 

The time derivative is given by Eq. (24), and we have to com
pute the gradient ofthe gradient ofF. To handle the singular
ity of the function at the origin, we consider F the limit as 
E-o of a function FE that vanishes inside a sphere of radius E 
centered at the origin; we write 

FE (x,t ) = F(x,t) (J (r - E). (55) 

For a sequence of distributions 1) that tend to a limit T, it has 
been shown I that the derivatives T; tend to T' (which is not 
necessarily the case for a sequence offunctions). We thus 
consider a sequence of positive values Ej that tend to zero, 
compute first V Fo and obtain V Fby letting E tend to zero. 
The function FE is discontinuous on the spherical surface 
S(E), and we use Eq. (A18) to find 

V FE = 1Ttr- 3x (J (t - ric) (J (r - E) - 1TE- 1(t - Elc)fD[S (E)], 
(56) 

where f is the unit normal to S (E). When E-o, the first term 
tends to a locally integrable function, and we only have to 
examine the surface integral of the coefficient of 15 [S (E)]. If 
fIx) is a locally integrable function, we can write 

i dSf(x)¢ (x):::::¢ (0) i dSf(x), 
1~ 1~ 

(57) 

which is true to lowest order in E because the continuous test 
function ¢ satisfies 

I¢ (x) - ¢ (0)1 <aE. (58) 

for a constant a when x is on the sphere S (E). The surface 
integral reduces to an integral over the solid angle and the 
limit is 

lim -'!'(t -~) i cfdfl = O. 
E->O E C 1(1) (59) 

Thus, the gradient of F is 
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V F= 1Ttr-3 x (J(t - ric). (60) 

We use the same procedure to compute the second-or
der derivatives. If we multiply a component of V Fby 
(J (r - E), where we choose E such that E < ct, we obtain a 
function that is discontinuous on the spherical surfaces r = E 

and r = ct. The second derivatives of the function F for 
E < r < ct are given by 

{ a:2~.} = 1Tt a~ t j
3) = 1Tt ~; _ 3:

i;j ). 
I J I 

(61) 

and, adding the singular parts, we have 

V (V F)E = 1Tt (r- 31 - 3r- 5 x x) (J (r - E) (J (t - ric) 

+ 1Ttr-4 x xD[S(E)] -1Ttr- 4 xxD[S(ct)]. (62) 

We note that the function in Eq. (61) is not Lebesgue-integra
ble at the origin, but the limit of the distribution must exist 
since those of the other terms in Eq. (62) all exist. For the 
coefficient of 15 [S (E)] we have 

t xx 41T 
lim dS-T¢(x)=-Dij ¢(O), 

E->O + S(E) r 3 
(63) 

and we write 

V V F = 1Ttr- 3(1 - 3r-2 x x) (J (t - ric) 

+ ~ 1TtO (3)(x)1 - 1TC- 1 r-3x x D[S(ct)], (64) 

where the first term on the right-hand side is a kind ofprinci
pal value. We can use symmetry arguments to prove that the 
integral of r- 3Dij - 3r- 5x i xj over a sphere vanishes; for i i=j 
the integrand is antisymmetric in the coordinates, and for 
i = j we obtain three equal integrals whose sum vanishes. 
Finally, Eq. (54) becomes 

a(x,t) = (41Tr)-1 D(t - rlc)(1 - r- 2 x x) 

(65) 

This distribution can be defined by an equation similar to 
(26) for the scalar elementary solution. For a component Qij 
of a, we have 

(66) 

where a i = xJr. The limit of the second integral must exist, 
as discussed after Eq. (62). Note that a is symmetric. 

To solve the inhomogeneous wave equation (49) when 
the sources are known for all space and for all past times, we 
use aj 

E = -/ioa.· at' (67) 

where we have both a convolution product of distributions 
and a dot product of the dyadic and the vector. We can re
write this equation in the form 
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E(x) = _ It I-lotit' j dS' [aj(x') _ ~ R. aj(x') ] 
_ 00 417(t - t') Ys[x.C(t _ t')) at' R 2 at' 

-It (t-t')dt' [t_t') dr' j dS' [aj(x') -3~R. aj(X')] -It (t-t')dt' aj(x,t') 
_ 00 41TEo 0 R 3 Ys(X,r') at' R 2 at' - 00 3Eo at" 

(68) 

where R = x - x' and R = IRI. This result has to agree, of 
course, with the corresponding expression obtained from 
Eq, (47), that is, 

E(x) = It dt'J dV' [I-lO j(x') aG ~)(~'X') 
-00 & 

+ ~p(x') V'G~)(X'X')]' 
Eo 

(69) 

which is also a convolution product of distributions. To 
show the equivalence of these expressions, we first use Eq. 
(A39) to obtain 

E(x) = - It dt' J dV' [I-lo aj(x,') 
- 00 at 

+ ~ v' PiX')] G ~)(x,x/), 
Eo 

(70) 

and, taking into account Eqs. (7), (22), and (42), we show that 

V .a
2
F = V ap • aF 

P at 2 at at 

_ V V·j. aF = _ V V. aj.F 
at at 

aj aj 
-V·-.VF= --.·VVF, 

at at 
(71) 

and Eq, (68) becomes 

E 
__ aj - la 2 F / at 2 + c 2 V V F 

-I-l°ar*· 4r (72) 

which is the same as Eq, (67), 

As done in Sec. II for the scalar wave equation, initial 
conditions and boundary conditions can be built into the 
sources of the vector wave equation. We use Eq, (A20) twice 
to obtain 

VX(VXE) 

= IVX(VXE)j + fiX.1 (VXE) ~(S) + VX[fix.1 E~(S)], 
(73) 

where the quantity in the square brackets is a singular distri
bution. We assume that the fields vanish for t < to and out
side V, and find 

~ a2~ + VX(VXE) 
c at 

aj / aE(x,to) ~ = - I-lo - + E(x,to)~ (t - to) + (t - to) 
at at 
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+.1 [fiX(VXE)]~(S) + Vx [.1 (fiXE) ~(S)]. (74) 

If the initial and boundary conditions are given for B, we use 
Eqs. (39) and (41) to change Eq. (74) into 

1 a2E 
c2 at 2 + VX(VXE) 

= - I-lo aj + E(x,to) ~'(t - to) 
at 

+ [c2VXB(x,to) - j(::o)] ~(t - to) 

a 
- at.1 (fiXB) ~(S) + Vx [.1 (fixE) ~(S)], (75) 

Convolution with the dyadic elementary solution pro
vides a formal solution of the wave equation that also satis
fies the initial and the boundary conditons; we obtain 

aa . aa 
E = - I-lo - •• J + -.·E(x,to)~(t - to) 

at at 

+ a.·fiX aB ~(S) + fiX~(S).· vxa 
at ' 

(76) 

where we assume that the giverrfunctions vanish for t < to 
and outside V. This equation is equivalent to Eq, (B22) when 
the free-space dyadic Green function is used for GR' 

In general we do not know both the tangential compo
nents ofE and B on the boundary S, and Eq. (76) leads to an 
integral equation for the unknown boundary value of the 
field. We can use other Green functions that satisfy homo
geneous boundary conditions, but such a condition cannot 
be imposed on a distribution; this possibility is discussed fur
ther in Appendix B, where the heuristic approach to Green 
functions is used, 

The dyadic elementary solution could also have been 
obtained from the elementary solution for the vector Helm
holtz equation5 that satisfies the outgoing-wave condition at 
infinity. These two distributions are related by a Fourier 
transform that leads from the time variable to the frequency 
variable, 
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IV. CONCLUDING REMARKS 

In this paper we have shown how the free-space Max
well equations can be solved, or reduced to relatively simple 
integral equations, within the framework of the theory of 
distributions. 

We first found the elementary solution of the scalar 
wave equation and showed how it is used to find an integral 
equation for boundary values of the field, which can then be 
used to compute a solution by integration. These formula
tions are well known, especially in the heuristic approach to 
Green functions, but it is useful to have a mathematically 
well-defined derivation that can be generalized to more diffi
cult problems without ambiguities. 

We then followed the same procedure to find the dyadic 
elementary solution of the vector wave equation that was 
derived from Maxwell's equations, and found the corre
sponding expression of the field in terms of the sources, the 
initial values, and the boundary values. This relationship re
duces to an integral equation for either the tangential com
ponent ofE or the tangential component ofB when the field 
point tends to the boundary surface. The scalar elementary 
solution can also be used to solve Maxwell's equations, but 
the boundary terms include the normal components of the 
fields. 

There are difficulties in the definition of Green func
tions that obey homogeneous boundary conditions within 
the framework of the theory of distributions, and we had to 
use the heuristic approach to obtain some further results, as 
shown in Appendix B. These Green functions are no longer 
invariant under translations, and the integrals that give the 
fields are not convolutions. It would be useful to extend the 
theory of distributions to cover these subjects. 

In addition to presenting new results for dyadic Green 
functions for the time-dependent vector wave equation, we 
have demonstrated how the theory of distributions can be 
used to obtain rigorous results in problems where the heuris
tic approach is hazardous. 

APPENDIX A: REVIEW OF DISTRIBUTIONS 

In this appendix we briefly review the main concepts 
from the theory of distributions, ).2 and give enough of the 
results to present the equations used in the paper. 

A distribution is a continuous linear functional on a 
space of test functions. The most general set of distributions 
is obtained when the test functions belong to the space ~ of 
infinitely differentiable functions of bounded support. A dis
tribution Tis defined when a complex number c is associated 
with each test function (J, and we use the notation 

(T,(J) = c. (AI) 

For instance, the Dirac delta distribution is defined by 
(8,(J ) = (J (0). (A2) 

A distribution Tf can be associated to any locally integrable 
function/by 

(A3) 

It is customary to usefboth for the function and the distribu-
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tion, and in most cases relations are valid for both. When T 
corresponds to a function, it is called a regular distribution; 
otherwise, it is called singular. Although, in general, it does 
not make sense to talk about the value of a distribution at a 
point x, we often write T(x) even when Tdoes not correspond 
to a function mainly to indicate what variable is involved; 
such a liberty if often taken with the delta distribution. These 
concepts can be generalized to distributions in spaces of 
higher dimensions. For instance, 

(T(x,t ),(J (x,t) = c (A4) 

defines a distribution in a four-dimensional space-time. 
A linear combination of distributions is defined by 

(aT) + (3T2,(J) = a (T),(J) + (3 (T2,(J), (AS) 

and the null distribution is given by 

(A6) 

for arbitrary (J. Consequently, two distributions T) and T2 
are equal if and only if, for any test function (J, 

(A7) 

A distribution Tis zero in an open region of space if the value 
of the functional vanishes for all test functions (J whose sup
port is in that region. The complement of the union of all 
regions in which T is zero is called the support of the distri
bution. For instance, the support of the delta distribution is 
the origin. 

A distribution can be shifted by an amount a according 
to 

(T(x - a),(J (x) = (T(x),(J (x + a); (A8) 

we define the symmetrically transposed distribution by 

(T( - x),(J (x) = (T(x),(J ( - x), 

and we define a change of scale by 

(T(ax),(J(x) = lal-) (T(x),(J(xla). 

(A9) 

(AW) 

Any distribution Thas a derivative T' = dT Idxdefined 
by 

(T',(J) = - (T,(J '), (All) 

or, for a distribution in a four-dimensional space-time, a 
partial derivative is defined by 

~aT~;,t) ,(J (X,t)) = _ (T(X,t), a(J ~;,t)). (AI2) 

If 0 is the unit step function, Eqs. (A2), (A8), and (All) imply 
that 

0'=8. (A13) 

Consider a function/(x) that has a locally integrable 
derivative defined almost everywhere, except at a set of 
points x; where I can have finite jumps. Equations (A3) and 
(AW) then lead to the relation 

d/ {d/} -= - + I(..::1;/)8(x-x;), 
dx dx ; 

(A14) 

where the left-hand side is the derivative of I in the sense of 
distributions, which always exists, the derivative in curly 
brackets is taken in the sense of functions, ..::1; / is the jump 

..::1;/=/(x; + 0) - I(x; - 0), (AIS) 
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and 8(x - Xi) is the shifted delta distribution. 
Equation (A 14) can be generalized to functions of sever

al variables. If/(x) is differentiable with respect to X I except 
on a surface S, 

(AI6) 

where n I is a component of the unit normal, A I is the jump 
across S in the direction of the normal (reversing fi changes 
the sign of A / and leaves the product unchanged), and the 
definition of the singular distribution is 

(u(x)8(S ),t,6 (x) = L dS u(x)t,6 (x), (AI7) 

where u(x) is a function that needs to be defined on S only. In 
the usual three-dimensional space, Eq. (AI6) leads to the 
relations 

V/= IV/! +fiA/8(S), (At8) 

V·f= IV·f! + fi·A f8(S), (AI9) 

VXf= IVxf! +fiXAf8(S). (A20) 

Combining Eqs. (AI8) and (AI9), we obtain for the 
Laplacian 

V2 
/ = I V2 I! + A al 8(S) 

an 
+ V·[fi AI8(S)], (A21) 

where A (a 1/ an) is the jump in the normal derivative that 
comes from the term 

fi·A IV/! =A[fioIVFJ1=A
a/, 
an 

(A22) 

and the derivatives of the singular distribution in the last 
term of Eq. (A21) have to be taken according to the general 
definition (Al2). 

A generalization of the ordinary product of two func
tions to a product of arbitrary distributions is not possible 
because, for instance, the product of two locally integrable 
functions is not necessarily locally integrable. On the other 
hand, the direct product of two distributions can always be 
defined by 

(T(x)U(y),t,6 (x,y) = (T(x),t/I(x), (A23) 

where 

tP(x) = (U(y),t,6 (x,y) (A24) 

is an indefinitely differentiable function of x that satisfies 

(A25) 

This product is commutative and distributive over a sum, 
that is, 

T(x)U(y) = U(y)T(x), (A26) 

T(x)[UI(y) + U2(y)] = T(x)Ul(y) + T(x)U2(y), (A27) 

where Eq. (A26) means 

(T(x),( U(y),t,6 (x,y)) 

= (U(y),(T(x),t,6(x,y)). (A28) 

The product can be generalized to more than two factors, 
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and it is associative. We have, for instance, 

8(x)8( y)8(z) = 8(3)(x), (A29) 

where the three-dimensional delta distribution is defined by 

(8 (3)(x),t,6 (x) = ¢ (0) = t,6 (0,0,0). (A30) 

The direct product of two distributions results in an
other distribution in a space of higher dimension. It is also 
often possible to define a convolution product in the same 
space of the original distributions, indicated by 

V(x) = T(x)*U(x) (A31) 

and defined by 

(V,¢) = (T(x)U(y),¢ (x + y) (A32) 

in terms of the direct product (A23). It should be remem
bered that Eq. (A31) does not mean that the value of the 
convolution product at x is the product of the values of the 
factors at x, even when these quantities are defined. The 
convolution product of two arbitrary distributions is not al
ways defined because, even though ¢ (x) has a compact sup
port, the support of t,6 (x + y) in the plane is essentially the 
union of unbounded diagonal strips and the right-hand side 
of Eq. (A32) need not be defined. The convolution product 
exists when one of the distributions has a compact support or 
when both distributions have supports bounded on the same 
side; these are sufficient conditions, and it is not necessary 
for either to be satisfied. When the convolution product ex
ists, it is commutative and distributive, 

T*U= U*T, 

n(UI + U2 ) = nUl + nu2 • 

(A33) 

(A34) 

When T and U are functions, Eq. (A32) can be rewritten in 
the form 

V(x) = f: 00 T(x - x')U(x') dx'. 

Some useful particular relations are 

8*T= T, 

8'*T=T', 

8(x - a)*T(x) = T(x -aI, 
d dT dU 

-(T.U)=-*U= T*-. 
dx dx dx 

(A35) 

(A36) 

(A37) 

(A38) 

(A39) 

The convolution product can be extended in a straightfor
ward way to more than two factors and to distributions of 
several variables. 

The definition of the Fourier transform of a distribution 
is 

(Y(T),t,6) = (T,Y(t,6 I), (A40) 

but this definition is not applicable in general because the 
Fourier transform of a function of compact support does not 
have a compact support. We restrict ourselves to the space of 
tempered distributions where the Fourier transform is de
fined by enlarging the space of test functions to the space .Y 
of indefinitely differentiable functions that decrease rapidly 
at infinity. By rapidly decreasing we mean that, for arbitrary 
nonnegative integers m and n, xmt,6 (n)(x) is bounded; in other 
words, ¢ (x) tends to zero faster than any power of 1I1x I when 
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Ixl~oo. The Fourier transform of such a function is also in 
Y, and the Fourier transform of a tempered distribution is 
well defined by Eq. (A40). In particular, distributions of 
bounded support are tempered distributions, as are the dis
tributions that correspond to locally integrable functions 
that increase slowly at infinity (more slowly than some pow
er of Ixl). 

The sign of the exponential in a Fourier transform is 
arbitrary, and we define 

Y ± (~) = (21T)-1/2f~ "" ~ (x) exp( ± ikx) dx; (A41) 

then, Y _ is the inverse transform for Y + and vice versa. 
Thus, for a functionfwe have 

Y ± (f) = (21T) -1/2f~ "" f(x) exp( ± ikx) dx, (A42) 

if the integral exists; the Fourier transform of a distribution 
Tsatisfies 

Y ± (T') = + ik Y ± (T), (A43) 

Y ± [T(x-a)] =exp(±iak)Y ± [T(x)]; (A44) 

and, for the convolution product of two distributions of com
pact support, we have 

Y ± (T*U) = Y ± (T) Y ± (U), (A4S) 

since the Fourier transform of a distribution of compact sup
port is a function. 

We now give some examples of distributions and their 
Fourier transforms. The principal value of l/x, which is de
fined by 

( p ~,~ (X)) = lim [J -£ ~ (x) dx + ("" ~ (x) dX], 
X £->0 + - "" X J£ x 

satisfies 

d I 
-loglxl =P-, 
dx x 

Y ± [p ~] = ± i(!1T)1/2 sgn(k). 

We also have 

Y ± (8) = (21T)-112, 

whence 

Y ± [P(l/x) ± i1T8] = ± i(21T)1/2 O(k), 

(A46) 

(A47) 

(A48) 

(A49) 

(ASO) 

where upper or lower signs have to be taken together. It is 
customary to write the argument of the Fourier transform as 
(x + iE)-I, and we have 

Y ± [(X+iE)-I] = ±i(21T)1/20(k), (ASI) 

where the limit E~ + is implicit. The Fourier transform of 
the derivative of this distribution is, by Eq. (A43), 

Y ± [(X+iE)-2] = -(21T)1/2kO(k). (AS2) 

We can write 

(AS3) 

where the derivative of P( l/x) is related to the finite part of 
Hadamard of a divergent integral, 
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( t) Jco ~ (x) F,P'2'~ = F.P. -2- dx 
x - "" x 

= lim [J -£ ~ (:) dx + fco ~ (:) dx _ ~ (0) ]. 
£->0 + _ co X J£ X E 

A relationship that is useful for functions is 

f~ 00 d 3kf(k) exp( ± i kox) 

= 41Tr- 1 1"" kdkf(k) sin(kr), 

where k = Ikl and r = Ixl. 

APPENDIX B: HOMOGENEOUS BOUNDARY 
CONDITIONS 

(AS4) 

(ASS) 

When boundary conditions are given for the unknown 
field in a linear partial differential equation, it is often useful 
to define Green functions that obey homogeneous boundary 
conditions. For the scalar wave equation, we can define 
G W(x,x') which vanishes when x is on S, and G ~), whose 
normal derivative vanishes on S. When G~) is replaced by 
G~) or G~) in Eq. (37), one of the surface integrals vanishes, 
and we obtain a solution by integration over known func
tions instead of an integral equation. 

There are two problems that keep us from using the 
theory of distributions to handle these Green functions: 
They are no longer functions of x - x', so that Eq. (36) no 
longer represents convolution products, and a distribution 
would have to vanish on a surface, which is not an open 
region of space. Thus, in this context, we use the heuristic 
approach to Green functions. 

The Green functions G ~), and G~) and the correspond
ing advanced Green functions obey symmetry relations 

GR(x,t;x',t') = GR(x', - t';x, - t), 

but, in general, 

aGR(x,x') 

at 

V GR(x,x')# - V'GR(x',x). 

When V is the half-plane z;;>O, 

G~)(x,x') = ~(x - x') - ~(x - x;), 

(Bt) 

(B2) 

(B3) 

(B4) 

(BS) 

where xj is the image point obtained by setting z~ = - z'. 
Even though the translated distributions are defined 
through Eq. (A8), giving a precise meaning to G W, we cannot 
say what is meant by G W vanishing when z = O. 

If we substitute either G~) or GW in Eqs. (46) and (47), 
unknown fields in the surface integrals are not eliminated; 
this constitutes some of the motivation to consider dyadic 
Green functions. 

The appropriate form of Green theorem for the vector 
wave equation is 
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(" dt f dV [{~ a2~ + VX(VXU)}.v J,,, Jv c at 

_ {l.... a
2

v + VX(VXV)}.U] 
c2 at 2 

= ~ f dV [v. au _ u. Jv]" 
c Jv at at I" 

+ L' dt £ dS·[uX(VXv) - vX(VXu)). (B6) 

Retarded and advanced dyadic Green functions are defined 
by 
I a2G(x ') 

2' a 2,x + Vx [VxG(x,x')) = 8(41(x - x')I, (B7) 
c t 

GR(x,x') =0, t<t', 

GA (x,x') = 0, t> t'. 

(BS) 

(B9) 

The two simplest types of homogeneous boundary condi
tions are 

Ii·G(1)(x x')1 = 0 , xES , 

Ii·VXG(21(x,x')lxES = o. 
(BlO) 

(BII) 

In either case, we can use x; as variables of integration in Eq. 
(B6), let to- - 00, and substitute 

u(x") = GA(x",x)·a, (BI2) 

v(x") = GR(x",x')·b, (BI3) 

where a and b are arbitrary constant vectors. We then use 
Eqs. (B7)-(B9) and the boundary condition (BIO) or (BII) to 
show the symmetry relation 

(BI4) 

where the tilde indicates the transpose of the dyadic. Similar
ly, if instead ofEq. (BI2) we use 

u(x") = GR(x", - t ";x', - t')·a, (BIS) 

we find 

GR(x,t;x',t') = GR(x', - t';x, - t), (BI6) 

with the corresponding result for GA' This equation implies 
that 

~ a2G(x~X') + V'X [V'XG(x,x')) 
c at' 

= 8(41(X - x')I, 
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(BI7) 

(BIS) 

(BI9) 

If we use x~ as variables of integration in Eq. (B6) and set 

u(x') = E(x'), (B20) 

v(x') = GR (x,x')·a, 

we find 

E(x) = - flo (' dt' f dV' GR (x,x'). aj(~') 1 Jv at 

+ ~ f dV' [GR(x,x'). {c2 V'XB(x') _ j(X')} 
c Jv ~ 
aGR(x,x') ] 

- ·E(x') 
at' 1'=1" 

-L dt' £ dS' 1i'.[E(X')X!V'XGR(x,x'll 

_ aB(x') G- ( ')] X R X,X . 
at' 

(B21) 

(B22) 

If we know Ii X E on S, we can use G~I to eliminate the second 
term in the surface integral, and, if we know Ii X B on S, G~I 
serves to eliminate the first term. In either case, Eq. (B22) 
gives E as a sum of integrals over known functions when the 
right Green function can be found. 

In practice, we probably would not be able to find G ~I 
or G ~I. Alternatively, we can use the free-space Green func
tion G~) in Eq. (B22) and let E approach S from the outside, 
where E vanishes. We obtain an integral equation where ei
ther Ii X E or Ii X B is known and the other is to be deter
mined. We could also use Ii X (V X E) instead of Ii X B in this 
formulation. Once we know both tangential fields, Eq. (B22) 
gives E everywhere. 

1 L. Schwartz, Theorie des distributions, Vol. I (Hermann, Paris, 1950) and 
Vol. 2 (1951). 

21. M. Gel'fand and G. E. Shilov, Generalized Functions (Academic, New 
York, 1964), Vol. I. 

JR. Petit, Ed., Electromagnetic Theory o/Gratings (Springer-Verlag, Berlin, 
1980). 

4E. Marx, Natl. Bur. Std. (U.S.) Tech. Note 1157, Washington, D. C., Feb
ruary 1982. 

'C.-T. Tai, Dyadic Green's Functions in Electromagnetic Theory (Intext, 
Scranton, 1971). 

"S.-W. Lee, 1. Boersma, C.-L. Law, and G. A. Deschamps, IEEE Trans. 
Antennas Propagation AP-28, 311 (1980). 

7L. Schwartz, Mathematics/or the Physical Sciences (Addison-Wesley, 
Reading, Mass., 1966), pp. 281-4. 

E. Marx and O. Maystre 1056 



                                                                                                                                    

Single integral equation for wave scattering 
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When a wave interacts with an obstacle, the scattered and transmitted fields can be found by 
solving a system of integral equations for two unknown fields defined on the surface of the body. 
By choosing a more appropriate unknown function, the system of equations is reduced to a 
single singular integral equation of the first kind. This reduction is done here for transient and 
monochromatic waves, for a scalar field that obeys the wave equation, and for electromagnetic 
fields that obey Maxwell's equations. 

PACS numbers: 03.50.De, 03.40.Kf, 02.30.Rz 

I. INTRODUCTION 

The main physical problem under consideration in this 
paper is the scattering of an electromagnetic wave at the 
interface between two homogeneous regions of space. The 
determination of the scattered and transmitted fields 
throughout space has previously been reduced I to the solu
tion of integral equations for unknown functions defined 
only on the surface. 

If the surface is that of a perfect conductor, it is suffi
cient to find the surface current density, 1-3 which is a tangen
tial vector field; the scattered fields are then determined by 
integrations. If the scatterer is a dielectric, it is possible to 
obtain I two integral equations for two tangential vector 
fields. Especially for numerical calculations, such a doubling 
in the number of unknown functions can be a problem be
cause it increases computer storage requirements. 

Maystre has shown4 how the number of unknown func
tions in the problem of diffraction of electromagnetic waves 
by a grating can remain unchanged when a dielectric re
places a perfect conductor. We extend this method to three
dimensional scattering. 

In Sec. II we consider the scattering of a transient scalar 
wave. The incident field is specified by the initial values of 
the field and its time derivative at time t = ° in one of the 
regions. We assume that the field obeys the homogeneous 
wave equation, that the field is continuous across the sur
face, and that the normal derivative on one side is a fixed 
multiple of that on the other side. We define a single un
known function on the surface that obeys a singular integral 
equation (65) of the first kind; the scattered and transmitted 
fields can then be found by integrations, as shown in Eqs. (70) 
and (71). The solution of this problem is of interest, for in
stance, in acoustics and also is a model for a suitable general
ization that can be applied to electromagnetic scattering. In 
.Sec. III we start with an incident electromagnetic wave 
specified by E and B at t = O. These fields obey the homogen
eous Maxwell equations, the tangential component of the 
electric field is continuous across the surface, and the mag
netic induction on one side is a constant multiple of that on 
the other side. We define a tangential vector field on the 
surface and find the integral equation (136) it obeys; the 
fields are then given by Eqs. (141)-(144). We use the Green 
function for the scalar wave equation, but we also sketch 
how the equivalent problem of the electric field that obeys 
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the vector wave equation can be reduced with the help of a 
dyadic Green function. The related problems for monochro
matic waves are reduced to similar integral equations in Sec. 
IV. In this form, it is easy to take into account finite conduc
tivity and dispersive media. 

Although most scientists and engineers prefer to use a 
heuristic approach to Dirac delta functions and Green func
tions, we use the theory of distributions5

-
7 to provide a firm 

mathematical foundation to our derivations. We give more 
details in the derivations than we would if we were using a 
more familiar method, but we do not look for the least re
strictive conditions or stop to prove all our assertions. In 
Appdendix A of Ref. 7 we collect a number offormulas that 
are used in this paper. 

The method used in this paper can be applied to still 
other scattering problems, although details differ in each 
case. 

II. SCALAR WAVES 

We first consider the problem of the scattering of a sca
lar field tP by an obstacle. We assume that the field is initially 
located in a homogeneous medium in a region VI' separated 
from another homogeneous medium in a region V2 by a sur
faceS. 

We will define auxiliary fields tPl and tP2' which depend 
on a single unknown function 1] defined on S. This function 
obeys an integral equation that is an expression of the origi
nal boundary conditions. Then the field tP can be obtained 
from 1] and the incident field by integrations. 

The real field tP(x,t ) satisfies the wave equations 

if/vi - V2tP = 0, XEVI , (1) 
.. 2 
tP/v~ - V tP = 0, XEV2, (2) 

where a dot is used to indicate a derivative with respect to 
time and VI and V2 are the speeds of propagation of the wave 
in VI and V2, respectively. In addition, tP satisfies the bound
ary conditions 

tP+ = tP-, XES, 

( ~~ ) + = a( ~~) _' XE S, 

where the normal derivative is defined by 

aif; = Ii.V.I, an 0/, 

(3) 

(4) 

(5) 
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in terms of the unit normal Ii to S that points from VI to V2, 

and where the subscripts + and - indicate the limiting 
values of fields in V2 and VI' respectively. The initial values 
of the field", and its time derivative;P are also given, and they 
vanish in V2• 

We apply the results derived in the theory of distribu
tions to a field X that obeys the same wave equation in VI and 
V2, vanishes for times before the initial time t = 0, and is 
discontinuous on the surface S. We use the same symbol X 
for both the distribution and the function, and indicate de
rivatives in the sense offunctions by curly brackets. Then, 
when the second derivatives of X are integrable functions 
almost everywhere, X satisfies 

Lillv2 - (V2xl =fJ, (6) 

where fJ (x,t ) represents the sources of the field. The wave 
equation in the sense of distributions reduces t05

•
7 

i Iv2 
- V2X = fJ + v- 2X(x,0)8 /(t) 

+ v- 2j(x,0)8(t) -1]8(S) - Vo[liI,68(S)] =P. (7) 

where iJ is a source distribution that include the source func
tionfJ, the initial values ofX andj, and the jumps 1,6 =.JX of 
the function and 1] =.J (aX Ian) of the normal derivative on 
S. If [§ is the elementary solution of the wave equation, the 
solution of Eq. (7) is given by the convolution product 

X = [§ ·iJ. (8) 

When the sources vanish and the surface S is disregarded, 
Eq. (8) has the form 

X = [§ .f(x)8/(t ) + [§ .g(x)8(t ), (9) 

while, ifthe sources and initial values vanish, Eq. (8) becomes 

X = - [§.1]8(S) - [§.Vo[liI,68(S)]. (10) 

We now examine in what sense the jumps inx and 
aX Ian have the specified values. The elementary solution of 
the wave equation is given by5.7 

( [§,({J) = - dS ({J (x,t ), Sa
'" dt t 

o 41Tt Slvt) 

(11) 

where S (a) is a sphere of radius a centered at the origin and ({J 
is a test function. We rewrite this equation in the form 

( [§,({J ) = f dV ({J (x,rlv)l41Tr, 

where r = Ixl. We use Eq. (11) to write 

( [§ .g(x)8(t ),({J ) 

(12) 

= r"'!!!....i dSfdVlg(X/).p(x+x/,t), (13) 
Jo 41Tt Js(vt) 

and we change the variables x' to x" = x + x' and the order 
of integration to obtain 

( [§ .g(x)8(t ),({J ) 

= r'" !!!.... f dv"i dS g(x" - x)({J (x",t). (14) 
Jo 41Tt Js(vt) 

We change dummy variables from x to x' and from x" to x, 
and find 

[§ .g(x)8(t) = (j (t) i dS 'g(X - x'), 
41Tt Js(vt) 

(15) 
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where (j (t ) is the unit step function. Similarly, we find 

[§*f(x)8 /(t) = - (j(t~ i dS'f(x - x'). (16) 
41Tt JS(vt) 

We note that the surface elementdS' in Eqs. (15) and (16) has 
a factor v2t 2, so that the expressions do not diverge when 
t---+O. The integrals in Eqs. (15) and (16) are essentially the 
averages of the functionsfand g over a sphere of radius vt 
centered at x. 

The singular distribution 1]8(S) is defined by 

(1]8 (S ),({J ) = f: '" dt i dS 1](x,t )({J (x,t ), (17) 

and, combining this expression with Eq. (12), we find 

( [§ *1]8(S ),({J ) 

f dV' foo f = -, dt dS 1](x,t)({J (x + x',t + r'lv). (18) 
41Tr -'" S 

Changing the variables of integration x' and t to x" = x + x' 
and t " = t + r'lv, we obtain 

( [§ *1]8(S ),({J ) 

= foo dt" f dV" [i dS 1](x,t" - ~,x" - Xliv)] 
- 00 Js 41Tlx - xl 

X({J (x",t "), (19) 

whence 

[§*1]8(S) = idS' 1](x',t - R Iv)/41TR, 

where R = x - x' and R = IRI. Similarly, 

(Vo[fiI,68 (S )],({J ) 

= - J: 00 dt i dS 1,6 (x,t )lioV({J (x,t), 

and we have, after the same substitutions, 

( [§ .Vo[liI,68(S )],({J ) 

(20) 

(21) 

= _ f'" dt" Jdv,,[i dS 1,6 (x,t" - !,x" - XliV)] 
_ '" Js 41Tlx - xl 

oV"({J(x",t"), (22) 

where the right-hand side ofEq. (22) corresponds to the di
vergence of the vector-valued distribution in the square 
brackets. To simplify the notation, we define retarded func
tions by setting 

1]ret (x',t ') = 1](x',t - R Iv), (23) 

and we use the functional notation 

(24) 

for minus the integral in Eq. (20). 
If the field point x is not on S, the integrand in Eq. (22) 

does not become singular, and we can write 

{v.i dS' I,6ret (x',t ') } 
Js 41TR 

f ' [¢ret (x',t ')R I,6ret (x',t ')R ] 
= - dS o + . 

S 41TVR 2 41TR 3 

(25) 

When x is on S, the second term on the right-hand side ofEq. 
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(25) is not an integrable function. Since the distribution X' is 
independent of the values of the function X' on the surface, we 
can define the function on the surface by choosing the princi
pal values of the integrals. The principal value of a surface 
integral at the point x on S is defined as the limit of the 
integral over the surface excluding a small patch about x 
when the size of the patch tends to zero. We now compute 
the limit of X' (x,t ) and x approaches a point Xo on S from 
either side of the surface along the normal n; we have 

x = Xo + hn. (26) 

We separate the surface S into a patch S) about Xo and the 
remainder S. When tP is well behaved on S), we can approxi
mate tPret (x/,t /) by the constant value tP (Xo,t) and show that 
the difference between the two is of the order of R; the inte
gral of this difference then tends to a quantity of the order of 
the measure of the patch as h-D. The integral of tP (xo,t ) over 
the patch is then proportional to 

r dS/.R/R 3 = n, 
Js, (27) 

where n is the solid angle subtended by S) and x, which also 
remains finite as h-+O, and so does the integral over S. Thus, 
the limits of the function X as x approaches Xo from either 
side of the surface are finite. We characterize the size of the 
patch by a parameter a and, if the surface is smooth at xo, we 
find 

1· l' i dS/·R 1m 1m --- = 
0-..0 h-..o ± s R 3 , 

± 21T. 

Similarly, 

lim lim --- = 0, i dS/·R 
a-..o h--o.O ± s, R 2 

1· l' i dS' ° 1m 1m -- = . 
a--o.O h--o.O ± s, R 

We write the function X' in the form 

X ! X,t 1 = G ! 1/ 1 + N I tP I, 
where G ! 1/ 1 is defined in Eq. (24) and N! tP 1 stands for 

N! tP 1 = 1. dS/. ¢ret(x/,t ')R 
Ys 41TVR 2 

i A. (x/ t')R + P dS/. 'l'ret , 
s 41TR 3 

(28) 

(29) 

(30) 

(31) 

(32) 

In the limit a-+O, the integrals over S tend to the principal 
values that define X on the surface, the integrals over S) are 
evaluated with the help of Eqs. (28)-(30), and we obtain 

X ± (x,t) = ±!tP (x,t) + X'(x,t), XE S. (33) 

The discontinuity of X' across S is equal to tP regardless of the 
definition of X' on S. 

We can compute the gradient ofX from Eq. (10), which 
gives 

(VX,lP) =foo dtJdV[1. dS' 1/ret(x/,t/) VlP(x,tj 
- 00 Ys 41TR 

- 1. dS' tPret(x/,t') 'VVlP(X,t)]. (34) 
Ys 41TR 

Ifx is not on S, we can integrate by parts to find the deriva-
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tives in the sense of functions, 

{V 1=_1 1.dS/~+~ (
. R R) 

X' 41T js vR 2 R 3 

_1 1. dS'. [~retRR 
+ 41T Ys v2R 3 

(
¢ret tPret) 3RR - R 21 ] +-+- , v R R4 (35) 

where 1 is the unit 3 X 3 dyadic. In general, we see that the 
function VX' diverges as x approaches Sunless tP = 0. To 
determine in what sense the discontinuity in the normal de
rivative of X is actually 1/, we compute 

lim lim i dS' ~ = 0, 
a--o.O h--o.O ± s, R 

(36) 

lim lim i dS' l!... = ± 21Tn, 
a--o.O h--o.O ± s, R 3 

(37) 

lim lim i dS / • RR = 0. 
a--o.O h--o.O ± s, R 3 

(38) 

The other two integrals diverge. If we approximate S) by a 
flat circular disk of radius a centered at Xo, we have 

i d S/ • 3RR - R 21 
s, R 4 

~ [ 2h 2 _p2 
= n 21Tp dp 2 22 

° (h +p) 

( 
3a2 h 2 + a2) ~ 

= 1T 2 2 - loge 2 n, 
a + h h 

(39) 

which diverges as h-+O, and 

i d S/ • 3RR - R 21 
s, R 5 

(h 2 + a2)3/2 ' 
(40) 

which implies that, for this special S), 

lim i d S/ • 3RR - R 21 = 21Tn , 
h--.Q ± s, R 5 a 

(41) 

although the integral is not absolutely convergent. Never
theless, these integrals do not depend on the sign of h and, if 
their contributions cancel when the difference of the limits 
from either side of S is taken, we can write 

(42) 

For the special case in which tP = 0, we can again define the 
value ofVX on the surface by the principal value integrals, 
and we multiply by the normal to find 

(43) 

(44) 

where i 1 (1/' R 1/ R) N'!1/1 =n·P dS'-~ + ~. 
S 41T vR 2 R 3 

(45) 
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We return to the original problem and first decompose 
the field in VI into the incident and scattered fields: 

(46) 

The incident field satisfies the initial conditions and the ho
mogeneous wave equation, and is defined everywhere by as
suming that the medium in VI fills all space. Then tP in is 
given by Eq. (9), which becomes 

tP in = f1 1*[tP(x,O)o'(t) + ¢(x,O)o(t)], (47) 

where we use the subscript 1 on f11 to indicate that we have 
to set v = VI in Eq. (11). Equation (47), with the help of Eqs. 
(15) and (16), gives tP in in terms of the initial conditions for tP, 
and we can assume that it is a known field. 

We first show how a pair of coupled integral equations 
can be derived for two unknown functions on S. We assume 
that tP 'c vanishes in Vz and that its boundary values in VI are 
¢JI and r" for tP'c and atP,c/an, respectively. Then Eq. (10) 
gives 

(48) 

Similarly, if the transmitted field vanishes in VI' by Eqs. (3), 
(4), and (10) we have 

tPtr = _ af1 z*( a~n + 1]1)O(S) 

- f1 z*V-[fi(tf" + ¢JI)O(S)]. (49) 

We obtain two integral equations for ¢JI and 1]1 if we let the 
field point in Eqs. (48) and (49) tend to S and set 

t/r'~ = 0, 

tPt"- = o. 
(50) 

(51) 

Once ¢JI and 1]1 are known, Eqs. (48) and (49) give tP sc in VI 
and tP tr in Vz. 

To reduce the number of unknown functions on S to 
one, we define two auxiliary fields tPl and tP2 which satisfy 

tPl(X,t) = tP'C(x,t), XEVI , 

¢dx,t )/vi - V2tPl(X,t) = 0, XEV2, 

tPl+ = tPl- = tP',,-, XES, 

Ll (~I) = 1], XES, 

tPz(x,t) = 0, XE VI' 

tP2(X,t) = tP(x,t), XEVz, 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

plus homogeneous initial conditions for both tPl and tPz; our 
unknown function is 1], the discontinuity of the normal de
rivative of tPl across S. Since tPl is continuous across Sand 
satisfies the same wave equation in VI and Vz, Eq. (31) gives 

(58) 

The field tP2 also obeys the same wave equation with v = Vz in 
VI and V2, and the jumps of tP2 and atPz/ an are given by 

(59) 

Ll (atPz) = (a tPz) = (atP ) 
an an + an + 

= a(atP) = a atfn + a (atP ,) 
an - an an -

(60) 
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that is, from Eqs. (58), (43), and (44), 

LltP2 = tP in + GIl1]}. XES, 

Ll (atP2) = a atfn - ~a1] + aN; 11] I ' XE S, 
an an 

(61) 

(62) 

where the jumps are expressed in terms on 1]. Equation (31) 
then gives 

(63) 

This function tP2 does not vanish in VI for arbitrary 1], so we 
obtain the integral equation for 11 by imposing the condition 

tP2- = O. (64) 

We use Eq. (33) to express tP2- in terms of the jump of tP2 
acrossS, given by Eq. (61), and the value oftP2 0nSfromEq. 
(63). After rearranging the terms, we obtain 

BG I -NzG, +a(!Gz - G2N;)]11I1 

. . {aifJ
n 

} + !ifJn - Nzi ifJn I - aGz a;; = 0, (65) 

where the composite operators are defined as in 

N2G, I1] I = Nz{ G I I1] I}, (66) 
in terms of the operators (24), (32), and (45). Equation (65) is a 
singular integral equation of the first kind. 

To show that the field tPz actually vanishes in VI' we use 
the uniqueness theorem that follows from the energy 
relation 

v-!iVX) = - - Xz + (VX)2 , 1 a [ ·z ] 
2 at v 

(67) 

a consequence of the homogeneous wave equation. We inte
grate over the volume VI and use Gauss's divergence theo
rem to derive 

J. dS i aX =..!. ~ r dV [i: + (VX)z]. (68) Ys an 2 dtJv, v 

If the volume VI goes out to infinity, we use causality to show 
that there is no contribution from that part of the surface 
integral. IfX vanishes onS, so does i and Eq. (68) shows that 
the integral on the right-hand side is a constant. If X and i 
vanish initially in VI' this integral vanishes and, since the 
integrand is nonnegative, bothi and Vx vanish throughout 
VI' that is, X is a constant field in VI' and this constant is zero 
because X vanishes on S. The field tPz satisfies these condi
tions, showing that it has to vanish in VI; in particular, 

(atP2) = o. 
an -

(69) 

Once 1] is determined from Eq. (65), the scattered and trans
mitted fields can be found from Eqs. (58) and (63), that is, 

tP(x,t) = tPin(x,t) + G, I1]). XEVI , (70) 

. {atPin
} tP(x,t) = Nzi tPlfIl + aGz a;; 

+ [NzG I + a( - !Gz + GzN;)]!1]j, XEVz. 
(71) 

I t is obvious that this field satisfies Eqs. (1) and (2), as well as 
the initial conditions. To verify that the boundary conditions 
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(3) and (4) are satisfied, we first note that, since 1/1 = 1/12 in V2 
and 1/12 satisfies the boundary conditions (64) and (69), the 
boundary values 1/1 + and (a1/lIan) + are equal to the jumps of 
1/12 and a1/l2/an given by Eqs. (61) and (62). Since both terms 
in Eq. (70) are continuous on S, we have 

1/1- = 1/1 in + GII1])' XES, (72) 

and Eq. (3) is satisfied. Furthermore, if we apply Eqs. (43) 
and (44) to the second term in Eq. (70), we obtain 

(
a1/l) a1/lin 1 
- = - - -1] +N; 11])' XES; 
an - an 2 

(73) 

comparison with Eq. (62) shows that the boundary condition 
(4) is also satisfied. Thus, 1/1 satisfies all the imposed 
conditions. 

III_ ELECTROMAGNETIC FIELDS 

We represent the electromagnetic fields by four vector
valued distributions that vanish for negative times and corre
spond to locally integrable functions with derivatives de
fined in the sense of functions in regions VI and V2, separated 
by a surface S. 

We extend the procedure used in the previous section 
for the scalar field 1/1 to apply to the pair of vector fields E and 
B. We will use auxiliary fields E I, B I, E2, and B2 to express 
the fields E and B in terms of the incident fields and a single 
tangential vector field n X 1'1 defined on S. This field obeys an 
integral equation which is a consequence of the original 
boundary conditions. 

Maxwell's equations in the sense of distributions are 

V-D=p, 
V-B = 0, 

VXE + B = Bo(x)15(t), 

VXH - 0 =J - Do(x)15(t), 

(74) 

(75) 

(76) 

(77) 

where we use the inverted caret on the sources to indicate 
that they are distributions that may include singular parts, 
that is, 

(78) 

where p is the volume charge density, Psis the surface charge 
density, and the last term represents point charges, which 
will not be considered further in this paper. The current den
sity includes the surface current density Js in 

J=j+Js 15(S). (79) 

In Eqs. (76) and (772 the meaning of the source distributions 
differ from that of /3 in Eq. (7), since they do not include the 
initial values and jump terms. 

The terms proportional to 15 (t ) represent impulses that 
cause the initial conditions to be satisfied. In this form, Max
well's equations contain both the equations in the sense of 
functions and the boundary conditions. The derivatives of 
the distributions are 
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V-D= IV-DJ +.11(n-D)15(S), 

V-B = I V-B J + A (n-B) 15(S), 

VXE+B= IVxEJ +.1 (nxE)15(S) 
+ [B J + B(x,O)15(t ), 
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(80) 

(81) 

(82) 

VXH-O= IvxHJ +.1(nXH)15(S) 

- IOJ - D(x,O)15(t), (83) 

and we can equate the regular and the singular parts in each 
equation to derive 

[V-D] =p, (84) 

IV-BJ =0, (85) 

{VxEJ + {BJ = 0, (86) 

IvxHJ - (OJ =j, (87) 

A (n-D) =p" (88) 

A (n-B) =0, (89) 

A (nXE) = 0, (90) 

A (nXH) =Js ' (91) 

The constitutive relations 

D=€E, (92) 

B=,uH (93) 

are not generally defined in terms of distributions. In this 
section we assume that € and,u are equal to different con
stants throughout VI and V2, where the fields correspond to 
functions. 

We now consider an incident electromagnetic field giv. 
en by the initial values Eo(x) and Bo(x) in VI' and we seek to 
determine the scattered and transmitted fields. As before, we 
separate the fields in VI into incident and scattered fields, 

E = E in + ESC, XEVI, 

B = Bin + BSe, XEVI, 

(94) 

(95) 

where the incident fields satisfy the initial conditions. We 
also have to satisfy the boundary conditions (90) and (91); the 
surface current density vanishes unless one of the regions 
corresponds to a perfect conductor. These conditions can be 
written in the form 

nxE+ = nXE_, 

nXB+ = anXB_, 

where 

a =,u2/,ut. 
The incident fields are given by8 

Ein = vl- 2:1 I*Eo15 (t) + V~ I*XBoD(t), 

Bin = VI-
2[ .c9 1+*BoD(t) - V~ I*XEoD(t)], 

(96) 

(97) 

(98) 

(99) 

(100) 

where we have both a convolution product and a vector 
product in the gradient terms and the speed of propagation is 
given by 

v~ = l/(€I,ud, (101) 

and the initial values satisfy the constraints 

V-Eo = 0, (102) 

V-Bo = 0. (103) 
We verify that these fields obey the appropriate Maxwell 
equations; we have 

V_Ein = VI- 2 ff I *V-Eo15 (t) + ~ I *V-V X BoD (t) = 0, (104) 

V_Bin = VI- 2[ ff I*V-Bo15 (t) - [g I*V-VXEoD (t)] = 0, (105) 
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VXEin + Bin 

= VI-2V~ l*xE08(t) + B08(t)*·VV~ I 
- V2~ I*B08(t) + VI-

2(1 I*B08(t) 

- VI-2V~ l*xE08(t) 

= V·B08 (t )*V ~ I + 8*B08 (t) = BoO (t), (106) 

v~VXBin _ tin 

= V~ l*xB08(t) - E08(t)*·VV~ I 

+ V2~ I*E08(t) - vl-
2 (1 I*E08 (t) - V~ l*xB08 (t) 

= - V·Eo8 (t )*V ~ I - 8*E08 (t) 

= -E08(t). (107) 

We now consider fields f5' and fJIJ that propagate in a homo
geneous medium of permittivity € and permeability J.l, satisfy 
the homogeneous Maxwell equations and initial conditions, 
and have jumps equal to eft and 1], respectively, on the surface 
S. They are given by 

f5' = - V~*n·eft8(S) + V~*x(nXeft)8(S) 
- ~*nX1]8(S), (108) 

fJIJ = - V~*n'1]8(S) + V~*x(nX1])8(S) 
+ v-2~*nXeft8(S), (109) 

and, when we take the appropriate derivatives, we obtain 

v·f5' = - V2~*n·eft8(S) + VXV~*'nxcft8(S) 
- V~*'nX1]8(S) 

= (8 - v-2~)*n·eft8(S) - ~*V'[nX1]8(S)] 
= fi·cft8(S) - v-2~*[n·cj,8(S) + v2V'(nX1]8(S))], (110) 

V·fJIJ = - V2~*n'1]8(S) + VXV~*'nX1]8(S) 
+ v-2V~*'nxcft8(S) 

= (8 - v- 2(1 )*fl'1]8(S) + v-2~*V'[flXeft8(S)] 
= n'1]8(S) - v-2~*[fl·~8(S) - V'(nXcft8(S))], (111) 

VXf5' + iJJ = - VXV~*fl'cft8(S) - V2~*flXeft8(S) 
+ flXeft8(S)*·VV~ - V~*X(flX1])8(S) 
- V~*fl'1]8(S) + V~*x(nX1])8(S) 
+ v-2~*nXeft8(S) 

= nXcft8(S) - V~*[fl'TJI5(S) - V'(flXeft8(S))], 
(112) 

VXfJIJ - v- 2 if 
= - VXV~.n'1]8(S) - V2~.nX1]8(S) 

+ nX1]8(S).·VV~ + V~·X(nXeft)8(S) 
+ v-2[V~.n·cft8(S) - V~.x(nxeft)8(S) 
+ ~.nX1]8(S)] 

= nX1]8(S) + v-2V~.[fl·cj,8(S) 
+ v2V·(nX1]8(S))]. 

(113) 

Comparison with Eqs. (80)-(83) shows that we obtain the 
correct result provided we set 

n·cj, = - v2Vs'nX1], 

n'TJ = Vs'nxeft, 

(114) 

(115) 

where the surface divergence of a tangential field defined on 
S satisfies9 
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<V·[n Xf8(S )],<p ) 

= - f dS nXf'V<p 

= - f dSnXf'Vs<p = idS [Vs'(n X f)]<p 

= < [Vs·nXf]8(S),<p). (116) 

Equations (114) and (115) are a consequence of Maxwell's 
equations, and they can be used to determine the jumps in 
the normal components of f5' and fJIJ in terms of the jumps of 
the tangential components of fJIJ and f5', respectively. 

As in the previous section, the fields are well defined off 
the surface S, and we extend the definitions to Sby choosing 
the principal value of the integrals. We find that Eqs. (108) 
and (109) lead to 

f5'(x,t) = _1_ P 1. dS' [n,.cj,ret XR + n·eftret R 
417' Ys vR 2 R 3 

(nxcj,ret)XR (fi'Xeftret)XR + + ---::---vR 2 R 3 

(n'~~ret ], 

(117) 

fJIJ (x,t ) = _1_ P 1. dS' [ n-TJret R + n' '1] ret R 
417' Ys vR 2 R 3 

(n'X~ret)XR (n'X1]ret)XR 
+ vR 2 + R 3 

n' X cj,ret ] 
+ v2R . (118) 

In applications to scattering problems, Ii·eft and n'1] vanish 
initially; Eqs. (114) and (115) then show how n·eft is deter
mined by nX1] and n'1] by nXeft, and the normal compo
nents of eft and 1] can be eliminated from Eqs. (117) and (118) 
in terms of the tangential components. These equations have 
the functional form 

f5' = L/nXeft] + MlnX1]J, 

fJIJ = L/nX1]] + M'lnxeftJ, 

where 

Llnxeft] = _1 P 1. dS' 
417' Ys 

(119) 

(120) 

X [n'x( cj,~et + eft;t)] X RR2 ' (121) 

Min X 1]] = _1_ P 1. dS' 
41T Ys 
X [n"( cj,ret +~).!..-

v R R2 
n'XTJret] 

R ' 

M'I nXeft] = _1_ P 1. dS' 
41T Ys 

(122) 

X [n,.(TJret + 1]ret)..!.. + n'Xcj,ret]. 
v R R 2 v2R 

(123) 

These functionals depend on v both explicitly and through 
the retardation effects. From Eqs. (117) and (118) we find the 
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boundary values 

'll±=±!~+'ll, 

~± = ±~,.+~. 

(124) 

(125) 

We now define two sets of auxiliary fields. We assume 
that the fields EI and BI propagate in a medium of constants 
E I and,u I' that they are equal to Esc and B sc in VI' and that 
the tangential component ofEI is continuous across S. These 
fields are then given by Eqs. (119) and (120). We set 
fi X ~ = 0, which implies that fio,. = 0, and we can write 

EI = Mdfix,.l, (126) 

(127) 

the discontinuity fiX,. of the tangential component ofBI is 
the unknown field on S for which we have to find an integral 
equation. The fields E2 and B2 are defined equal to the trans
mitted fields in V2 and equal to zero in VI' The discontinui
ties in the tangential components of E2 and B2 are then given 
by the boundary conditions (96) and (97), and we have 

41 (fiXE2) = fiXE2+ = fiXE+ = fiXE_ 
= fiXEin + fiXE I_, 

41 (fiXB2) = fiXB2+ = fiXB+ = afixB_ 
= afixBin + afiXBI_· 

(128) 

(129) 

Thus, from Eqs. (124)-(129) we find 

41 (fiXE2) = fiXE2+ = fiXEin + fiXMdfiX,.I, (130) 

41 (fiXB2) = fiXB2+ 

= afiXBin - ~afix,. + afixLI !fiX,.j, (131) 

which give these jumps in terms fiX,.. Then, by Eq. (119) 
and (120) we have 

E2 = L2! fiXE2+ 1 + M2! fiXB2+ j, (132) 

B2 = L2! fiXB2+ 1 + M~! fiXE2+ I. (133) 

We find an integral equation for fix,. by setting 

fiXE2_ = 0, (134) 

which, by Eqs. (119) and (132), becomes 

- !fi X E2 + + fiXL2! fiXE2+ 1 + fiXM2! fiXB2+ 1 = O. 
(135) 

We substitute the expressions (130) and (131) for fi X E2 + and 
fi X B2+ to obtain 

fiX[!M I - L2MI + a(~ M2 - M2LtlH fi X,. 1 

+ fiX(!Ein - L2!fiXEinl - aM2!fiXB in ll = 0, 
(136) 

where a composite operator such as L2MI is defined by the 
relation 

fiXL2Mdfix,.} = fiXL2{fiXMdfiX,.}}. (137) 

The fields E2 and B2 given by Eqs. (132) and (133) obey 
the homogeneous Maxwell equations in VI and homogen
eous initial conditions, and Eq. (134) states that fi X E2 van
ishes on the boundary when,. satisfies the integral equation. 
To show that E2 and B2 actually vanish in VI' we use the 
energy relation for fields that obey Maxwell's equations, 

Vo(EXH) = - HoB - Eon - joE, (138) 
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whence, if j = 0 and,u and E are constant in VI' 

" dS fioEXB = _ ~ ~ r dV(B2 + E:). Ys 2 dtJv. v 
(139) 

If fi X E or fi X B vanishes on S, the volume integral is con
stant, and equal to zero if the fields vanish initially. Since the 
integrand is nonnegative, the fields have to vanish through
out VI' Consequently, E2 and B2 vanish in VI and, in 
particular, 

fiXB2_ = O. (140) 

Thus, once the surface field fiX,. is determined from the 
integral equation (136), the scattered and transmitted elec
tromagnetic fields can be found from Eqs. (126), (127), (132), 
and (133), and we have 

E = E in + MdfiX,.j, XEVI, 

B = Bin + Ld fiX,. j, XEVI, 

E = L2! fi X E in} + aM2! fi X Bin} 

(141) 

(142) 

+(L2MI-~aM2+aM2Ltl!fiX,.j, XEV2, (143) 

B = M~ !fiXEinl + aL2!fiXBin) 

+(M~MI-~aL2+aL2LIHfiX,.j, XEV2. (144) 

These fields satisfy Maxwell's equations with the correct 
constants in each region, as well as the initial conditions. 
From Eqs. (128), (129), (134), and (140) we see that the 
boundary conditions (96) and (97) are also satisfied, and the 
fields given by Eqs. (141)-(144) satisfy all the conditions of 
the problem. 

There are variations of this method that are equivalent 
to it, but that might be better suited for numerical calcula
tions in a particular problem. For instance, we might use Eq. 
(140) instead of (134) to derive the integral equation. We 
might also define the fields EI and BI so that fiXB I is con
tinuous across S, and choose the jump fi X eft in fi X EI as the 
unknown field on S. 

Another approach to the solution of this scattering 
problem is through the vector wave equation, which for the 
distribution E can be written in the form 

v- 2jj: + VX(VXE) 

= -,u aj + Eo(x)D/(t ) at 
- VXBo(x)D(t) + 41 [fiX(VXE)]D(S) 

+ VX[41 (fiXE)D(S)]. (145) 

The elementary solution of this equation is the dyadic distri
bution Q that satisfies 

v- 2Q(X,t) + VX[VXQ(x,t)] 

= D(3)(x)D(t )1; 

the retarded solution is? 

Q(X,t) = (41Tr)-ID(t - rlv)(1 - r- 2xx) 

+ (41T,-3)-l v2tO (t - rlv)(1 - 3r- 2xx) 

+ 1 v2tO (t )D(3)(x)l, 

Egon Marx 

(146) 

(147) 

1063 



                                                                                                                                    

so that the components are defined by the analog ofEq. (12), 

f 8· -a·a ( r) 
(Qij'CP > = dV IJ 41Tr I J cP x, ~ 

i '" v2t dt i ut 

dr t + -- ~ dS(8ij-3a i aj )cp(x,t) 
o 41T 0 r Sir) 

1 i'" + - v2t dt 8ij cp (O,t ), 
3 0 

(148) 

where 8 ij is the Kronecker delta and a i = x J r is a direction 
cosine of x. The singularity at the origin of the second inte
gral is discussed in Ref. 7; this integral is the limit of one 
where the region about the origin is excluded. We also note 
thattheangularintegrationof8ij - 3a i aj over the spherical 
surface gives a zero result. A field If that obeys the same 
homogeneous vector wave equation in VI and V2 can be ex
pressed as 

(149) 

where l' is the discontinuityof V X If across S, which is also 
the discontinuity of - af!lJ lat. The normal components of 
the discontinuities do not appear explicitly in Eq. (146). We 
can proceed from here and express If and V X If as function
als of fi X t1» and fi X 1', define the fields El and E2 as before, 
and find an integral equation for the discontinuity fi X l' in 
the tangential component ofVXEI. We note that Eqs. (76) 
and (97) imply that 

fiX(VXE)+ = afix(VxE)_, (150) 

a relation we have to use to find the jump in VXE2. The 
energy relation for the vector wave equation is a conse
quence of 

V'[EX(VXE)l = VXE·VXE + v- 2E·E + J.lE· ~!, (151) 

whence, for j = 0, 

f dS fi'EX(VXE) 

(152) 

Thus, if either fi X E or fi X (V X E) vanishes on S, the volume 
integral is a constant that is zero if E and E vanish initially. 
Then both VXE and E vanish throughout V. Ifp = 0, V·E 
vanishes due to the contraints on the initial conditions and to 
the vector wave equation. Consequently, E vanishes 
throughout V for later times if all conditions are satisfied. 

IV. MONOCHROMATIC FIELDS 

An arbitrary time-dependent field can be written as a 
superposition of monochromatic fields by means of Fourier 
integrals, and in many applications it is sufficient to consider 
such a field. 

We can write 

t/J(x,t) = t/J(x)e - iwt, (153) 

where t/J(x) is complex and it is understood that we have to 
take the real part of the right-hand side ofEq. (153). 

The wave equation reduces to the Helmholtz equation 10 

(V2 + k 2)t/J = 0, (154) 
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(155) 

For regions that extend out to infinity, we impose the outgo
ing wave condition 

lim r(at/J - ikt/J) = ° 
r~", ar 

(156) 

to the appropriate fields. For instance, we assume that the 
scattered field obeys the outgoing wave condition, and the 
corresponding elementary solution of the Helmholtz equa
tion with a source - 8 is 

(157) 

We now follow the procedure of the previous two sec
tions to find the scattered and transmitted fields for mono
chromatic waves. 

We have to find a function t/J(x) such that 

(V2 + k f)t/J = 0, XEV;. i = 1,2, (158) 

2 (r)2 
k. = - (159) 

, 2 ' 
Vi 

t/J+ = t/J-, XES, 

( ~~) + = a ( ~~) _' XE S, 

(160) 

(161) 

t/J = t/Jin + t/Jsc, XEVI, (162) 

where t/J in is a given incident field that satisfies the homogen
eous Helmholtz equation and the scattered field obeys an 
outgoing wave condition. If the region V2 also extends to 
infinity, the transmitted field obeys an outgoing wave condi
tion there. 

We define the functional operators 

G (1] 1 = - f dS 1 1](x')eikR 141TR, 

N (l/J J = p f dS"l/J (x')e ikR (1 - ikR )R/41TR 3, 

N 1 (1] J = fi·P f dS 1 1](x')eikR (1 - ikR )R/41TR 3, 

and fields t/JI and t/J2 such that 

t/JI = t/Jsc, XEV" 

(V2 +ki)t/J, =0, XEV2, 

t/J2 = 0, XEV" 

t/J2 = t/J, XEV2· 

(163) 

(164) 

(165) 

(166) 

(167) 

(168) 

(169) 

We also assume that t/JI is continuous across S; then, if we 
choose as our unknown function the discontinuity 1] in 
at/J/an, this function obeys the same integral equation (65) 
with the new definitions of G, N, and N I. The field t/J is then 
given by Eqs. (70) and (71). 

Similarly, for monochromatic electromagnetic fields, 
we set 

E(x,t) = E(x)e - iwt, 

B(x,t) = B(x)e - iwt, 

and Maxwell's equations of motion become 

VXE - i(r)B = 0, 
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(173) 

It is simple now to allow the constants £ andJl to be functions 
of cu, thereby introducing dispersion, and to extend the the
ory to conducting media that have a conductivity 0", which 
appears in 

j = oicu)E. 

Equation (173) then takes the form 

icuVXB - k 2E = 0, 

where 

k 2 = CU2Jl(£ + iO"/cu) 

(174) 

(175) 

(176) 

defines a complex propagation constant k. Equations (114) 
and (115) now become 

fi·c!» = - (icu/k2)Vs·fiXll, (177) 

(178) 

and we use them to find the fields as in Eqs. (108) and (109), 

IF = (icu/k2)V~.Vs·fiX1l8(S) 

+ V~.X(fiXc!»)8(S) + icu~.fiX1l8(S), (179) 

f!lJ = - (i/cu)V~.V,·fixc!»8(S) 

+ V~.X(fiXll)8(S) - (ik2/CU)~.fiXc!»8(S). (180) 

We can again use Eqs. (119) and (120) to express IF and f!lJ in 
terms of the operators 

Llfixc!»l = P f dS' eikR (1 - ikR )(fi'Xc!»)xR/417R 3, (181) 

MlnXlll 

= - P f dS'eikRi[(1 - ikR )V;'(n'Xll)R/(41Tk 2R 3) 

- n'Xll/41TR ], (182) 

M'lfixcl>l = p f dS' eikRi[(I_ ikR )V;.(fi'Xc!»)R/41TcuR 3 

_k2fi'Xc!»/41TCURJ. (183) 

We choose fieIds E I , B I , E2, and B2 as in Sec. III, and, if 
fiXll is the discontinuity in the tangential component of B •• 
we must solve an integral equation of the form (136) with the 
definition (181 H 183) of the operators. The fields we seek are 
then given by Eqs. (141)-(144) in terms of fiXll. 

V. CONCLUDING REMARKS 

We have shown how a judicious choice of unknown 
functions can reduce the number of integral equations re-
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quired to solve the problem of scattering of scalar or electro
magnetic waves by three-dimensional bodies. We have done 
this both for transient and monochromatic fields. We have 
not analyzed the particular difficulties that might arise in a 
numerical solution of these integral equations. 

The limiting assumption of homogeneous media ap
pears to be inherent to the method of solution of integral 
equations for functions defined only on the surface. Since all 
real media are dispersive, it would be useful to extend the 
methods to the solution of transient scattering problems in 
dispersive media, as well as allowing for a finite conductiv
ity. Essentially, these problems are already solved if we ex
press a transient field as a superposition of harmonic fields 
by a Fourier transformation. 

We should also be alert to the possibility of reducing the 
size of other solutions of partial differential equations where 
boundary conditions in space are involved. 
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I. INTRODUCTION AND BASIC NOTIONS 

Associated with a given exactly solvable equation there 
exist at least two interrelated aspects offundamental inter
est: (i) The development of a method of solution such as the 
Inverse Scattering Transform (I.S. T); (ii) The investigation of 
the "algebraic" properties of the equation. The second as
pect, the algebraic one, includes (a) finding the hierarchy of 
equations which have similar properties to the given equa
tion (e.g., they are solved by the same eigenvalue problem 
and/or have the same conserved quantities); (b) finding a set 
of infinitely many conserved quantities of the equation 
which are in involution; (c) establishing the Hamiltonian 
and/or bi-Hamiltonian formulation of the equation as well 
as that of every member of its hierarchy. Fundamental to the 
solution of an equation via the I.S.T. is the existence of an 
isospectral eigenvalue problem. In this paper, we show in 
general that knowledge of this eigenvalue problem yields in 
principle a complete characterization of the algebraic prop
erties. Moreover, we explicitly answer (a), (b), and (c) above 
for all equations solvable by (1) the n X n eigenvalue problem 
considered in Ref. 1; (2) an eigenvalue problem with compli
cated dependence on the eigenvalue considered in Ref. 2. 

As is well known, AKNS3 formulated and solved the 
problem of finding all equations solvable by the Dirac eigen
value problem, and hence solved (a) above in this particular 
case. They found that the relevant hierarchy of exactly solv
able equations is generated recursively with the aid of an 
integro-differential operator, the squared-eigenfunction op
erator. (For the KdV equation this is the well-known Lenard 
operator.) Subsequently, it was recognized that it is precisely 
these operators that playa central role in characterizing the 
algebraic properties of a given equation. They have been giv
en various names in the literature, such as recursion opera
tors,4 strong symmetries,s hereditary symmetries,s Kahler 
operators,6 and regular operators. 7 

This paper is organized as follows. Below we briefly 
explain the basic notions needed in this paper. In Sec. II, 
using ideas of Fuchssteiner, 8 we first prove that a linear iso-

spectral eigenvalue problem gives rise to an hereditary sym
metry. (This operator generates the hierarchy of equations 
linearizable via this eigenvalue problem. ) We then discuss 
how to obtain the Hamiltonian formulation for this hierar
chy of equations. In Sec. III we first obtain the hereditary 
symmetries of the equations associated with the two types of 
eigenvalue problems mentioned earlier. In connection with 
this, we make use of the properties of the coadjoint represen
tation of the special linear group. Specifically, we show that 
the components of the gradients of the eigenvalues can al
ways be identified with coordinates dual to those of the root 
vectors in the adjoint representation. It then follows that the 
coordinates dual to those of the Cartan subalgebra can al
ways be eliminated to obtain a system of coupled linear inte
gro-differential equations which immediately yield the he
reditary symmetry (or more precisely its adjoint). We then 
present the relevant Hamiltonian formulations. It is quite 
interesting that the symplectic operator for the n X n case is 
simply the standard symplectic matrix. The existence of 
these Hamiltonian structures coupled with the hereditary 
property of the recursion operator implies a set of constants 
of motion in involution. 

The method we present in this paper for obtaining a 
hereditary symmetry from a given eigenvalue problem is 
general and algorithmic; however, it is tedious. In Sec. IV we 
show that if two equations are related by a Miura type trans
formation and ifboth their Hamiltonian formulations are 
known, then there is a much more efficient way of comput
ing their hereditary symmetries. This is illustrated by the 
Boussinesq and modified Boussinesq equations, where the 
known recursion operator of the Boussinesq equation 9 is de
rived in a more efficient way. 

It should be noted that while various authors (see, for 
example, Refs. 3 and 10-13) have developed several methods 
for deriving recursion operators, they did not notice the he
reditary property of these operators. Also, we note that the 
appearance of coadjoint representation has been recognized 
by other authors. In particular, it has been used in Ref. 9 for 
obtaining the recursion operator associated with the third 
order eigenvalue problem considered in Ref. 14. 
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A. Basic notions 

The basic notions used in this paper can be found in the 
work of Magri,6 Gel'fand and Dorfman,7 and Fokas and 
Fuchssteiner. IS In what follows we shall use the formalism of 
the latter authors, since it is computationally more conve
nient. The Lie-algebraic structure of this formalism as well 
as its relation to those of the other authors can be found in 
Fuchssteiner. 16 The geometric interpretation of some of 
these notions can be found in Ref. 17. 

We consider an evolution equation in its abstract form, 

u, =K(u), (1.1) 

on a normed spaceM of vector-valued functions on R, where 
K is a suitable Coo vector field on M. We assume that the 
space of smooth vector fields on M,'£(M), is some space S of 
C 00 functions on the real line vanishing rapidly at ± 00. (In 
most applications M = S.) Let S· be the dual of S such that 
the elements r of S • define continuous linear functions on S 
via 

(r,a) = J: 00 y(x)u(x)dx, rES·, aES. (1.2) 

We deal with functions ¢ (attaining values in S, S·, or in a 
space of operators) which are assumed to be differentiable in 
the sense that the chain rule holds. By ¢ '(u)[v] we denote the 
directional derivative of ¢ at the point u in the direction v. 
Sometimes we write¢ and¢' [ ] instead of ¢ (u) and¢ '(u)[v]. 
We recall that a functionfM-+S· is said to be a gradient 
function if it has a potential f:S-.R, which means that 
f '(u) = flu) for all ueM. It is well known that/is a gradient 
function iff/, = (f')+ [where (f')+ is the adjoint of/, with 
respect to (,)]. Then the potential f (u) is given by 

flu) = f </(A.u),u > dA.. (1.3) 

A function a:M-.Sis calledsymmetryof(1.1) (see Ref. 18 for 
a motivation of this notion ift), 

a'[K] - [K']a=O (1.4) 

(i.e., if the Lie-algebra product of K and a is zero). The infi
nitely many symmetries {ai 1",= I of an exactly solvable evo
lution equation define the hierarchy 

u, = ai' i = integer (1.5) 

associated with a given exactly solvable evolution equation 
(1.1) (for example, in the KdV the Lax hierarchy). 

An operator tP (u): S-.S, ueM, is a strong symmetry6 of 
(1.1) (or a recursion operator in the terminology of Ref. 4) ifit 
generates a new symmetry from a given one. This is the case 
iff tP satisfies the operator equation 

tP'[K]- [K',tP] =0. (1.6) 

The flows defined by the hierarchy (1.5), by definition com
mute with the flow of( 1.1). However, for the exact solvability 
of (1.1) it seems necessary that the above flows also commute 
with each other. A sufficient condition for this to be the case 
is that the strong symmetry possesses a certain property 
called by Fuchssteiner the hereditary property.s An opera
tor tP (u), S-.S, ueM, is called hereditary (or Kiihler,6 or reg-
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ulae) if[tP '(u),tP (ull is a symmetric bilinear operator for all 
ueM, i.e., iff 

tP '[tPv]w - tPtP '[v]w is symmetric with respect to v and 
w. (1.7) 

If an exactly solvable evolution equation has some addi
tional structure (for example, is a Hamiltonian system) then 
it will also possess infinitely many conserved quantities. 
There exists a convenient description of the conserved quan
tities of (1.1) using the notion ofthe gradient of a conserved 
quantity: flu) is a conserved quantity of(1.1) ifits gradient r 
satisfies. 

y'[K] + (K')+[r] =0, (1.8) 

where (K ')+ denotes the adjoint of K'. Conversely, if r satis
fies (1.8) and ifit is also a gradient function, i.e., if y' = (y')+, 
then the potential of r, say f (u), is a conserved quantity of 
(1.1). IfEq. (1.1) is a Hamiltonian system, i.e., ifthere exists a 
co-symplectic operator (J (u) and a gradient function y(u) 
such that u, = K (u) = (J (u )y(u), then the symmetries and the 
gradients of conserved quantities of (13) are related by 
a = (Jr. (We recall that askew symmetric operator (J (u) is co
symplecticifthebracket (a,(J '(u)[(J (u)c]b ) satisfies the Jacobi 
identity for every a,b,c) 

The hereditary symmetries corresponding to Hamil
tonian systems admit a symplectic--co-symplectic factoriza
tion, IS i.e., they can be written in the form tP = (J I (J2 - I, 

where (JI' (J2 define the bi-Hamiltonian formulation of the 
equation. These latter factorizable hereditary symmetries 
generate a set of infinitely many constants of motion in in
volution with gradients given by 

.hi - I y. . 1 2 r =(J2 (tP Ux ' J= , , .... 

II. LINEAR EIGENVALUE PROBLEMS YIELD 
HEREDITARY SYMMETRIES FOR HAMILTONIAN 
SYSTEMS 

(1.9) 

The algebraic formalism reviewed above can be ap
plied to a given exactly solvable evolution equation indepen
dently of whether or not this equation admits an inverse 
scattering transform formulation. However, if it does admit 
such a formulation one may ask whether its strong symme
try follows solely from the associated linear eigenvalue 
problem. In the context of scalar Lax systems (i.e., Gel'fand
Dikii approach), Symes l3 performed the relevant con
struction, while the question has been answered affirmative
ly in Ref. 9a for any matrix eigenvalue problem associated 
with a simple Lie algebra. Here, following ideas of Fuchs
steiner,8 we give a general approach to the problem and show 
that the strong symmetries obtained this way (i.e., via linear 
eigenvalue problems) are necessarily hereditary. 19 Further
more, we then discuss the Hamiltonian formulation of the 
equations generated by the above hereditary symmetries. 

Lemma 2.1: Let r be the gradient of a conserved quan
tity f ofEq. (1.1) and let tP (u) be a strong symmetry of (1. I). 
Then f is a conserved quantity of the whole hierarchy of 
equations 

u, = tP nK, n = 1,2, ... (2.1) 

iff(tP +tr, n = 1,2, ... , are gradient functions. 
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Proof The functional I (u) is a conserved quantity of 
(1.1) iff its gradient r, where y = grad I, satisfies (y,K) = O. 
Similarly, lis a conserved quantity of(2.1) iff (y,tI> nK) 
=O.But 

(y,tI>nK) = «(tI>+)ny,K). 

Since tI> is a strong symmetry of (1.1) it follows that 
Yn = (tI> +)nysolve Eq. (1.8). However, the right-hand side 
of the above equation will be zero iff Y n are gradients, be
cause only then do the solutions of (1.8) give rise to con
served quantities. 

Lemma 2.2: Consider the linear eigenvalue problem 

IFy = IlY, (2.2) 

where 

IF(u):S*---.S*,uEM, and y:M---+S*. 

Assume that if u satisfies (1.1) then (2.2) is isospectral, i.e., 
dill dt = 0, and also assume that y solves (1.8). Then 

(IF'[K] + [(K')+,IF])y = O. (2.3) 

Proof The prooffollows easily by differentiating (2.2) 
in the direction u, . 

Lemma (2.2) immediately implies 
Proposition 2.1: If (2.2) is satisfied for a sufficiently 

large number of solutions of(1.8), then tI> = IF + is a strong 
symmetry of (1.1). 

The constructive approach of obtaining a strong sym
metry of (1.1) via its inverse scattering formulation, is based 
on the above proposition: Given an isospectral eigenvalue 
problem, say 

dV 
dx = U (U;A )V, (2.4) 

where A is the eigenvalue, one can always evaluate the gra
dient of A, call it G;.. If one can then find the eigenvalue 
equation that G;. satisfies, then by writing this equation in 
the form 

(2.5) 

one can immediately obtain tI> = IF + . (Assuming of course, 
that G;. are in some sense dense. Fuchssteiner, for example, 
invokes a local-global principle).8 

In what follows, after giving some preliminary results, 
we shall prove that if a strong symmetry is obtained by the 
above approach then it is hereditary. 

Lemma 2.3 (see Ref 8): Assume that the strong sym
metry of (1.1) satisfies the isospectral eigenvalue problem 

tI> +G;. =IlG;., (2.6) 

where G;. are gradients of conserved quantities of (1.1). 
Here these conserved quantities are the eigenvalues A of the 
linear scattering eigenvalue problem (2.4). Then the A 's and 
the tI> are conserved quantities and a strong symmetry, re
spectively, for the whole hierarchy (2.1). 

Proof To prove that A 's are conserved by (2.1) note 
that 

(G;.,tI>nK) = «(tI>+)nG;.,K) =lln(G;.,K) =0. 

Then, it follows from Proposition (2.1) that tI> is a strong 
symmetry of(2.1), since tI> satisfies (2.6) and the G;.'s are 

1068 J. Math. Phys., Vol. 23, No.6. June 1982 

gradients of conserved quantities of (2.1). 
Note that this lemma implies that the eigenvalue prob

lem (2.4) is isospectral for the whole hierarchy of equations 
(2.1). 

Proposition 2.2: Assume that the strong symmetry tI> of 
(1.1) satisfies the isospectral eigenvalue problem (2.6). Then 
all symmetries of (1.1) generated through tI> commute and tI> 
is hereditary (assuming that these symmetries are dense). 

Proof Because of Lemma 2.3, tI> is a strong symmetry 
of the whole hierarchy (2.1) and from this it follows that all 
symmetries of (1.1) commute. To prove that tI> is hereditary 
use the following identity: 

tI> '[tI>.B]a - tI> '[tI>a].B - tI>tI> 'f.B]a + tI>tI> '[a].B 

= tl>2(a'f.B] -.B'[a]) + (tI>a)'[tI>.B] - (tI>.B)'[tI>a] 

+ tI>((tI>.B)'[a] -a'[tI>.B]) - tI>((tI>a)'f.B] -.B'[tI>a]). 
(2.7) 

If a,/3 are symmetries of(l.1) then the right-hand side of the 
above equation vanishes. Thus, if the symmetries form a 
dense set, then the hereditary property follows. 

A. On the Hamiltonian formulation 

Having obtained the hereditary operator tI>, and as
suming that tI> is x-translation invariant [which corresponds 
to assuming that Eq. (2.4) does not depend explicitly on x] 
one immediately obtains the hierarchy of exactly solvable 
evolution equations20 

u, = tI> nux, n = 1,2, .... (2.8) 

The problem we shall discuss now is how to find the Hamil
tonian formulation ofEq. (2.8) or, more precisely, how to 
find a co-symplectic operator 0 such that (2.8) can be writ
ten in the form u, = OYn (where Yn' n = 1,2, ... , are gradient 
functions). 

We recalled in the basic notions that some hereditary 
operators tI> admit a certain factorization tI> = 0201- 1, 

where 01,02 are compatible co-symplectic operators. This 
factorization, although quite useful in many considerations, 
clearly cannot be used for obtaining a co-symplectic opera
tor from a given hereditary symmetry. However, it turns 
out that there does exist an explicit relationship between 0 
and tI>, namely 

Otl> + = tl>O. (2.9) 

The motivation for the above relationship is quite simple. If 
an equation possesses a hereditary symmetry tI> and if also it 
can be written as a Hamiltonian system with 0 as the associ
ated co-symplectic operator, then tI> generates O"s, tI> + gen
erates y's, and 0 maps y's into O"S. Thus, if 0'; and y;, 
i = 1,2, are solutions of(1.4) and (1.8), respectively, then 
0'2 = tl>0'1 = tl>0Yl' But 0'2 = OY2 = Otl> +Yl' Thus 
(Otl> + - tl>O )Yl = 0, and if this equation is valid for infinite
ly many y's then Eq. (2.9) must be valid. 

Equation (2.9) is fundamental in our approach for ob
taining O. Although it does not provide an explicit relation
ship for 0 in terms of tI>, it can be very useful for obtaining 0, 
after a suitable guess for 0 has been made. This is best illus
trated for the case of the n X n eigenvalue problem. In this 
case, after obtaining tI> (and tI> +) it is clear by inspection 
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that (J is simply a constant skew symmetric matrix (see Sec. 
III). This simple form of (J is quite surprising when com
pared with the known cases where (J is more complicated. 
For example, (J is D for the KdV and the modified KdV, it is 
D 3 + uD + Du for the fifth order equations solvable by the 
third order eigenvalue problem considered in Ref. 14, etc. 
The above equations can be obtained from the n X n eigen
value problem after some reduction (see Sec. III). In this 
process of reduction the standard symplectic matrix gives 
rise to very complicated (J 's. 

III. APPLICATION 
A. nx n eigenvalue problem 

In this subsection, we shall determine the explicit form 
of the hereditary symmetry and the Hamiltonian structure 
associated with the following isospectral problems: 

Dv= Uv, 

where 

U=AH+ i i uijEij, 
i= Ij= I 

i~j 

(3.1) 

(3.2) 

V is an n-dimensional vector, the n(n - 1) uy's are nonzero 
functionally independent potentials, and the n X n matrices 
H and the Eij's are given by 

H = diag (hl, ... ,h"), (no two entries equal) (3.3) 

and 

(Eij)k' = OikOj/' (3.4) 

respectively, and D is the operator of total differentiation 
w.r.t. x. 

1. The hereditary symmetry 

In light of the results described in Sec. II, we need essen
tially only present here a derivation of Eq. (2.5) for (3.2). As 
we shall show, this equation follows from the Lie algebraic 
structure of(3.1). Therefore, we begin with an elaboration of 
this Lie structure. 

Equation (3.1) for constant uij's is the Lie equation for a 
one-parameter subgroup of the linear transformation group 
(representation)GL(n,K)X V"-+V", where I Vi 17= I istheset 
of coordinates for the carrier space V" and the field K is the 
field of complex numbers e or the field of real numbers R, in 
which case V" = en or an, respectively. However, here the 
uij's are functions ofx and t and for each twe can rigorously 
interpret (3.1) as describing a curve in the Lie algebra of 
vector fields on V" induced by the GL(n,K) transformation 
group structure (see Refs. 21 and 22 for details of this inter
pretation). Similarly, we can interpret 

Dv* = - U+v*, (3.5) 

where U + is the adjoint of U and I v~ 17= I is the set of coordi
nates for the space V"' dual to vn, as describing a curve in 
the Lie algebra of vector fields on V n

•• Therefore, it directly 
follows that under the induced group action the coordinates 
of the direct product space vn' ® vn evolve w.r.t. x for fixed 
t according to 
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XV~Vj - L UkiVtVj + L ~kVrVk' (3.6) 
k~iJ k~iJ 

which immediately yields that the subspace described by the 
column vector 

[ • •• •• I v·v I ]T vlvl-V2V2"",Vn_IV"_I-VnVn,ViVj i<j' i j i>j 

(3.7) 

is an invariant subspace and, in particular, the coordinates of 
this vector transform like the coordinates of a curve in the 
coadjoint representation of gl(n,K) [or, equivalently, to that 
ofsl(n,K )]. Further, fundamental to our result is the fact that 
it follows from the transformation properties of(3.7) that we 
can express the x evolution for fixed t of the subset of coordi
nates I V~Vj 17h = I as a matrix integrodifferential eigenvalue 
equation solely in terms of this set. In particular, in compo
nents, we have the following: 

[( - D + uji 2D -IUij)V~Vj 

+ L {(ujiD -IUkj - Uki)VtVj 
k ~iJ 

- (ujiD -IUki)VtVi - (ujiD -lujdv!Vk 

+ (ujiD -IUik + Ujk)V~Vk} 
- 2ujiD -IUjiV!Vi ]/(hi - hj ) 

= AVrVj, ii=j = 1, ... ,n. (3.8) 

With (3.8) in hand we now tum to the task of identifying 
the components of the conserved gradients of the A 's appear
ing in (3.1) with the coordinates v~vj(ii=JJ. 

Consideration of the directional derivative of (3.1) 
yields this identification and, in particular, it is given by the 
following lemma. 

Lemma 3.1: 

(G,dij = - vrVjl ( f: QO v*THVdX). i i=j = 1, ... ,n. (3.9) 

Proof Consider v determined by (3.1), where U is given 
by (3.2), then v and A are functionals of the potentials uij' 
Hence, the directional derivative of v in the direction W is an 
n X n(n - 1) matrix valued operator whose action is given by 

v'(u)[wl = (V;2(U)[WI2],,,,,v~n_du)[wn"_I])' (3.10) 

where 

Vij(U)[Wij]=~V(UI2"",Uij+EWij> ... )1 ' (3.11) 
& £=0 

and similarly for the n(n - 1) vector valued operator 
A '(u)[w). 

Further, we now define the functional derivative G;. of 
A as the vector valued function whose components (G;')ij are 
given by 

A ij(u) [wij] = L'" (G;. )ijwijdx (3.12) 

for arbitrary wij which tend to zero sufficiently rapidly at 
x = ± 00. 

Therefore, if we take the directional derivatives of all 
quantities appearing in (3.1), we obtain the following set of 
equations: 
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Dxvij(u)[Wij] = ((f: 00 (GA)ijWijdX)H + WijEij)V 

+ Uvij(u)[wij]' i=1=j = 1, ... ,n, (3.13) 

where we have substituted for A ij(u) [wij] using (3.12). 
Matrix multiplication of(3.13) by the transpose V*T of 

v*, given by (3.5), and integration over x from - 00 to + 00 

yields 

f: oov*TDxVij(u)[Wij ]dx 

= (f: 00 (GA)ijwijdx )f: 00 v*THvdx 

+ f:oovrWijVjdX+ f:ooV*TUVij(U)[Wij]dX. 

(3.14) 

It follows directly from the properties of(3.5) that the lhs of 
(3.14) is equal to the last term on the rhs of(3.14). Therefore, 
(3.14) becomes 

0= f: J(GA)ij(f: 00 v*THVdX) + VrVj }WijdX. (3.15) 

Equation (3.9) then follows from the fact that (3.15) holds for 
arbitrary wij and the restriction that 

f: 00 v*THvdx =1=0. 

It now follows from (3.9) and the linearity of(3.8) that 
(3.8), under the replacement vrvr-+(GA )ij' is (2.5) for the 
problem at hand. Therefore, we have the following theorem. 

Theorem 3.1: The strong symmetry operator <P for the 
class of exactly solvable evolution equations described by 
(3.1) and (3.2) is given by 

<P,pij = (D - uij2D -IUj;),pij/(h; - hj ) 

+ I {- (uijD -IUjk + U;k),pk/(hk - hj ) 
k ".;J 

+ (uijD -IU;k),pkJ(hk - hi) 

+ (uijD -IUkj),pjk/(hj - hk) 

+ ( - uijD -IUk; + Ukj),p;k/(h; - hk)} 

+ 2uijD -luij,pjJ(hj - h;), (3.16) 

where the coefficient of ,p rs on the rhs of the above equation is 
the matrix element <Pij.rs of <P. Here we have restricted our
selves to K = R for convenience. 

2. The Hamiltonian formulation 

In this case (J is simply the constant skew symmetric 
matrix 

(3.17) 

where the n(n - 1)/2 square matrix J is equal to 
diag(h2 - hl, ... ,hj - hi'''')' with ordering of the n(n - 1) 
pairs of subscripts labelling the components of the gradient 
of A given by {( 1,2), ... ,(ij), ... , (2, 1), ... ,(j,i), ... J 7 <j = I . 

This operator can be easily obtained if one starts with 
the simplest case of2 X 2 and then generalizes appropriately. 
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Example 3. 1. The 3 X 3 eigenvalue problem: 

Formula (3.16) yields that <P is the 6 X 6 matrix given by 

<P = (a l a 2 , , 
hi - h2 h2 - h3 

a3 a4 a 5 ( 6 ) (3.18) 
h l -h3' h2-hl ' h3-h2' h3- h l ' 

where 

a l = (D - 2u ID -IU4,U2D -IU4 ,U2 
- u3D -IU4,2u4D -IU4, - U6 - u5D -IU4'U~ -IU4)T, 

a 2 = (uiD -IU5 ,D - 2u2D -IU5 , - UI - u3D -IU5 ,U6 
- u4D -lu5,2u5D -IU5'U~ -IUS)T , 

a 3 = (u5 - ulD -IU6, - U4 - u2D -lu6,D 

- 2u3D -IU6,u4D -IU6,u5D -IU6,2u~ -IU6)T, 

a4 = (2u 1D -IUI ,U3 - u2D -I UI ,U3D -lul,D 

- 2u4D -I U1 ,u5D -lUI' - Us - u~ -Iulf, 

as = (- U3 - ulD -IU2 ,2u2D -IU2,u3D -IU2,u4D -IU2, 

D - 2u5D -IU2,U4 - u~ -IU2 f, 

a 6 = (uiD -IU3,U2D -I U3 ,2u3D -IU3 , - U2 - u4D -IU3 , 

UI - u5D -IU3 ,D - 2u~ -IU3)T, 

and U 1 = U12' U2 = U23' U3 = U13' U4 = U21' U5 = U32' U6 = U31 · 
Then the nonzero entries in (3.17) are 

(J14 = h2 - hi = - (J41' (J25 = h3 - h2 = - (J52' 

(J36 = h3 - hi = - (J63' (3.19) 

Hence Un and Yn can be calculated similarly as above. 

B. A generalized second-order eigenvalue problem 

We now consider the following second-order polyno
minal eigenvalue equation2: 

Lt/J= (D2 + UO +AU I + ... +A N-IUN_I)t/J =A Nt/J, 
(3.20) 

which we can recast in matrix form as 

Dv = (( - Uo - AU I'" - A N-I UN _ I +A N)EI2 + E2Ilv, 
(3.21) 

where 

V= [V I,V2]T= [t/Jx,t/JV. 

1. The hereditary symmetry 

Proceeding as before we obtain, by taking the direction
al derivative of (3.1), the result that the gradient G A of A is 
proportional to the N-component vector valued function 
given by 

(3.22) 

It then follows through the same set oflogical steps that the 
strong symmetry operator <P is found to be 

"" = (0/ !D4 + Uo + !uoxD _I) 
"¥ ul+!ulxD- I , (3.23) 

UN_I + !UN_lxD- 1 

where 0 is a 1 X N - 1 matrix and / is the N - 1 X N - 1 
identity matrix. 
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2. The Hamiltonian formulation 

In this case 

° 

_SN-I D 

D ° 

° 
Again this operator can be easily obtained if one starts with 
the simpler case Uj = 0,f;f0, 1, and then generalizes. In the 
latter case, Eq. (3.23) yields 

(O.@ 0) .@ 0 = !D 2 + Uo + ~uoxD -I, e= . 
1..:1 1 ' ..:1,=u, +u'xD -'. 

(3.25) 

We are now looking for a skew symmetric operator e, such 
that (2.9) is valid with tP given by (3.23). Thus, 

(~ ~,o) ( _ ~ + :) = ( _ ~ +:) (.@~ + ..:1
1
+), 

(3.26) 

where A + = - A, C + = - C. Writing the matrix equation 
(3.26) out one obtains 

-.@oB + = B.@o+, 

B+..:1,C= -B+ +C..:1 +, 

.@oC=A +B..:1 +, 

A - ..:1,B + = - B + .@o+. 

(3.27a) 

(3.27b) 

(3.28a) 

(3.28b) 

Equation (3.27a) implies (using the relevant result for the 
Kdv) that B = D. Then (3.27b) implies C = aD. Hence (3.28) 
implies A = a.@oD - D..:1 +. Thus e = e, + a(}2' where 

_(-SI D) =(D
3
/4+UoD+ uox 0). 

e, - \.v 0' e2 ° D 
(3.29) 

Clearly, since a is arbitrary, e2 is the second co-symplectic 
operator associated with tP. Actually, one can easily verify 
that (}2 = tPe,. 

Generalizing the operator e, given by (3.29a) one ob
tains (3.24). Then e2 follows from the formula e2 = tPe,. 

Having obtained the hereditary operator tP one can 
easily obtain a hierarchy of symmetries (and hence of exactly 
solvable equations) by starting with u = (uox,u'x, ... ,uN _ Ix)T 

In order to obtain a hierarchy of gradients of conserved 
quantities, one needs a starting one. However, such a gradi
ent can be obtained by solving the equation e,r = u, where 
r = (r,,.··,rNf· This is straightforward and the details are 
omitted. 

Let us now turn to the problem of constructing tP when 
the uij 's are functionally dependent. In this case (3.9) must be 
appropriately modified and (3.8), hence (3.16), must be re
duced. We shall illustrate the general method of reduction 
with a simple example. The general problem of reduction has 
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I 

been considered recently by Magri.23 
Example 3.2: Consider 

Dv = ()'H + uE\2 - uE2Ilv, 

(3.24) 

(3.30) 

where H is given by (3.3) for n = 2 and E'2,E21 are given by 
(3.4) (this corresponds to the case for which u satisfies the 
modified Korteweg~e Vries (Mod KdV) equation, i.e., 
u, + 6u2ux + uxxx = 0). Proceeding as we did in the deriva
tion of(3.9), we consider v and), as functionals ofu and take 
the directional derivatives of the quantities appearing in 
(3.30) in the direction w. This yields 

Dv'(u)[w] = (). '(u)[w] + wE\2 - wE2Ilv 
+ ()'H + uE\2 - uE2Ilv'(u)[w]. (3.31) 

It follows, paralleling the proof of (3.9), that in this case 

Gil = - (VTV2 - v1v,I(J: 00 v*THvdx ). 

where 

). '(u)[w] = f: 00 G),wdx. 

(3.32) 

(3.33) 

Equation (3.32) illustrates the general feature that arises 
when the uy's in (3.2) are functionally dependent, namely, 
Gil is a vector valued function of dimension strictly less than 
n(n - 1) and its components are linear combinations of the 
elements ofthe set {vrVj 17,,)= I' Although Eq. (3.8) is valid 
independently of the functional dependence ofthe uij's, this 
reduction in dimensionality necessitates the reduction of 
(3.8). In particular, in this example (3.8) becomes 

- (D + 2uD -'u)vTv2 - 2uD -'uv1v, =). (h, - h2)vTv2, 

(3.34) 

- 2uD -'UVTV2 - (D + 2uD -1)v1vl = -). (hI - h2)v1v,. 

(3.35) 

Upon taking the sum and difference of(3.34) and (3.35) and 
eliminating the sum, we find 

(D + 4uD -'u)D(vTv2 - v1vIl =). 2(h, - h2)2(vTv2 - v1vIl 

(3.36) 

or, employing (3.32) and the linearity of (3.36), we obtain 

(D+4uD- lu)DGIi =).2(h,-h2)2GIl • (3.37) 

Therefore, (3.37) is (2.5) for this example and we have 

tP~odKdV = (D + 4uD -lujD. (3.38) 
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Hence, we recover the known result 

<1>Mod KdV = D 2 + 4u2 + 4ux D -tu. (3.39) 

IV. ON THE USE OF MIURA TYPE TRANSFORMATIONS 

In practice, one is usually given an evolution equation 
which has an obvious Hamiltonian formulation as well as the 
associated inverse scattering pair, or equivalently24 the asso
ciated Miura type transformation. One is then required to 
find the algebraic structure of this equation (symmetries, 
conservative laws, commutativity property, etc.). One ap
proach to the solution of the above problem is to use the 
results of Sec. III: Given an eigenvalue problem one can al
ways find the corresponding hereditary symmetry. Having 
obtained this hereditary operator and using the Hamiltonian 
formulation of the equation, the full algebraic structure is 
completely determined. 

However, although finding <1> is algorithmically possi
ble, it is clearly rather tedious. There exists a very simple 
alternative approach to the above problem, provided that 
one makes an additional assumption, namely, that the Ha
miltonian formulation of the modified equation is known. In 
this case one can obtain immediately the hereditary symme
tries of both the original equation as well as the modified 
equation. This is expressed by the following proposition. 

Proposition 4.1: Let the two equations 

u, = K(u), (4.1) 

s, = G (s) (4.2) 

be related through the Miura type transformation 

B= u +F(s) = 0. (4.3) 

Assume that (4~ 1) and (4.2) possess the co-symplectic opera
tors 01(U) and OI(S), r~spectively, a~d that 8 t (u) is invertible 
(i.e., K = 8JI' G = 8JI' where/III are gradient functions, 
and 0. 1 exists). Then 

(i) the operator 

82(u) = B.8t(s)B ,+, where B = 0, (4.4) 

is a second co-symplectic operator (4.1 f5; 
(ii) the operator 

i 2(s) = B,+ 8 1- l(u)Bs' where B = 0, 

is a symplectic operator of (4.2); 

(iii) the operators 

(4.5) 

<1> (u) = 82(u)8 1- I(U), if> (s) = 81(s)i2(s), where B = 0,(4.6) 

are strong symmetries of Eq. (4.1) and (4.2), respectively. 
Proof In Ref. 15 it was found how symplectic and co

symplectic operators transform under Miura type transfor
mations (see also Refs. 9a and 9b). Applying these results to 
the case that B is given by (4.3), one obtains that 8 (s) is co
symplectic iff 8 (u) = B,8 (s)B s+ is inverse-symplectic. A 
similar formula follows for the transformation of symplectic 
operators. Thus (i) and (ii) follow. The proof of (iii) follows 
from Remark 2 of Ref. 15. 

Remarks: 1. In Ref. 5 it was found how strong and he
reditary symmetries transform under Miura type transfor
mations. Applying these results to the case that B is given by 
(4.3) one obtains that <1> (s) is a strong symmetry of (4.2) iff 
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<1> (u) = Bs if> (s)Bs -I (4.7) 

is a strong symmetryof(4.1). Also, if> (s) is hereditary iff <1> (u) 
is her~ditary. Formulas (4.3), (4.5), and (4.6) imply that <1> (u) 
and <1> (s), as defined by Eq. (4.6), satisfy Eq. (4.7). Therefore, 
if one of these two operators is hereditary, so is the other one. 

2. In order to prove that <1> (u) is hereditary one needs to 
prove that 01 + O2 is a co-symplectic operator. However, in 
practice this is not necessary, because the Miura type trans
formation (extended in an obvious way so as to contain also a 
linear part) actually generates the co-symplectic operator 
n (u) = e2(u) + aOI(u), where a is a parameter. Therefore,e l , 

82 are compatible. 
3. It is also clearthatthe operator J2(u) = el (u)-I<1> (u) is 

tpe seco~d s~mplectic structure of (4.1) and that the operator 
02(S) = <1> (s)8 1(s) is the second co-symplectic structure of 
(4.2). 

Example 4.1. Boussinesq and modified Boussinesq equa
tions: Consider the Boussinesq equation in the form 

( 

2Vx ) 
u, = K(u), where K(u) = _ J..(U 4UU ) 

6 xxx+ x 

u- (U) - V· (4.8) 

It is clear that Eq. (4.8) can be written in the form 

~), 

(4.9) 

Equation (4.9) defines a Hamiltonian system, since 8 1 is a co
symplectic operator and 'Y I is a gradient function: 

, ( -! (D 2 + 4U 0) 
1'1 = ° 2 = (r; ) + . 

The Boussinesq equation is related to the modified Boussin
esq equation 

( 
Zxx + 2(ZY)x ) 

s, = G(s), where G(s) = _ lY _ 1(3Z 2 _ y2) , 
3 xx 3 x 

(4.10) 

through the Miura type transformation 9 

( 
U+2Yx+3z2+y2 ) 

B = V + Zxx + 3YZx + ZYx + 2Z(y2 - Z2) = °;4.11) 

Using the above facts and Proposition 4.1, we shall now de
rive the hereditary symmetries of both Eqs. (4.8) and (4.10). 

The modified Boussinesq equation is also a Hamilton
ian system, since it can be written in the form 

, , (!D 0) 
s, = °11'1' where 01 = ° !D' 

, ( 2Zx + 4ZY ) 
'YI(S) = _ 2Y

x 
+ 2y2 _ 6Z 2 ' 

(4.12) 

and y; = (y;)+. Then, using the results of Proposition 4.1, 
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one can immediately obtain the hereditary symmetries and 
the second symplectic and co-inverse structures of both 
equations: 

(
1D 

0z(u) =Bs ° ~DV·' 
(

1D 
<P(u) =Bs ° ~D )B/(~_I D-

1
) ° ,whereB = 0, 

(4.13) 

A (0 J2(s) = B s+ D- 1 

A (!D 
<P(s) = ° D-

1
) ° B

s
' 

whereB=O, 

(4.14) 

where clearly 

( 
2D+ 2Y 

B -
s - 3Zx +ZD+4ZY 

(
-W+2Y 

B+= 
s 6Z 

3Zx -DZ + 4ZY ) 
D 2 _ 3D Y + Y

x 
+ 2 yZ _ 6Z z . 

(4.15) 
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It is shown how quantum theory (QT) can be expressed as a probability theory on Hilbert space, 
treated as a measure space. The approach generalizes the work of Bach and clarifies the 
"generalized trace" of Langerholc.It permits the description of both bounded and unbounded 
observables as measurable functions. Dynamical evolution can be described in terms of 
stochastic processes. 

PACS numbers: 03.65.Bz 

Bach has recently suggested that quantum theory (QT) 
can be expressed as a theory of probability where Hilbert 
space is the underlying "event" space. 1-3 While his purpose 
was to suggest that the elements of Hilbert space can be con
sidered as "hidden variables," the mathematical problem of 
transcribing the formalism into a quasiclassical context is of 
intrinsic interest for at least two reasons. The first, as noted 
by Bach, is that the distinctions between QT and classical 
physics are more readily apparent if both are expressible in 
the same terms. Secondly, it may prove useful to have an 
auxiliary formalism available for various calculations. In
deed, among the trivial consequences of our approach is a 
definition of expectation (in fact, the standard one of prob
ability theory!) which corresponds to the "generalized trace" 
formula for unbounded observables due to Langerholc. 4 We 
also note a curious built-in "fuzziness" ofQT.5 The descrip
tion of stochastic processes in QT -a serious problem when 
viewed from the usual operator formalism6-appears to be 
simplified in our approach. 

In this paper we consider the usual Hilbert space over 
the complex field. We thus differ from the standard treat
ments7•8 and that of Bach. After a brief description of the 
Borel algebra, we show how bounded operators-not neces
sarily self-adjoint (SA)--define measurable functions on the 
Hilbert space. From this we can immediately do likewise for 
any SA operator. Next, we express density operators as con
vex integral mixtures defined by a probability measure on 
Hilbert space. We naturally have a notion of expectation 
value which we relate to the usual definition. Finally, we 
define general stochastic processes and show how they are 
related to the typical Hamiltonian dynamics. 

We commence with some remarks on the space 
(JIr, 1B(dY)). We assume JIr to be a general Hilbert space over 
the complex field C. Its customary topology is based on the 
metric 

(1 ) 

where ("'ltP) is the inner product. WedenotebylB(dY) the 0'

algebra generated by the "spheres" 

S~ = I ~Id ("', tP )<p J, p > 0, tPE.iIr. (2) 

Let L N C L N + 1 be a sequence of subspaces of JIr such 

that UN> 1 L N = JIr (E denotes the topological closure of 
ECJIr.) Furthermore, choose an orthonormal basis 
I "'nE.ilrln>1 such thatLN is spanned by I "'n I;; ~ 1 andLN+ I 

is spanned by I '" n I;; ~ i for all N> 1. Define the sets 

N 

I'" = I an "'n Ian EC; an <Re(an )<13n; 
n=t 

Yn<Im(an)«\; - 00 <an <13n<oo; 
- oo<Yn <t5n <oo; n = 1,2, ... ,N). (3) 

These sets generate a O'-algebra IB(L N) and 1B(dY) is the 0'

algebra generated by uN>IIB(LN). These statements are im
mediate extensions of results presented in Ref. 7 for a Hilbert 
space over the real field. 

It is necessary to represent linear operators, particular
ly self-adjoint (SA) "observables" as measurable functions 
JIr --+C. We begin by considering bounded operators. If 
fD1'--+JIr is a linear operator, it is bounded provided there 
exists ME(O, (0) such that II T"'II <M 11"'11 for all !/JED1'. It is 
well known that this concept is equivalent to continuity: 

Lemma 1: The linear operator fD1'--+JIr is bounded iff 
for each !/JED l' whenever I "'nED1' )--+'" (II'" - "'n II W), then 
T"'n--+T",. (See Ref. 9, p. 34.) 

With each bounded linear operator we can associate a 
measurable function on JIr as follows: 

Lemma 2: Let fD1'--+JIr be bounded and let T / be its 
"maximal extension" (i.e., extend Tto T" on 151' by continu
ity and define T'''' = ° if 1/JEl5}. For any~, 
f /'" = T" "'Di' where "'Di is the component of", in 151" (See 
Ref. 9, p. 34). Then 

(4) 

is a measurable complex-valued function on JIr. 
Proof Provided T:JIr --+C is continuous, it is measur:;.,. 

able (Theorem 1.5, p. 4 of Ref. 8). Note that the operator T' 
on JIr is bounded and thus everywhere continuous by 
Lemma 1. Letg ("')==("'IT'I"'); as ("'I"') is obviously con
tinuous, we need only verify the continuity of g (",). Let 
I "'n )--+"'. Using Schwarz's inequality, we obtain 

Ig("'n)-g("')I<I<"'nl[T''''n - T'",]) 1 + I("'n -"'IT'''')I 
A A A 

<11"'nll·IIT''''n - T''''II + II"'n - "'II'IIT''''II 
= [11"'nll-II"'II]'IIT''''n - T''''II + 11"'11·IIT''''n - T''''II 

+ II"'n - "'II·IIT''''II. (5) 

Since 11"'11 and II T''''II are finite and I "'n )--+'" implies 
IIT''''n - T''''II~O, the right side of(5) goes to zero sog (",)is 
indeed continuous. 

Q.E.D. 
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Our next result shows how we can associate a measur
able function on JiY' with an arbitrary (strictly) self-adjoint 
(SA) operator. The result depends on the spectral resolution 
of the operator, so the domain ofthe operator is necessarily 
dense-i.e., DI' = JiY' (Ref. 10, Chap. 6). The spectral repre-

A 

sentation B(R 1 I-I n I projection operator I characterizes the 
spectral measure 

.u",(.1 )==.(t/!Ifi,j It/!), t/JeDI', .1ElB(JR1
), (6a) 

and the quantities (Ref. 9, p. 54) 

(t/!ITit/!) = f: 00 d.u",(A )A, t/JeDI'· 

Define for each ZE[O, 00 ) 

f + _{x' if XE[O, Z], 
z (x)= 0, otherwise, 

{

X, if XE[ - z, 0], 
f z- (x)= 0, otherwise. 

(6b) 

(7a) 

(7b) 

These functions are "essentially bounded" for each finite z; 
i.e., ~r all t/JeDI',.u", (A Iz < If z± (A ) I J = 0. It follows that 
f z± (T) are bounded operators for all finitez (see Ref. 9, p. 56; 
beware the misprint!). We may therefore define the measur
able functions 

Tz±(t/!)=(t/!lf;±(T)It/!)/(t/!It/!), t/JEJiY', ZE[O, (0), (8) 

wheref; ± (T) is the maximal extension offz± (T) as defined 
in Lemma 2. Note thatf; ±(T) =fz± (T), inasmuch as the 
latter operators are defined throughout JiY'. 

Theorem 1: Let T:DI'-JiY' be strictly self-adjoint. Then 

T(t/!)==.sup(T/(t/!)lzE[O, oolJ +inf(Tz-(t/!)lzE[O, oo)} (9) 

is a measurable function. Its domain excludes only the (mea
surable) set of t/!'s for which both terms on the right side of(9) 
are unbounded. Moreover, 

(10) 

Proof Since the functions (8) are measurable on JiY' for 
all ZE[O, (0), sup( T z+ (t/!) I and inf( T z- (t/!) I are measurable 
(Ref. 11, p. 153), and for t/JEJiY', such that not both ofthese 
functions are unbounded, their sum is measurable. The sin
gular set is also measurable (Ref. 11, pp. 242-3). Formula 
(10) is immediate from (6), rewritten as 

(t/!ITIt/!) = s~p{ f d (t/!Ifi;. It/!)A } 

+ i?f{ [z d (t/!Ifi;. It/!)A}, t/JeDI'· (6') 

Q.E.D. 
We comment that the technique of representing a mea

surable function as a limit of measurable functions could 
provide an extension of Theorem 1 to represent any linear 
operator which can be expressed as a suitably defined limit. 
We shall not pursue this possibility here as all operators of 
physical interest are SA. 

We note now that any density matrix Won JY' can be 
represented most generally as a convex integral of "pure 
states": 

W = I dm(¢) I¢) (¢ I, m a probability on IB(JfI. (11) 
k' (¢ I¢ > 
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In fact we can go somewhat further: 
Theorem 2: Let m be a probability measure on B(~. 

A 

Then there exists a density matrix W defined by (11); i.e., the 
A 

operator W defined by 
A 

(¢IWIt/!) 

= I dm(1J) (¢ 11J)(1JI t/!) , ¢, t/JEJiY', 
.W (1JI1J) 

satisfies 

(¢ I Wt/!) = (W¢ It/!), ¢, t/JEJiY', 
(t/!I W It/!) >0, t/JEJiY', 
Tr W= 1. 

Proof The operator It/!) (¢ I is clearly bounded: 

11(1t/!)(¢ 1)11J)11
2 

= I (¢ 11J) 1211t/!1I2<(f1¢ 11211t/!112)111J112, 1JEJiY'. 

(12) 

(13a) 

(13b) 

(13c) 

Hence, by Lemma 2, the integrand of (12) is measurable with 
domain JY'. It follows that I (¢ 11J) (1JIt/!)/(1JI1J) I is measur
able (Ref. 12, p. 11). It is, moreover, integrable: 

f
dm (1J)\ (¢I1J)(1JIt/!) \ =f dm(1J)[I(¢I1J)1

2
1(1JIt/!)1

2
]112 

(1JI1J) 111J11
4 

<f dm(1J)[ II¢ 11211t/!112] 1/2 = lIl¢ II II t/!I I ]m(~ < 00 

(14) 

so that I (¢ I W It/!) 1< 00 (Ref. 12, p. 25). Thus, (12) is well 
defined; properties (13a) and (13b) are trivial, while if (t/!n I is 
any ON basis for JY', 

Tr W= I (t/!nIWIt/!n) 

= f dm(1J) (1JI(l:n It/!n) (t/!n 1)11J) = 1. 
(1JI1J) 

(15) 

Q.E.D. 

There is an interesting relationship between a probabil
ity m on IB(~ and an associated QT probability IJ... on the 
lattice L C lB(~ of closed subs paces of JY'.9 Let n E project 
JY' onto EEL. 

Lemma 3: Let qdt/!)=(t/!lfiE I t/!)/(t/!I t/!) , t/JEJiY', EEL. 
Then q E:JY' - [0, 1] is integrable with 

pIE) = f dm(t/!) qE(t/!)· (16) 

Proof Since fiE is bounded, q E is measurable by 
Lemma 2. By definition, linearity, and completeness of the 
basis set (t/!n J, 
ptE )=Tr W fiE 

= I (t/!nIWIt/!m)(t/!mlfiEIt/!n) 
n,m 

= I fdm(1J) (t/!nl1J)(1JIt/!m)(lfmlfiEllfn) 
n.m (1JI1J> 

= f dm(1J) (1J I(l:n,m It/!m )(lfm lfi E It/!n )(t/!n 1)11J) 

(1JI1J) 

= f dm(1J) qE(1J). Q.E.D. 
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Note that qE(t/l) replaces the characteristic function 
X E (t/l) for EEL. This suggests that QT has an inherent "fuzzi
ness" due to the inability to determine the "degree of belong
ing" oft/l in spaceE.5 Note also that while m fixesp uniquely, 
the converse is not true. 

It is natural,,!hat the expectation value associated with 
an SA operator T is defined for any probability m on B(JY) 
by 

~(T)= f dm(¢) T(¢ ), 

m[¢EJf':IT+(¢)1 = 00 = IT-(¢)IJ =0, (17) 

where T (¢ ) is defined by (9), which enforces the given rest ric
tionon m. 

Theorem 3: Let T:Yr' ---.Yr' be bounded, and let m be a 
A A A A ......... 

probabilityonB(JY). Then,if(T)=Tr WT, (T) = ~(T) 
Proof By definition, if T is bounded on Yr' 

A 

~(T)=fdm(t/!) (t/lITIt/!) 
(t/llt/l) A 

= L dm(t/l) (t/lIt/ln)(t/lnITIt/lm)(t/lmlt/l) 
n,m (t/llt/l) 

= L (t/!nITIt/lm)(t/lmIWIt/ln) =Tr WT. 
n.m 

Q.E.D. 

Note that Tneed not be SA in Theorem 3. The definition (17) 
of expectation-arising naturally from the measure-theore
tic description of QT -in fact is identical with an extension 
of the "trace" operation described in Ref. 4 for unbounded 
SA operators. This result is important enough to be proven 
separately. A '" 

Theorem 4: Let Tbe a strictly SA operator, and let Wbe 
defined by (ll)whereml¢:IT+(¢)\ = 00 = \T-(¢)Il =0. 
Then 

Proof Writing ~(f) explicitly, using (9), we have 

~(T)= f dm(¢)sup[T/(¢):z>OJ 

+ f dm(¢ )infl T z' (¢ ):z>O l 

= ~~~ f dm(¢) T z+ (¢ ) + !~~ f dm(¢) T z- (¢ ) 

= sup if [J z+ (T)] + inf ~ [J;- (T)], 
~o ~O 

(18) 

( 19) 

where we have used essentially the monotonicity of T / (¢J ) 
and basic properties of Lebesgue integrals. Explicitly, 

A (Z A 

f z+ (T) = Jo ). dIll - oo.A I' (20a) 

A [ A f Z (T) = ._ z ). dIll - oo.A J' (20b) 

But, application of Theorem 3 in (19) yields 
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~(T) = sup Tr W (% ). dfi[ _ co.A J 
%:;.0 Jo A[ A + infTr W ). dIll - oo,A J 

z>o -z 

i
z 

A A 

= sup ). d [Tr W Il[ _ oo,A J1 
00 0 

+ inf I Ad [Tr W fi[ _ oo,A d 
z>o J -z 

= 100 
Ad [Tr W WI _ oo,A d 

+ [00 Ad [Tr wfir-oo,A d· (21) 

Q.E.D. 

Thus, (18) results. 
N.B.: The eX.l'ectation (19) is ~efined, of course, only if 

not both IF [J: (T) ] and IF [J: (T) ] are unbounded. These 
are the same conditions required by Ref. 4 in defining the 
right-hand side of(18), and enforce automatically the as
sumed restriction on m, again by familiar properties of the 
Lebesgue integral. 

While (17) is valid for any measurable function on Yr', 
QT is typically concerned with those functions associated 
with SA operators. Let r be the set of measurable functions 
defined according to Theorem 1 from SA operators. If 
T, SEF, we define T E!) §.EF ~ the result of applying Theorem 
1 to the SA operator T + S. Similarly, we define T.SEF in 
terms of r.s. Note that by definition Df + § = Yr' = DfS·
we only admit such SA operators into r. This restriction (see 
Ref. 9, p. 42), nevertheless, leaves us with the most precious 
physical operators, position and momentum (Ref. 9, p. 43). 

We use the notation 

T.T* T.T* .. ·* T I 
T·N=~and L Ti=T1E!)"·E!)T[. 

Ntimes Ell 
i= 1 

Note that ns is* T in general. Obviously, the algebra of 
QT "random variables" is quite different from that of classi-

cal physics, A A A A 

In particular, IF (T + S ) # IF (T) + ~ (S) in general, 

A A f since ~(T + S) = dm(TE!)S). The additivity problem 

rests with the algebra of E!) and not with the expectation 
value itself, as suggested by Langerholc.4 

In general a stochastic process is a mapping from [to, t F ] 

~ R into r. If a ph~ical system is closed during [to, t F ], its 
unitary evolution (U (t, to)) defines a stochastic process via 
T, (if;)=== T [ U (t, to)t/l]. In case T is bounded on $', this is 
explicitly evident: 

At "'-A-

T (.1,) = (if;1U (t, to)TU(t, to)Iif;) = T [U(t t ).1,], 
I 'f/ (t/llif;) , 0 'f/ 

More generally any measurable transformation Vlt, to) on A A A 

,}y such that V(t + s, to) = V(t, to)V(s, to) defines a process 
T, (!/J) = T [V(t, to)!/J], TEF. Note that 

W [T, ]= f dm(!/J) T [V(t, to)if;) 

= f dm[V-1(t,to)(!/J)]T(!/J), 

John F. Cyranski 1076 



                                                                                                                                    

where V-J(t, to)(tIt)=!,pE.JY1 V(t, to),p = til is not to be con
fused with an operator inverse. 

Most generally, however, the process simply defines a 
trajectory in r which may be an arbitrary function of several 
variables. Indeed, all physical quantities in QT are Borel 
functions of coordinates and momenta (and spin) (Ref. 13, 
Chap. 5). Hence, let T=(TJ,. .. ,TN), TnEI' (N < 00) be given, 
and suppose that the process [to, tF ]-r admits the 
representation 

Tn(t)==Yn [t, to; T], tE[to, tF], n = 1,2, ... ,N, (22a) 

where Yn (t, to; z) are Baire functions (not necessarily defined 
via tit-tit, maps!) satisfying 

Yn(to, to; z) = Zn' n = 1,2, ... ,N. (22b) 

If S is any measurable function on RN
, we can define a pro

cess in terms ofT and "( = (YJ""'YN) by 

S (t )==S ["((t, to; T)]. (23) 

We shall refer to the functions "( as dynamical laws. 
We have thus completed the representation ofQT on 

the measure space (cW', B(J¥')). That is, we have shown how 
the (algebra) r of admissable QT measurable functions is 
defined by SA operators, how probabilities and expectations 
on (cW', B(J¥')) are related to QT "states" and expectations, 
and how "dynamics" can be represented via (more general) 
stochastic processes. The problem of statistical inference of 
"states" and dynamical laws based on actual empirical evi
dence will be treated elsewhere. 
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An integral representation of the quantum mechanical expectation which recently has been set 
up for bounded operators is generalized to unbounded operators by means of representation and 
integration in Gel'fand triplets. For Gaussian measures it turns out that a time translation 
invariant measure exists which, contrary to classical statistical mechanics, is singular w.r. t. the 
measures which represent the states. 

PACS numbers: 03.65.Ca 

I. INTRODUCTION 

In Ref. 1 (henceforth cited as I) one of us set up an 
integral representation of the quantum mechanical expecta
tion by means of integration in Hilbert spaceH. It was shown 
that the expectation E (A; W) = tr( WA ) of an operator A can 
be expressed as 

(I) 

if the state of the system is given by the statistical operator 
W. Mainly to make use of characteristic functions and to 
define complex Gaussian measures, we introduced a canoni
cal isometry between the complex Hilbert space H and a real 
oneHo· 

If one wants to integrate directly on H, the terms in (1) 
can be defined as follows. J.L w is a probability measure on the 
measurable Hilbert space (H,&B(H)) which is characterized 
by the fact that: 

(i) Its covariance operator C"w' defined by 

(¢ IC"wl tP) = L dJ.Lw(S) (¢ Is) (S ItP), (2) 

is just the statistical operator W, 
(ii) the mean vector m"w' defined by 

(¢ 1m,,) = L dJ.Lw(s )(¢ Is), (3) 

vanishes, and 
(iii) is arbitrary otherwise. 
Finally, the measurable function fA: H ......... JR is given by 

(4) 

This formula clearly shows that the expression (1) is 
confined to bounded operators A. For unbounded operators 
the integrand is not defined on the complement of the do
main ofthe operator. It is the aim of this paper to get rid of 
these shortcomings and to develop a formulation which is 
appropriate for that class of operators which usually occur in 
quantum theory. To this end we make use of a mathematical 
concept which allows a rigorous application of the Dirac 
formalism, namely, a Gel'fand triplet ECHCE *. 

The advantage of this procedure is twofold. On the one 
hand, the restriction of A to E defines a continuous operator 
such that there is no difficulty in defining a measurable func
tion in analogy to (4). On the other hand, the restriction of W 
to E defines a bilinear functional on E XE which induces a 

Gaussian measure on E * due to the fact that E is a nuclear 
space. 

In Sec. II we collect the results concerning unbounded 
operators and Gel'fand triplets and show how to construct 
complex Gaussian measures on E *. In Sec. III we present the 
integral representation of the expectation value. Section IV 
is devoted to the proof that the dynamics of a quantum sys
tem cannot be represented in analogy to classical statistical 
mechanics by means of invariant measures. Finally, in Sec. 
V, we collect and discuss the results. 

II. CONSTRUCTION OF GAUSSIAN MEASURES ON £* 

To introduce some notations, we recall the basic facts 
concerning the representation of unbounded operators in 
Gel'fand triplets (cf., e.g., Ref. 2). Let A : D (A ) ......... H be an 
essentially self-adjoint operator defined on a dense domain 
D (A ) CH. Usually we regard A as an element of a *-algebra ~ 
of operators which have a common maximal invariant dense 
domain ECH. This set E is equipped with a topology (the 
nuclear topology) such that E becomes a nuclear space and 
the restriction of A to E defines a continuous linear mapping. 

We assume in the following that E is a Frechet space 
such that its dual (the antilinear continuous functionals) E * 
is nuclear too and that E is reflexive, i.e., E" = E. The 
Gel'fand triplet is the sequence ECHCE *. We denote the 
pairing of E * and E by (F, f), FEE * and fEE, whereas (,1,) 
denotes the scalar product in H. The restrictions of A and W 
to E are denoted by A and Wagain. The adjoint operators 
which are defined onE * are denoted by A + and W +, respec
tively. We remark that in elementary quantum mechanics 
the Gel'fand triplet can be represented by the Schwartz 
space S and its dual S *, the space of tempered distributions, 
S (JR") CL2(JR") CS *(JR"). 

Our aim is to represent a bilinear form B w which is 
induced on E X E in terms of the statistical operator W, 

Bw(f,g) = (f,Wg) = (fl Wig), 

as an integral on E *, 

(f, Wg) = i dJ.Lw(F) (F,f)(F,g), 
E· 

(5) 

(6) 

where we assume, for simplicity, that B w is positive definite. 
For the construction (cf. Hida3

) ofJ.L was a product mea
sure, we consider H, E, E * as the complexification of the real 
Gel'fand tripletEr CHr CE~, where HrJErJ and E~ denote 
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the associated real spaces (i.e., multiplication with scalars 
restricted to the reals). Obviously in this representation 
E = Er + iEr etc. such that all elements/. F of E, E *, respec
tively, can uniquely be represented as! = J; + ifz, F = FI 
+ iF2,t.eErtFieE~, i = 1,2. The pairing between E * andE 
is derived from the canonical pairing of E ~ and Er which we 
denote by (F,J)r Fee ~,feEr as follows: 

(FI + iF2,J1 + ifz) = (FI'/I)r + (F2'!;)r 

+ i[(FI'/2)r - (F2,Jtlr]. (7) 

Let us assume that the operator Wr :Er --+Er induces a 
positive definite continuous bilinear form B w, on Er X Er via 

(8) 

and that Il w, is a probability measure on E ~ equipped with 
the Borel algebra generated by the cylinder sets with covar
iance operator Wr , 

(/.Wrg)r = L/llw,(F) (F,J)r(F,g).. (9) 

zero mean, and undetermined on the other hand. On 
E * = E ~ + iE ~ we define a probability measure Il w as the 
product measure 

Ilw = IlIW,l2) XIlIW,l2!' (10) 

where E * is equipped with the q-algebra generated by the 
cylinder sets. 

As can be seen by explicit calculation, Eq. (6) is fulfilled 
under the following condition which we formulate as 

Proposition 1: The bilinear functional B w can be repre
sented as the integral (6) on E * by means of Il w defined in 
terms of III W,l2) if Wr is defined by 

W/= W(fl + if2) = Wril + iWrl2' (11) 

i.e., Wr considered as an operator on Hr has the same spec
tral representation as W considered on H. 

The measures Il w defined so far are nearly undeter
mined and in explicit calculations it may be advantageous to 
have a well-defined measure at one's disposal. In this case we 
always can use the complex Gaussian rw on E·, which is 
defined in terms of the Gaussian measure YI W,l2) on E ~ with 
zero mean and covariance operator WJ2. The existence of 
this measure is assured by the theorem of Minlos (cf. Ref. 4) 
as Er is a nuclear space. 

III. THE INTEGRAL REPRESENTATION 

In the following we assume that an unbounded operator 
A in H, continuous if restricted to E, and a statistical opera
tor W is given. In order to apply Proposition 1, we assume 
that W is positive definite. If this is not the case, we confine 
the integral representation to the Gel'fand triplet generated 

by the Hilbert space rant W) . 
Generalization of the results of! requires, first of all, the 

definition of the expectation value of an unbounded operator 
A because the classical formula E (A; W) = tr( WA ) is not well 
defined in this case. Using the spectral decomposition of A, 
A = f dP1 A., we define (cf. Ref. 5) 

E(A;W) = Jd(tr(WP1) A. (12) 
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iftherhsexistsandwesettr(WA) = tr(AW) = E(A;W)inthis 
case. 

If the system of eigenvectors of W, which constitute a 
c.o.s. in H, is contained in E, i.e., W = :Ii Wi Iwi ) (Wi I and 
Iwi)eE for all iEN (we assume for notational convenience, 
that the eigenspaces are one-dimensional) (12) reduces to the 
familiar form (cf. Ref. 5) 

E(A;W) = L(wiIWA Iwi ), (13) 
i 

although A is unbounded. We remark that the system of 
eigenvectors of W cannot, in general, be substituted by some 
other C.O.s. contained in E as shown in Ref. 5. 

In the following we assume that tr{ WA +) and tr{ WA _) 
exist separately, where 

A ± = f dP 1 (j,1. I ± A. )/2 

and that for A = A + - A _ 

tr(WA) = tr(WA+) - tr(WA_). 

(14) 

(15) 

This assumption allows us to confine ourselves to positive 
operators and to rewrite Eq. (13) as follows 

Proposition 2: For A>O the expectation (13) can be ex
pressed as 

E(A;W) = L(A 1/2Wi l WIA 1/2Wi ), (16) 
i 

where 

AI/2= fdP1,1.I/2 (17) 

is the positive square root of A. 
FortheproofweremarkthatD (A )eD (A 1/2)andusethe 

absolute convergence of the sums which result from inser
tion of the identity in terms of the spectral decomposition of 
WinA =A I12U 1/2. 

The functional analogous to (4) is now defined by 
/A:E*--+R: 

!A(F) = I'[I(F,A t;:2WiW -I(F,A ~2WiWJ. (18) 
i 

Existence, measurability, and integrability is stated in the 
following: 

Theorem 1: Suppose that tr(WA ± ) exists, that (15) is 
fulfilled, and that the eigenvectors of Ware elements of E, 
then 

E(A;W) = r dllw(F)/A(F) JE. (19) 

where Il w is defined in terms of III W'/2) by Eq. (10) and Wr is 
characterized by Eq. (11). 

Proof: According to the assumptions we can confine 
ourselves to positive operators and apply Proposition 2: 

L(A 1/2Wi l WIA 1I2w) = L(A 1/2Wi ,WA 1I2wj) 
i i 

= ~ i.dllw(F)I(F,A 1/2Wj W 

= i.dllw(F)~I(F,A I12WiW, (20) 
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where for the last identity the theorem of monotone conver
gence has been used. This assures the /-l w-a.e. existence of/A 
and its integrability. 

For operators with discrete spectrum the integrand can 
be expressed in a more condensed form. 

Proposition 3: Suppose that the assumptions of Theo
rem 1 are fulfilled and that A has a discrete spectrum, e.g., 

A = Ia; la;) (a; I, then (19) holds with/A (F) given by 
; 

/A(F) = Ia;I(F,a;W- (21) 
; 

For the proof we consider A ;;;.0. According to definition (12), 
we obtain 

E(A;W) = I aj(ajl WlaJ 
j 

(22) 

and use the theorem of monotone convergence to arrive at 
(21). 

Let us conclude this section with a remark concerning 
the complicated structure of the measurable functionlA for 
unbounded operators if compared with the simple structure 
of that of bounded operators in Eq. (4). The structure of/A in 
(18) results from the fact that the conditions of evaluation of 
the trace in a special basis as well as properties of bilinear 
functionals on E * must be respected. The fact that we define 
IA in terms of the square root of A is technical and can be 
avoided for operators with discrete spectrum. 

IV. SINGULARITY WITH RESPECT TO INVARIANT 
MEASURES 

Quantum dynamics is induced by a one-parameter 
group Up tER, where we assume that the generators of U, 
are elements of the *-algebra ~ under consideration. We as
sume that the elements of the one-parameter group preserve 
the Hilbert norm of elements of H and are homeomorphisms 
of E onto itself. All operators with the latter properties form 
a group Ok (E ) referred to as the infinite-dimensional unitary 
group. The adjoint mappings U + are automorphisms of E * 
and the collections of all of these operators forms a group 
which is isomorphic to CiJ'(E) and denoted by CiJ' +(E *). 

From our viewpoint quantum dynamics is induced by 
elements of CiJ' +(E *) on E *. The following theorem states 
that there exists a measure on E * which is invariant w.r.t. 
elements of CiJ' +(E *). 

Theorem 2: For all U +EOk +(E *) we have 

U+oy} = YI' (23) 

where YI is the complex Gaussian measure on E * which is 
induced by the identity on E considered as the defining bilin
ear functional B I . 

For the proof see Ref. 3. We remark that this represen
tation of the identity on E can be considered as a generalized 
version of a representation in coherent states (cf., e.g., Ref. 
6). 

The existence of a rotation invariant measure on E * 
discerns the present formalism from that one which was es
tablished in I as on the measurable Hilbert space there exist 
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neither translation-invariant nor rotation-invariant mea
sures. As the time evolution of quantum mechanics is in
duced by elements of Ok +(E *), Theorem 2 is the quantum 
analog o/the classical Liouville theorem. It states that there 
exists a time-translation invariant measure on the state 
space. 

In this context it is interesting to pursue the classical 
analogy further and to analyze whether it is possible to re
present an arbitrary state characterized by a probability 
measure/-l w by means ofa probability density Pw w.r.t. the 
invariant measure Y} . The existence of a representation of 
the expectation value by means of the invariant measure YI 
is assured in 

Proposition 4: Under the assumptions of Theorem 1 the 
expectation value permits a representation 

E(A;W) = 1. dy} rtF) <PwA(F), (24) 

where <PwA:E *-+R is defined in analogy tolA in Eq. (18) 
with A 1~2 replaced by W 112A 1~2. 

For the proof we set W = W I12 W I
/
2 and use (16). We 

remark that in general (WA ± )1/2# wII2A 1~2. 
Representation of the dynamics by means ofa probabil

ity density requires factorization of <PWA according to 

(25) 

with (i) P W independent of A such that it only represents the 
state but not the observable and (ii) dy} Pw = d/-l w for some 
/-lw. From the structure of the functions <PWA andlA it is 
evident that <PwA/IA still depends onA. 

These considerations which seem to indicate that we 
cannot represent the state by means of a probability density 
can be sharpened for Gaussian measures. 

Theorem 3: Let Wbe a positive-definite statistical oper
ator and denote by y W the complex Gaussian measure in
duced by Won E * then y} and y ware orthogonal 

y}lyW' (26) 

For the proof we use a theorem due to Minlos (Proposi
tion 8, VIII in Ref. 4). From this theorem we conclude that 
the orthogonality of the measures is due to the fact that Wis 
a trace-class operator, a fact which is constitutive for a statis
tical operator. 

Formula (26) implies that integrals w.r.t. Yw cannot be 
represented by means of the measure Y}' From a more phys
ical point of view this means that the dynamics cannot be 
represented by a time-dependent probability density w.r.t. an 
invariant measure. This precisely is the point where the anal
ogy between the present representation of quantum mechan
ics and classical statistical mechanics breaks down. 

V. DISCUSSION AND CONCLUSION 

We have generalized the integral representation set up 
in I for bounded operators to unbounded ones by means of 
Gel'fand triplets and integration in nuclear spaces. The re
strictions of this representation of the quantum mechanical 
expectation are of the same kind as those for the generalized 
trace formula. This can best be seen from Eq. (18) which 
requires that the eigenvectors of Wbe elements of D (A ± ). 
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The starting point for our consideration was the expres
sion for the expectation by means of the generalized trace 
formula which is confined to normal states. As singular 
states are connected with the continuous part of the spec
trum of an observable and the generalized eigenvectors are 
elements of E * but not of H the representation by means of 
integration on E * may indicate that the present formalism is 
partly based on singular states. 

That this is not the case can be seen from the character
ization of the supports of the measures involved. 

Theorem 4: (i) Denote by 

EC···CEn C···CEo = H = E~C.·.CE~C ... CE*, 

neN, the countable Hilbert space defining the nuclear spaces 
E, E* (cf. Ref. 3). Then YI is supported by Ef. Moreover, 
(H,Ef) constitute an abstract Wiener space for rl' 

(ii) Denote by H w the Hilbert space obtained by com
pletion of H with respect to the norm lis II w = II W 1/

2S II for 
SeH and by H'rv its dual. Obviously, H'rv = WI/2HCH. 
Then the complex Gaussian measure r w is supported by H. 
Moreover, (H 'rv,H) constitute an abstract Wiener space for 

rw' 
The proof is a direct application of the theorem of 

Piech.7 For the notation of an abstract Wiener space and its 
properties we refer to Ref. 8. The second part of the theorem 
allows us to restrict the integrals w.r.t. rw to the familiar 
quantum mechanical Hilbert space H. This clarifies that 
there is no connection with singular states. 

Another important property can be concluded from the 
restriction of the integral representation to H based on Eq. 
(21). The theorem of monotone convergence yields in this 
case that the set of elements SeH for which (S IA Is) < 00 is 
measurable, i.e., D (A ) is an element of the Borel algebra of H, 
and that the complement of the domain is a set of measure 
zero. We remind, however, that these results are based on 
observables with a discrete spectrum and Gaussian mea
sures-they need not hold in general. 

From Theorem 4 we conclude that with each complex 
Gaussian measure r on E * there is associated an abstract 
Wiener space (HI ,H2) constituted by the two Hilbert spaces 
HI CH2· The general properties ofthe abstract Wiener 
spaces associated with a Gaussian measure r imply that 
r(H.) = 0 and r(H2) = 1. Evidently, the orthogonality ofrl 
and r w stated in Theorem 3 is a consequence of the fact that 
rl (H) = 0 and rw(H) = 1. 

To conclude, let us consider the structural analogy of 
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the present representation of quantum theory with classical 
statistical mechanics and its limitations. 

We have set up a probabilistic representation of the 
quantum mechanical expectation which associates a prob
ability measure r w with a statistical operator Wand a mea
surable functionfA with an operator A in H. The fact that the 
measurable functions defined by Eq. (18) still depend via the 
eigenvectors of Won the state is structurally connected with 
the definition of generalized trace. Conceptually this depen
dence reflects the fact that unbounded observables do not 
admit finite expectations in arbitrary states. 

Just as every system in classical statistical mechanics 
has a distinct phase space each quantum system, character
ized by its algebra of operators ~, has its state space E * 
which is determined by this algebra. In analogy to the classi
cal Liouville measure, we have shown the existence of a time
translation invariant measure in state space, namely the ro
tation-invariant canonical complex Gaussian measure. We 
remark that in the present representation the Liouville mea
sure is a probability measure whereas classical Liouville 
measures are in general not even finite measures. 

Contrary to classical statistical mechanics it is not pos
sible to describe a state by means of a probability density 
w.r.t. the invariant measure. This is not primarily connected 
with the fact that the operator algebra under consideration is 
noncommutative but is due to the orthogonality of the mea
sures involved which is a typical property of infinite-dim en
sional analysis. 
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Invariant *-quantization means quantization with the introduction of invariant *-products on 
Coo functions on phase space. A systematic method of constructing invariant *-products for 
dynamical Lie groups is presented. It involves the notions of invariant Wigner correspondence 
and *-representation. As an illustration, all possible invariant *-products, in an integral form, 
are constructed for the affine group of the real line. The Moyal product is recovered as a special 
case. 

PACS numbers: 03.65.Ca 

INTRODUCTION 

Quantization, according to Bayen et al., I is viewed as a 
deformation of the usual associative algebra of Coo functions 
on phase space which is attained by introducing a deformed 
product (called *-product) on Coo W. The *-product is re
quired to be "invariant" with respect to an algebra of "dis tin
guished observables" for the latter to retain their geometri
cal significance after the deformation. The main concern of 
this paper is to construct all possible invariant *-products for 
the affine group of the real line. It is the group of translations 
and dilations, without reflections, of the real line. 

This paper is divided into two main parts: the concept of 
invariant *-quantization and its application to the affine 
group. In the first part of the paper we discuss the basic ideas 
of invariant *-quantization, the concept of invariant Wigner 
correspondence (or map), the notion of *-representation, and 
the related invariant *-products. The second part of the pa
per is devoted to the contruction of invariant *-products for 
the affine group of the real line. We wish to find all possible 
invariant Wigner maps and all possible *-representations, 
with which we obtain an integral representation of all possi
ble invariant *-products for the affine group. 

1. INVARIANT *-PRODUCT QUANTIZATION 

*-Quantization,2 a short form of *-product quantiza
tion, is a framework for the description of both classical and 
quantum mechanics, within which the quantization process 
is continuous-without the introduction of a Hilbert space 
and with no radical change in the nature of classical observa
bles. Continuity is in the sense of the deformation theory3-

the mathematical foundation of *-quantization. Quantum 
mechanics is a deformation of classical mechanics. 

The basic mathematical structures of classical mechan
ics are the symplectic structures attached to phase space W: 
the symplectic form on W defines the Poisson bracket which 
induces a Lie algebra structure on the algebra N of Coo func
tions on W with ordinary multiplication. Let a bilinear, asso
ciative, internal composition law, called a *-product, be in
troduced on Coo W, with respect to which N is closed 
[(u,v)-u*v, u, v, u*vEN] and is a *-algebra, denoted (N, *), 
with the associated Lie algebra structure defined by 

-IResearch Scientist, Lockheed Palo Alto Research Laboratory, Palo Alto, 
California 94303. 

(u,v)-[u*v] = : (u*v - v*u)lili; 

[ * ] is called the Moyal bracket. 4 It is this bracket, not the 
Poisson bracket, that corresponds to the quantum 
commutator. 

The physical aspect of the continuity of the quantiza
tion process requires that a family of observables on W, 
called "good or distinguished observables," be preserved 
after the deformation. For example, some functions that 
generate space-time symmetry should continue to do so after 
quantization. By definition,5 a good observable generates, by 
the Poisson bracket, a group of symplectic diffeomorphisms 
of W. Denote by g e N a finite algebra of good observables 
with the property that the algebra g integrates to a group G of 
diffeomorphisms of W. This group G is sometimes called the 
dynamical group of a physical system. For Aeg to remain 
good after the deformation, it is required that the infinites
imal automorphisms of the *-algebra (N, *) defined by 
fi---+[A *f] generate a group of automorphisms, fEN. The re
quirement6 is satisfied simply by 

A*f-f*A=iIiIA,fJ, Aeg, fEN. (l.l) 

The *-product is then said to be g-invariant, that is, A-invar
iant for Aeg. 

Furthermore, it will be supposed that g is "sufficiently 
large" so that its basis may be used to coordinatize W. If 
I Li l is a basis of g and I ril is the dual basis of the vector 
space dual g*, then the map J: W_g* given by 
SeWI---+Li(s)FI is injective,? i = l, ... ,dim g. We identify8 W 
with an orbit of the coadjoint action ad*g of g in the dual g*. 

By invariant *-quantization is thus meant quantization 
on a symplectic space Wby means of a *-product defined on 
N = Coo W, invariant under a sufficiently large finite subal
gebra g eN of good observables. We denote a *-quantization 
by a triplet (W,g,*). 

The problem of quantization of a physical system with a 
known dynamical Lie group G thus reduces to (i) determin
ing the corresponding Lie algebra g and its associated good 
observables, (ii) identifying Wwith an orbit of the coadjoint 
action ad *g of gin g*, and (iii) selecting an invariant *-prod
uct on W. If G is known, (iii) is the crux of the problem. 

A. Invariant Wigner correspondence and Invariant 
*-products 

A Wigner correspondence '1P' maps a class of operators 
in a Hilbert space L 2(R n) to a class of functions or distribu-
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tions on phase space W. The precise domain of 'fr will not be 
determined; it is assumed that, on a proper topological sub
space Y of its domain, the linear map 'fr is a function
valued distribution. Let F be an operator in Y, Ker F is its 
integral kernel. Then the image of F under 'fr, denoted F y 

eN, will be assumed to be expressible as 

F ytS) = f dk dK Ker F(k,K) 'fr(k,K;S), se W,k,KeR ", 

(1.2) 

where 'fr(.) is a distribution. Note that 'fr, in contrast to 
'fr(.), refers to the correspondence. 

The image F 71 . is called the Wigner symbol9 ofF. In the 
Weyl-Wigner-Moyal formalism 10 the Wigner distribution 
function is the form 

'Jr(k,K;p,q) = exp[q(K - k )/ili]8[p - (k + K)/2], 

where (q,p)eW=R XR. 
The Wigner correspondence defines a .-product on N 

in a natural manner. Let u,veN and U, Vbe operators such 
that u = U/I ,v = VII' then 

u·v =: (UV)I/eN. (1.3) 

A Wigner correspondence 'If'' is called g-invariant or 
simply invariant, if for every U in g 

ililf,uj = [F,U]71 , (1.4) 

where F is an operator in the domain II of 'If'' and f = F // '. 
Equation (1.4) readily yields (1.1) and thus guarantees 

the g-invariance of the .-product. This is evident, since 
[F,U] // = ili[f.u] according to (1.3). We shall determine 
all possible '!r(.) obeying (1.4) for the affine group. We next 
discuss the concept of .-representation and its relationship 
to invariant .-products. 

B. *-Representatlons and Invariant "products 

Let an invariant .-product be defined on Wand & be 
the algebra offormal power series over g •. By Exp, called .
exponential, 12 is meant the function Exp: Xeat-+Exp(X )e&, 
defined by 

Exp(X) = ! (l/n!)(ili)-"(X.)", 
"=0 

(X .)"==X .···.X (n factors). 

We shall establish that Xt--+Exp(X) is a .-representation of G. 
By definition, 13 a .-representation of G on W is a distri

bution 10' on G, with values in COO W, such that 
(i) The domain and the kernel of If are closed under the 

convolution in the test function space and 
(ii) If is ad g-invariant in the sense that, for every YEg, 

lfo(adY) = (ad·y)olf. (1.5) 

Condition (i) makes it possible to define a .-product on the 
image of If in C 00 W by 

(1.6) 

wherej,j' are the test functions. Condition (ii) ensures that 
this .-product is invariant in the sense that, for every YEg, 

I Y, u.vj = I Y, uj.v + u.1 Y,vj, 
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which is equivalent to (1.1). 
A .-representation If of G on W is smooth 14 if there 

exists a smooth function E defined on a neighborhood A of 
the identity of G, which gives rise to If(i) according to 

Iflj) = i E (x- 1)i(x) d,x = : (E,j), xEA C G, 

in which d,x is the right-invariant Haar measure on G. Fur
thermore, If is called normalized if, in addition, E I jd = 1 
and/ (X)E lid = - X/iii, where/ (x)e/ (g), the space of vector 
fields on G associated with left translations. 

Suppose that If is a smooth and normalized .-represen
tation. We may rewrite (1.6) as 

E(?).E(e Y
) = E(?e Y

), (1.7) 

where X, Yare in a neighborhood r of the identity of g. 
The cannonical, local diffeomorphisms from r to A 

allows 15 us to regard Exp(X) as a function on A. All elements 
of G will be taken to belong to some open sets of A, small 
enough so that their products will be in A. With this under
standing we define E (e X) = : Exp(X); Xt--+Exp(X) is thus a .
representation. It follows from (1. 7) that 

Exp(X).Exp(Y) = Exp(Z(X,Y)), (1.8) 

in which Z (X, Y) is given by the Baker-Hausdorff-Campbell 
formula. 

By virtue of (1.7), the .-representation Exp(X) is invar
iant in the sense that, for Y = Y iLi in g, 

(ad Y + ad·Y)Exps(X) = 0, (1.9) 

in which Exps (X) is the value ofExp(X) at S = Si r i on W. It 
is understood 16 that ad Y is the extension of the adjoint ac
tion of Y in g to formal power series over g and ad· Y the 
extension of the coadjoint action of Yin g. to formal power 
series over g •. Thus, 

(1.10) 

a 
(ad·Y) EXP5(X) = : [ad·y)s]j - Exps(X) 

aSj 

. . a 
= - C 'jk s;y' - Exps (X), 

aSk 

in which I C ~k j is the structure tensor of the Lie algebra g, 
and all the indices reflect the dimension of g. By virtue of 
(1.10), Eq. (1.9) becomes 

(
. 'ka . . a) Cjdx -. - CjkSiyJ-- Exps(X) = O. 

ax' aSk 
(1.11) 

Equation (1.11) or (1.9), like (1.4), is just another expression 
of the g-invariance of the .-product, associated with the .
representation Xt--+ Exp(X). 

We have thus far shown that, given an invariant .-prod
uct on W, we obtain .-representations that satisfy (1.9). We 
now discuss the converse: To construct invariant .-products 
on W with the help of .-representations. 

We shall consider smooth and normalized .-represen-
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tations associated with unitary representations of G. By defi
nition, 17 a *-representation g' is said to be associated with a 
unitary representation T of G if there exists an invariant 
Wigner correspondence rr such that g' = rro T. Since g' is 
smooth, E(e X

) = T;r/(X) = : Exp (X). By virtue of(1.8) the 
functions Exp form a local group under *-multiplication, 
which is locally homomorphic to G. The group multiplica
tion law of G gives rise to, through (1.8), the group *-multi
plication law of the group of the *-representations Exp. It is 
(1.8) that aids in the construction of invariant *-products. It 
is now clear as to why we choose *-representations that are 
associated with unitary representations of G. 

As a brief summary, once a unitary representation of G 
and an invariant Wigner correspondence, hence a type of *
representation, are established, the group property of Exp 
expressed by (1.8) allows us to define an invariant *-product 
on W. 

2. INVARIANT *-PRODUCTS FOR THE AFFINE GROUP 

A. Representations of the affine group 

We consider the case of a single degree of freedom with 
the requirement of positive momentum (p > 0). This has been 
applied IX in a model of quantum theory of gravitation. 

Momentum space is the real half-line p > 0, and two-
dimensional phase space (W) is the real half-plane p > 0, 

- 00 < q < 00. The symplectic structure is given by 
!q,ql = 0 = ! p,pl and !q,pl = 1. Conventional Weyl 
quantization would associate q andp with operators Q and P, 
respectively, in L 2(R +), where R + is taken to be the half
positive momentum space; in this case, Pis multiplication by 
pER + and Q is of the form ifti)1 ap. However, from the phys
ical requirement of p > 0 it follows that Q is not self-adjoint. 
Consequently, it is illogical to attempt invariant quantiza
tion based on the Heisenberg algebra (p, q, I with 
! q, p l = I) as the algebra of distinguished observables. We 
must point out immediately that we are not rejecting the 
quantum theory which is discovered by the conventional 
procedure; on the contrary, we shall adopt it. We just choose 
our distinguished observables among those that correspond 
to operators which generate unitary transformations. 

As in the case in Ref. 18, we shall let the Lie algebra g be 
spanned by two functions p and pq; its Lie-algebra structure 
is defined by ! pq, p l = p. The Lie algebra g is recognized as 
the Lie algebra of the affine group, the two-parameter, non
abelian group of translations and dilations (without reflec
tions) of the real line. The mapping of phase space WintoR 2 

by (q,p)>---+(SI' S2)' where SI = pq and S2 = p, may be inter
preted as a mapping of Wonto an orbit of the coadjoint 
action of g in its real vector space dual g*. Phase space W is 
thus equipped with coordinated SI andsz; an elementsEWis 
indicated by S = (SI,S2)' Furthermore, the Poisson bracket 
in (1.4) is 

(
au au au au ) 

! u, u J(s ) = S 2 as I as 2 - as 2 as I • 

Let G denote the affine group. We write 

G = {(b,a):Zt---->(Jz - T/(a)b; a> 1, bER, and T/(a) = : a-I }. 
Ina 
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Notice that since a > 1, T/(a) > O. The group multiplication 
law is given by 

(b )(b ' ') _ ( T/(a)b + aT/(a')b ' ') ,a ,a - ,aa . 
T/(aa') 

The affine group G admits two inequivalent, irreducible, uni
tary representations 19 which we now obtain by the method 
of induced representations. 20 

Consider the subgroups G I = ! (b, 1) leG, the group of 
translations on R, and Go = ! (O,a) leG, the multiplicative 
group on R. The affine group G may be written as 
G = G I (x Go, a semidirect product of the two one-parameter 
groups G I and Gz. The character (b, 1)- exp(b lifz) of G I in
duces the following representations of G: 

[T(b,a)¢ ](k) = a l/2 exp[T/(a)bk lifz]¢ (ak), ¢EL 2(R +). 
(2.1) 

The infinitesimal operators of T that correspond to the 
one-parameter subgroups G I and Go and form a basis of the 
Lie algebra g of G may be obtained as follows. From 
[T(O,e')¢ ](k) = e'12¢ (e'k land [T(t,I)¢ ](k) = e'klifi¢ (k), in 
which (O,e ')EG I and (t, 1 )EGo, it follows that 

LlcP(k)=ifz :t [T(O,e')cP(k)L~o 
= ifz( J.. + k ~ )¢ (k ) 

2 Jk 
and (2.2) 

Lz¢(k) ifz :t [T(t,I)¢(k)L_o =k¢(k). 

The operators L I and L2 operate on L2(R ), and 
[LI' L z] = ifz L z. Ifwe write [Lj' Ld = ifzCijkL i , then the 
structure constants of g are given by 

CI12=CI21=0 and C212=-C212=1. (2.3) 
Consider a family of unitary operators exp[(ln aLI 

+ bLz)lifz], which may be expressed with the help of the 
Baker-Hausdorff-Campbell formula as follows: 

exp[(ln a Ll + bLzllifz] 
= exp[T/(a)bLzlifz] exp[ln a L /ifz]. 

By virtue of(2.2), clearly (b,a)>---+ exp[(ln a Ll + bLz)lifz] is a 
unitary, irreducible, representation of the affine group G. 
Thus we write 

T(b,a) = exp[ln a LI + bLYifz]. (2.4) 

As already mentioned above, the affine group admits 
two inequivalent, unitary, irreducible representations: one 
for which the spectrum of L2 is positive and one for which it 
is negative. However, both may be realized in L z(R +). In 
fact, the representation in (2.1) corresponds to the positive 
spectrum of L z; the other representation may be obtained 
from (2.1) with b replaced by - b. 

Furthermore, the unitary operators T (b,a) form a group 
with the mUltiplication law 

T(b,a)T(b ',a') = T( T/(a)b + aT/(a')b ' ,aa')' (2.5) 
T/(aa') 

Our ultimate goal is to characterize all possible g-invar
iant *-products on phase space W. It follows from (1.9) that 
an invariant Wigner correspondence IF-that is, a g-invar-
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iant Wigner distribution 7f·(. )-is sought. Once an invariant 
Wigner correspondence is established, we then obtain the *
representation associated with the unitary representation of 
the group. The *-representation satisfies the invariance con
dition (1.10), and the Wigner distribution 7/'(·) satisfies (1.4). 
The scheme for constructing a g-invariant product is there
fore as follows. All invariant Wigner distributions 7/l) are 
first obtained by solving (1.4); these yield, by means of (1.2), 
all *-represenatations that satisfy (1.11). All possible g-invar
iant *-products are then constructed with the help of (1.8). 

B. Invariant Wigner distribution 

We now seek a characterization of all Wigner maps 7r 
that are invariant with respect to the affine Lie algebra g in 
the sense of (1.4). We impose (1.4). First, let U = L I and 
U = SI with the integral kernel of LI in (2.2) given by 

Ker LI(k,K) = ifz( ~ + k ~ )O(k - K). 
2 ak 

It then follows from (1.4) that 

(s 2 ~ + k ~ + K ~ ) 7r(k,K;S) = 7r(k,K;S), 
aS2 ak aK 

(2.6) 

which implies that 7r(k,K;S) is a homogeneous function of 
degree ( - 1) in k,K'SI' and S2' Next, taking U = L2 and 
U = S2 with the integral kernel of L2 in (2.2) given by Ker 
L 2(k,K) = ko(k - K) yields 

ifz5 2 a 7r(k,K;S) = (K - k ) 7r(k,K;S ). (2.7) 
aS I 

The general solution to (2.6) and (2.7)-that is, the general 
invariant Wigner distribution-is of the form 

7r(k,K;S) = 7r(k,K;S2) exp[(K - k )s/ifz52]' (2.8) 

in which 7r, by virtue of (2.6), is a homogeneous function of 
degree ( - 1) in k,K, and S2' Recall that the usual Wigner 
distribution is of the form (2.8) with 
7r(k,K;S2) = 0[52 - (k + K)/2]. We have thus arrived at 

Proposition 1: If 7r is an invariant Wigner correspon
dence, then the Wigner distribution 7r(.) is given by (2.8). 

c. *-Representation 

We now apply (1.11) to the Lie algebra g of the affine 
group G. By virtue of(2.3) and the arbitrariness of Yin g, we 
obtain from (1.11) the following system of differential 
equations: 

( X2 ~ - S2 ~ )EXP,;(X) = ° ax aS2 
(2.9) 

( 
I a a ) x -2- S2 - Exp,;(X) =0, 

ax aS I ' 

in which x I = In a and x 2 = b. The g-invariance condition 
on a *-product on W thus requires that the *-representation 
XI---+ Exp (X) satisfy (2.9). The general solution to (2.9) is 
clearly of the form 

Exp,;(X) =: [T,/(X)](s) =f(xl,xls i +X
2S2), (2.10) 

in whichxlSI + X 2S2 = In aSI + bs2 • From here on we shall 
use X and (b,a) interchangeably. 
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We now relate the generality off (x I ,XISI + X 2S2 ) to the 
arbitrariness of the function 7/'(k,K;Sz) in the Wigner distri
bution 71"'(-) by 

Proposition 2: Let (b,a)1---+ T (b,a) be the unitary represen
tation (2.4) of the affine group G and Wthe orbit of the coad
joint action of its Lie algebra g in the dual g*. Then associat
ed with T(b,a) is the *-representation EXPi: (b,a), evaluated at 
SE W, which is given by -

Exp,;(b,a) = : [T(b,a):;/] (S) 

= fdsexP[17(aHlnaSI + bs2)S/ifz]7r(s,a), (2.11) 

in which 7r is a distribution on R, S = (SI,S2) with S2 > 0, 
and - 00 < SI < 00. 

Proof By virtue of (1.2), 

[T(b,a))f](s) = f dk dK Ker T(k,K;b,a) 

Xexp[(K - k)s l/ifz52] 7r(k,K;S2)' 
(2.12) 

in which the invariant Wigner distribution 7r(.) in (2.8) has 
been used. From (2.1) it follows that 

Ker T(k,K;b,a) = al /2 exp[17(a) bk lifz]o(ak - K). 

Substitution ofKer T(k,K;b,a) in (2.12) leads, with a change 
of integration variables (kl---+ S = k IS2'~ 1T = K/S2 ) and the 
use of the homogeneity of degree ( - 1) of 7r, to the follow
ing expression for [T(b,a)'lr]IS): 

[T(b,a))f ](S) = f ds d1T al/2 exp[ rj(a)bszS lifz] 

xexp[(1T - S )SI/ifz] 0 (as - 1T)7r(S,1T) 

which, upon integration, yields (2.11). 
It is obvious from (2.11) that Expg(b,a) is of the form 

(2.10). Equation (2.11) provides a general expression of 
Expg(b,a); an explici! expression of Expg (b,a) depends on a 
particular form of 7r( S,a). If we employ the usual Wigner 
distribution, namely, 

7r(k,K;S) = exp[(K - k )s/ifz52]O[S2 - (k + K)/2J, (2.13) 

then a simple calculation shows that 

Expg(b,a) = al /2 exp[217(a)(ln(a)sl + bs2)/(a + l)ifz]. (2.14) 

This agrees, except for a normalization constant, with the 
result reported in Ref. 21, in which Weyl quantization is 

I 

extended to the metaplectic algebra h l *( E!1 sp(/,R)) and the 

Moyal product is used. 
Notice that, like (2.11), Expg(b,a) in (2.14) is in the form 

of (2.10). Thus, in effect, we have two independent deriva
tions of the general form of the *-representationX 1---+ Exp(X): 
one by means of (2.9) and the other via (2.11). 

D. Integral representation of invariant *-products 

The *-representation associated with a unitary repre
sentation of a group can be used to relate a function on the 
Lie algebra of the group to a function on its dual. 22 Let u be a 
function on g. The *-representation (b,a)1---+ Exp(b,a) associ
ated with the unitary representation (b,a)t---+ T (b,a), evaluated 
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at SE W, allows us to define a function u on g* by 

u(S) = j dp(b,a) u(b,a) Expg(b,a), (2.15) 

in which dp(b,a) is the Lebesgue measure on g, and Exp is 
assumed to act on the whole algebra g. Equation (2.15) is a 
type of generalized Fourier transform: u is said to be the Exp 
transform of U, and u is the inverse Exp transform of u. 

Recall that the Wigner symbols T(b,a)r; = Exp(b,a) 
form a group under *-multiplication, which is homomorphic 
to G. The group *-multiplication law is expressd by, via (2.5), 

Exp(b,a)*Exp(b ',a') = EXP( 1/(a)b + 1/(a')ab ' ,aa')' (2.16) 
1/(aa') 

We now show that the Exp transform (2.15) can be used, 
with the help of(2.16), to obtain an integral representation of 
invariant *-product for the affine group. 

By virtue of the Exp transform (2.15) and the group *
multiplication law (2.16), we obtain 

(u*u)(S) = j dp(b,a) dp(b ',a') u(b,a) v(b 'a') 

E (
1/(a)b + 1/(a')ab ' ') X xPs ,aa , 

1/(aa') 
(2.17) 

in which u, u are functions on g* and U, v their inverse Exp 
transforms, which are functions on g. 

The arbitrariness of ii'(-) in (2.11) makes it impossible 
to obtain the inverse Exp transforms u and v from (2.15). 
Equation (2.17) is therefore considered to be the general inte
gral representation of all invariant *-products on W for the 
affine group. Before we obtain a specific invariant *-product 
that corresponds to a particular choice of fj'(.), let us sum
marize the general result thus far obtained in the following 
proposi tion: 

Proposition 3: Let (b,a)~ Exp(b,a) in (2.11) be the *
representation of the affine group associated with the uni
tary representation (b,a)t--+ T(b,a) in (2.1) and Coo functions 
on Wbe expressible as the Exp transforms in (2.15). Then the 
general integral representation of all invariant *-products on 
phase space W is given by (2.17). 

We now show that (2.17) reduces to, with the use of the 
usual Wigner distribution (2.13), the integral version23 of the 
Moyal product. A simple calculation, using (2.15), (2.14), 
and dp(b,a) = da db /a (the right-invariant measure), shows 
that the inverse Exp transform u(b,a) may be obtained from 

u(b,a) 

=a t12 jds u(s)exp [ -21/(a)(lnaSt +bstl/(a+ l)iliJ, 

(2.18) 

where ds is the Liouville measure on W. 
Substitution of (2.18) for u and v in (2.17), followed by 

integration, leads, with the help of a change in the integra
tion variables, to 

(u*u)(S) = j dS' dS" u(s + S ')u(S + S ")exp[2u>(s ',S ")/iIiJ, 

(2.19) 

in which S' = (St',S2'),S" = (St",S/), dS' = dS t 'ds2'/S2', 
ds" = dS1 "ds2" /S2'" and w(s ',S ") is defined by 
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,.,(i:' , £-") -. St' S" St" S' 
UJ ~ '!> - • -. 2 - -. • 

S2' S/ 2 
This is exactly of the form of the integral representation of 
the Moyal product. As a matter of fact, with S, = pq and 
S 2 = P we recover from (2.19) the integral version of the 
Moyal product on phase space W = R XR. We have thus 
proved 

Proposition 4: Let the invariant Wigner map correspond 
to the invariant Wigner distribution in (2.13), the Wigner 
symbol of unitary operator T(b,a) in (2.4) be given by (2.14), 
and C co functions on W be expressible by the Exp transform 
(2.15). Then the Moyal product is an invariant *-product for 
the affine group and is expressed by the integral representa
tion in (2.19). 

3. CONCLUDING REMARKS 

In the realm of *-quantization, quantizing a physical 
system of a known dynamical Lie group really means con
structing all possible invariant *-products for the group. In 
this work we have demonstrated a systematic method of con
structing invariant *-products. It involves, mainly, charac
terizing all possible invariant Wigner maps, identifying all 
possible *-representations associated with unitary represen
tations of the group, and utilizing the group property ofExp 
(1.8) to construct invariant *-products. An invariant Wigner 
correspondence arises from the in variance condition (1.4) of 
a *-product. The general form of a *-representation may be 
derived in two independent ways: one by imposing the in
variance of the *-representation (1.9) and the other through 
the invariant Wigner correspondence (2.11). Furthermore, 
the *-representation associated with a unitary representa
tion of the group may be used to relate, by means of the Exp 
transform (2.15), functiods on the Lie algebra of the group 
and functions on its dual. This feature of the *-representa
tions plays a useful role in the construction of invariant *
products in an integral form. 

In this work we apply this systematic approach to the 
case of a single degree of freedom with the requirement of 
positive momentum, to which the affine group is relevant. 
We obtain an integral expression (2.17) for all possible invar
iant *-products. We also recover the Moyal product (2.19) 
when the usual Wigner distribution (2.13) is employed. 

We believe that this systematic method can be extended 
to other dynamic groups, hence providing a systematic way 
of quantizing physical systems. This allows us to regard *
quantization as an alternative paradigm of quantum theory. 
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The symmetry of the harmonic oscillator is dealt with in the Hamiltonian formalism. Unitary 
operators representing the symmetry are studied from this point of view. Of additional interest is 
reduction of the symmetry group SU(4) for the four-dimensional harmonic oscillator. Subspaces 
are determined from the representation spaces for SU(4) so as to give those for SO(4). 

PACS numbers: 03.65.Ca, 02.20. + b 

I. INTRODUCTION 

This article deals with a quantum system as a Hamil
tonian dynamical system which was formulated by Mars
den. 1

-
3 A purpose of this paper is to discuss the symmetry 

group of the quantum harmonic oscillator in the Hamilton
ian formalism. The harmonic oscillator is a rather simple 
system whose symmetry is well known. Of particular inter
est is then the symplectic point of view of symmetry transfor
mations, which has received little attention. Another pur
pose is to set up a quantum version of a previous paper,4 in 
which a reduction of the four-dimensional classical harmon
ic oscillator was dealt with. The results to be obtained will be 
utilized in the next paper. 5 

Section II contains Hamiltonian formalism of the quan
tum harmonic oscillator. Section III is concerned with the 
symmetry group dealt with in the Hamiltonian formalism. 
For the harmonic oscillator the usual technique of corre
spondence for constructing quantum operators from classi
cal first integrals offers no problem, as far as the Cartesian 
coordinates are concerned. Of central interest is to integrate 
those operators to give unitary operators which describe the 
symmetry of the quantum system. Section IV is devoted to 
the four-dimensional harmonic oscillator. Reduction of ei
genspaces of the Hamiltonian operator is discussed together 
with accompanying reduction of the symmetry group. 

II. HAMILTONIAN FORMALISM OF THE HARMONIC 
OSCILLATOR 

The classical harmonic oscillator is described on the 
space Rn X Rn. Let (x)' p)) be the Cartesian coordinates. In
troducing the coordinates 

z) = AX) + ip) [i = ( - 1)1/2], (2.1) 

where A is a positive constant, one can equip Rn X Rn with the 
structure of an n-dimensional complex vector space en. The 
Hamiltonian function is then written in the form 

(2.2) 

where ~ is the complex conjugate to z)' Further properties of 
the classical harmonic oscillator will be recalled when 
required. 

To formulate the quantum harmonic oscillator as a Ha
miltonian system, we have first to designate an infinite di
mensional symplectic manifold. According to Marsden,2 the 
suitable symplectic manifold and the symplectic form UJ are, 
respectively, L 2(Rn), the Hilbert space of square integrable 

complex functions on Rn
, and 

UJ (X, Y) = - Im(X,Y), (2.3) 

where X, YEL 2(Rn) and 1m (X, Y) denotes the imaginary 
part of the inner product 

(X,Y) = ( Xy dx 
JR" 

with dx the standard volume element on Rn. 

(2.4) 

The Hamiltonian function is defined as a quadratic 
form in rpEL 2(Rn) with the Hamiltonian operator ii by 

H (rp ) = ! (rp, iirp ). (2.5) 

Here ii is the self-adjoint extension of the operator deter
mined from (2.2) by the Schrodinger procedure: 
Pj = - ia/ ax). For simplicity we use the same letter for the 
operators formed from (2.1) as in the classical system. Then 
one has 

where we do not distinguish the essentially self-adjoint oper
a"tor, the right-hand sides (2.6), from its self-adjoint extension 
H. 

The time evolution is governed by Hamilton's equation 

(2.7) 

where X If is the Hamiltonian (or canonical) vector field de
termined by 

i(XH)UJ = - dH, (2.8) 

i ( ) denoting the interior product. 2 Of course, X If is defined 
in the domain of ii, dense in L 2 (Rn). Applying (2.8) to (2.5), 
we have XIf(rp) = - iiirp, so that Eq. (2.7) becomes the 
Schrodinger equation drp /dt = - dirp. 

We here make a mention of operators z) and ~. The 
usual commutation relations are given by 

[Zj' Zk ] = UDjk , and the others vanishing. (2.9) 

In what follows, instead of dwelling upon the domain of 
z) and ~, we understand that operators which are polynomi
als in z) and ~ are defined at least in the linear subspace, 
dense in L 2(Rn), 

{(POlynOmials in x)) exp( - 0 2>J)}. (2.10) 

The operators z) and ~ are then conjugate to each other. 
In the remainder of this section we review the eigen-
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spaces of ii. Let 

(2.11) 

be the normalized ground state. All of normalized eigen
functions are expressed in the form 

(2.12a) 

(2.12b) 

where Ck •... kn = (2 N k l! .. ·kn !)-1/2 andN = kl + ... + k n with 
kj a nonnegative integer and the Hk

j 
are Hermite's polyno

mials defined by 

Hdt) = (- Wexp(t 2 )(d Idt)kexp( - t 2
). (2.13) 

The functions (2.12) form a complete orthonormal system in 
L 2(Rn). Every eigenspace is assigned by the nonnegative in
teger N = kl + ... + k n : 

iirpk .... k" = A. (N + n12)rpk .... k". (2.14) 

The dimension of the eigenspace, or the degeneracy of the 
energy level A. (N + n/2) is (~ ~ In - I), a binomial coefficient. 

III. THE SYMMETRY GROUP 

We first make a brief review of the symmetry of the 
classical harmonic oscillator (see Ref. 4). A general first inte
gral is written in the form 

(3.1) 

where C = (Cjk ) is an anti-Hermitian matrix with vanishing 
trace. The Hamiltonian vector field X F associated with F 
and the symplectic (or canonical) transformations exp 
(tXFIA.) generated by XF are, respectively, given by 

a -- a 
X F = -A.ICjkZk - -A.I CjkZk --=-, (3.2a) 

aZj aZj 
-----

exp(tX FlA.): z---.exp( - tC)z, z---. exp( - tC)z , (3.2b) 

where Z = (Zj) and z = (Zj) are column vectors and exp 
( - tC)ESU(n). To quantize the classical observableF, wefol
low the Schrodinger procedure by writing out F in terms of 
Xj and Pj and substituting - ial aXj for Pr We use the sym
bolszj andZj as operators in the same way as in (2.6). Let (Ajk) 
and (Bjk ) be the real and imaginary parts of (Cjk ), 
respectively: 

(3.3) 

Then, reg~rdless of the condition tr(Cjk ) = 0, the quantized 
operator F takes the form 

F = - IBjk A. 2XjXk - ---"1 ( J2) 
2 axjaxk 

A. a 
- -:- IAjkXk -

1 aXj 
(3.4a) 

1 IC - iA. = --:- jkZkZj' + - tr(C.d 
21 2 J 

(3.4b) 

1 "'c - iA. = -2' £., jkZjZk - - tr(Cjk )· 
1 2 (3.4c) 

It is clear that F is a symmetric operator on the domain 
(2.10). Commutation relations are calculated to give 
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(3.5) 

where [C, D ]jk denote the Ij,k ) components of the matrix 
[C, D]. Here the conditions tr (Cjk ) = tr(Djk ) = ° have not 
been required, so that Eq. (3.5) is applicable to the operator 
ii + nA./2 (see (2.6)). Sinceii + nA. 12 has the unit matrix as 
the coefficient matrix, Eq. (3.5) ensures that ii and F com
mute. Moreover, Eq. (3.5) shows that the mapping 

(3.6) 

is a Lie algebra homomorphism. From now on, we assume 
t£at tr( Cjk ) = 0, so that the ordering of Zj and Zj in expressing 
F offers no problem, as is seen from (3.4). 

We turn to symplectic transformations associated with 
F. Like (2.5), to the operator Fthere corresponds a quadratic 
form in rp:F(rp) = !(rp,Frp). The Hamiltonian vector field 
X F 6 is determined by the same condition as (2.8) to be 
X F(rp ) = - iFrp. The symplectic transformations ge~erated 
by X F will be expressible by exp(tX FI A. ) = exp( - itF I A. ) as 
in (3.2b). Our problem is then to show the existence and 
property of the operator exp ( - it IF I A. ). 

Before approaching the problem, we touch upon a 
quantum version of the classical symplectic transformation 
(3.2b). Let us regard Zj and Zj in (3.2b) as operators. Then the 
linear transformation 

(3.7) 

makes no change in the canonical commutation relations 
(2.9), as exp( - tC) belongs to SU(n). In this sense the trans
formation (3.7) could be called a canonical transformation. 
However, in the Hamiltonian formalism we are not accurate 
in calling it so because canonical (or symplectic) transforma
tions must be defined on L 2(Rn) so as to leave the symplectic 
structure (2.3) invariant. 

We arc;... now going to give a definite meaning to the oper
atorexp (itF IA.). In view of(3.7) we first define a one-param
eter family of functions <Pk .... k " (t) on Rn by 

<Pk, ... d t ) = (I(etCb Zj, y .. { I(etct"n Zj" )knrpo. (3.8) 

It is clear that <Pk .... k,,(O) = Z7 .... z:nrpo and that for ~ll tER the 
function (3.8) still remains in the eigenspace for H assigned 
by N = k I + ... + k nAIf we look on Zj as formal variables, 
each eigenspaces of H is regarded as the space of homogen
eous polynomials in Zj of degree N = k I + ... + kn' in which 
the unitary group U(n) is represented unitarily and irreduci
bly.7 By Twe mean the representation.8 Then we have 

<Pk .... dt) = T(e
tc j.z7'''·Z:''rpo' (3.9) 

Let us consider the representations T's for all N at the 
same time. These define a one-parameter family of invertible 
linear mappings T t from the dense subspace (2.10) of L 2(Rn) 
onto itself. We recall that the inner product offunctions 

Z7''''Z:''rpo is calculated by using the commutation relations 
(2.9). Since the transformation (3.7) makes no change in the 
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commutation relations (2.9), the mappings T, defined above 
take the complete orthonormal system (2.12a) into another. 
Therefore, T, extends uniquely to a unitary operator U, on 
L 2(Rn). Moreover, as Tis a representation, the operators U" 
tER, form a one-parameter group. Thus we have in 
particular 

<1>k •... d t ) = U,Z7, .. ·i',."rpo' (3.10) 

In this respect the domain of H is worth noticing. 
Remark 3.1: The action of the unitary operator U, de-

composes into unitary transformations of the eigenspaces for 
H, so that U, leaves the domain of H invariant, as is readily 
verified by the spectral decomposition of H (see also Ref. 9). 

Our next task is to find the infinitesimal generator of U,. 
To this end, we calculate the derivative of <1>k .... k" (t ) with 
respect to t to obtain, after a long calculation, 

d i "'-
- <1>k k (t) = - F<1>k k (t). (3.11) dt •... " A···· " 

We notice here only that use has been made of the commuta
tion relations (2.9) together with their immediate conse
quences and of the fact that Zjrpo = O. 

From Eqs. (3.10) and (3.11) it follows that 

.!!.- UJ= .i..- FUJ (3.12) 
dt A 

for any function/in the domain (2.10). Thus we may 
conclude 10 

"'-
Theorem 3.2: The symmetric operator F extends to a 

self-adjoint operator to generate the unitary operator 

U, = exp(itF fA), (3.13) 

where F and its extension are not distinguished in notation. 
Furthermore, since U, is a unitary operator and the 

symplectic form (2.3) is defined through the inner product, 
one obtains 

Theorem 3.3: The operator U, is a symplectic transfor
mation on L 2(Rn). 

Mention should be here made of angular momentum 
operators. We discuss the unitary operator (3.}3) with the 
restriction that ~e coefficient matrix (ejk ) of F is a real ma
trix (Ajk ). Then Fbecomes, from (3.4a), an angular momen
tum operator 

"'- A a 
F= -- ~A'kXk -. (3.14) 

• ~ J a. 
I Xj 

Consider the unitary mapping/-U J For simplicity we re
strict/within the domain (2.10). From (3.12) and (3.14), U, 
satisfies 

(3.15) 

On the other hand, a one-parameter group exp (tA ) act
ing on Rn is represented by /(exp( - tA )x), xERn. Simple cal
culation yields 

d a 
- /(exp( - tA )x) = - LAjkXk -/(exp( - tA )x). 
dt aXj 

(3.16) 

From (3.15) and (3.16) we see that UJ(x) and/(exp( - tA )x) 
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satisfy the same differential equation with the same initial 
condition at t = O. Therefore, we obtain 

UJ(X) =/(exp( - tA )x), (3.17) 

which extends so as to hold for all/in L 2(Rn). 
We return to (3.7). The operators Zj and ij are consid

ered as vector fields on the domain (2.10). The mapping U, 
induces a mapping U,., the differential, lIon these vector 
fields. Because oflinearity, the differential U,. is equal to U, 
itself. II Then we have by definition 

U"Zj(rp) = U,Zj U _ ,(rp), U,.ij(rp) = U,ij U _ ,(rp) 
(3.18) 

for rp in the domain (2.10). We note here that the domain 
(2.10) is invariant under U,. We now look into the right-hand 
side of (3.18). The following holds on the domain (2.10): 

(3.19a) 

(3.19b) 

For both sides of Eqs. (3.19) satisfy as functions oft the same 
differential equation with the same initial value. Thus we see 
that (3.7) are transformations induced on vector fields Zj and 
ij by U,. From (3.18), U,. preserves the commutation rela
tions (2.9). 

So far we have obtained U, and U,. whose properties 
are summed up in 

Proposition 3.4: The operators U, and U,. leave invar
iant the symplectic structure (2.3) and the commutation rela
tions (2.9), respectively. 

We are now to discuss the property of U,. In the Hamil
tonian formalism, a symplectic transformation is called a 
symmetry transformation (or a symmetry for brevity) if it 
leaves the Hamiltonian function H invariant. We now show 
that U, is indeed a symmetry. Let exp( - itH) be th~unitary 
operator generated from the Hamiltonian operator H, which 
may be formed in the same method as applied for 

"'- A 

U, = exp(itF fA ). It is clear that exp( - itH) and Us com-
mute when they are operated with on the dense subspace 
(2.10). Because ofunitarity they commute also onL 2(Rn). On 
this account one has 

(Usrp,exp( - itH )Usrp ) = (rp,exp( - itH)rp ). (3.20) 

Differentiating (3.201 with respect to t, we getHoUs = H for 
rp in the domain of H [see (2.5) and Remark 3.1]. Thus we 
have 

Theorem 3.5: The operator U, is a symmetry of the har
monic oscillator, that is, it leaves invariant both the symplec
tic structure (2.3) and the Hamiltonian function (2.5). 

The infinitesimal version of this theorem is well known. 
That is, one has U,.H = U,HU _, = Hand [F,H] = 0, as 
long as the commutator makes sense. 

We can easily extend Theorem 3.5 to a theorem for the 
group SU(n) which acts on the basisZ7, .. ·i',."rpoof L 2(Rn), as in 
(3.8), in the form 

(LVi.1 ij'Y"{LVi"n ij.)k"rpo, (3.21) 

where (Vim )ESU(n). 
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Theorem 3.6: The group SU(n) is represented unitarily 
in L 2(K") as a symmetry group for the harmonic oscillator. 

This theorem could be interpreted as a quantization of 
the symmetry group SU(n) for the classical harmonic 
oscillator. 

IV. THE FOUR-DIMENSIONAL HARMONIC 
OSCILLATOR 

We have discussed in Ref. 4 a reduction of the energy 
surface of the four-dimensional classical harmonic oscillator 
together with the accompanying reduction of the symmetry 
group. We consider in this section a quantum analog to th~se 
reductions. An eigenspace of the Hamiltonian operator H is 
taken to be associated with an energy surface of the classical 
system, so that our problem amounts to reducing the eigen
space. The representation (3.21) fits our problem well. 

Let N3 be a 4 X 4 matrix 12 given by 

(4.1) 

By SO(2) we mean the group exp(tN3 ) acting on R4. We intro
duce the complex variables 

5 = XI + iX2' 1/ = X3 + iX4 (4.2) 

to get a concise expression ofSO(2) action on R4 = C2 as 

(S,1/)--+(eitI2s, eitI21/), tER. (4.3) 

The action (4.3) yields the orbit space 

R4/S0(2) = R3
, (4.4) 

which has a close relation to the HopffiberingS 3 IS I = S2.13 
Introduction of the local coordinates (r,(),tp,f/;) by 

5 = rI/2ei('" + 'P )/2cos(() 12), 1/ = rI/2ei('" ~ 'P )/2sin(() 12) 
(4.5) 

allows us to have a fair idea of the orbit space; the coordi
nates (r,(),tp) becomes the polar spherical coordinates in R3. 

Since N3 is real and antisymmetric, we can apply (3.14) 
and (3.16) toN3• By the helpof(4.3), we find that the operator 
(3.14) with A replaced by N 3 , denoted by N3, takes the form 

N3= ~(X2~ -XI~ +X4~ -X3~) 
2i aX I aX2 aX3 aX4 

A a 
(4.6) 

The reduction of the eigenspace of ii should be carried 
out by means of the group SO(2) so as to be compatible with 
(4.4). 

Lemma 4.1: A smooth function/on R4 is SO(2)-invar
iant if and only if 

N:/ = 0, fIx) = /( - x). (4.7) 

Proof If/is SO(2)-invariant, one has/(exp(tN3)xl = fIx) 
for any xER4. Equation (3.16) with (4.6) then gives N:/ = O. 
The remaining equation of (4.7) is evident from (4.3) with 
t = 21T. Conversely, if/satisfies (4.7), it turns out to be inde
pendent of f/; and invariant under the inversion x--+ - x. The 
inversion invariance implies that/is periodic in tp with the 
period 21T, as is seen from (4.5). Therefore/can be looked on 
as a function on R3. This is a practical idea of the reduced 
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functionj'ed on R3 determined for SO(2)-invariant functions 
by 

(4.8) 

where [x] denotes the equivalence class of x. Clearly any 
function on R3 is pulled back through the natural projection 
associated with (4.4) to an SO(2)-invariant function on R4. 
This completes the proof. 

We are now to choose SO(2)-invariant subspace of the 
eigenspace for ii. All we need is to find eigenfunctions which 

A 

satisfy (4.7). First we consider N:/ = O. An easy access to this 
equation will be given by finding a basis of the eigenspace 

A 

which diagonalizes the operator N 3• The following linear 
transformation of operators Zj and ~, which is a quantum 
analog to that employed in Ref. 4 for the classical system, 
will be successful; 

(4.9) 

W3 = ZI - iZ2' W4 = Z3 - iZ4' 

together with ..the adjoint operators wj . In terms of Wj and Wj 
the operator N3 takes the form 

N3 = A(wlwi + W2W2 - W3W3 - W4W4). (4.10) 

Since the transformation (4.9) is nondegenerate, the to
talityof 

w~'."w:'tpo with N = k I + ... + k4' (4.11) 

where the kj are nonnegative integers and N is fixed, form a 
basis of the eigenspace assigned by the nonnegative integer 
N. We operate with N3 on the basis (4.11) to obtain 

N3W~''''W:'tpo = (A 12)(k l + k2 - k3 - k4)W~''''w:'tpo' 
(4.12) 

which shows that N3 is diagonalized, as was expected. 
The condition/Ix) = /( - x) is rather easy to treat. The 

inversion x--+ - x gives rise to the inversion of the operators 
~ = Xj - alaxj , andhencethatofwj , i.e., wj--+ - wj . Thetpo 
is clearly inversion-invariant. Accordingly, we have under 
the inversion 

(4.13) 

From (4.12) and (4.13) it follows that for the eigenfunctions 
(4.11) the conditions (4.7) read 

k I + k2 - k3 - k4 = 0, 

kl + k2 + k3 + k4 = N = an even number. (4.14) 

The SO(2)-invariant eigenfunctions belonging to (4.11) are 
assigned by the exponents (k l , ... ,k4 ) satisfying (4.14). There
fore, we find from the number of solutions to (4.14) the 
following: 

Theorem 4.2: In the eigenspace of the four-dimensional 
harmonic oscillator, there exists a space of SO(2)-invariant 
eigenfunctions, whichisofdimension(N 12 + W, whereNis 
a nonnegative integer assigning the energy level. 

We proceed to a reducti.Qn of the symm~try group SU(4) 
~ting on the eigenspace of H. Recall that N3 is the operator 
Fhaving the coefficient matrix N 3• We see from (3.13) and 
(3.17) that a function/is SO(2)-invariant if and only if ex
p(itN31 A )f = /for all t. When the domain of exp(itN31 A) is 
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A "-

restricted to the eigenspace of H, the operator exp(itN31 A ) 
becomes T(exp(tN3)) introduced in (3.9), so that an eigen
function/is SO(2)-invariant if and only if 

T(exp(tN3)lf=/ (4.15) 

We have obtained in Ref. 4 the subgroup 
G = SU(2)X SU(2) ofSU(4) which commute with U(I), 
where U( 1) is the group exp(tN3) acting on C4

. Let g be an 
arbitrary element of G. Since G and U( 1) commute, one can 
conclude from (4.15) that for an SO(2)-invariant eigenfunc
tion/ one has 

T(exp(tN3))T(glf = / (4.16) 

This means that T (glfis also SO(2)-invariant. In other words, 
G acts on the space ofSO(2)-invariant eigenfunctions. The 
action of G, describable by (3.21) with (V;m leG, has a simpler 
form when the basis (4.11) is adopted because elementsgofG 
then get the simpler matrix form4 

g = (Ujk tOU (2)XSU(2), (4.17) vjkJ 
where (Ujk) and (vjk ) are 2 X 2 matrices. The operators Wj 
transform according to (4.17). Thus we have 

T(g)w~' .•. w:'q1o = (.± ujl Wj ))k' ... (.± vj4 Wj)k4q10' (4.18) 
:/=1 :/=3 

In view of(4.18) we find that inversion x- - x induces 
the operator T ( - 1), where 1 denote the 4 X 4 unit matrix. 
Clearly, - 1 is an element of (4.17). From this, for an inver
sion-invariant eigenfunction/one has T( - Ilf = land 
hence 

T( -glf= T(glf forallgeG. (4.19) 

From (4.19) we conclude that the representation of G induces 
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a representation of Gill, - 1 J = SO(4). 
Theorem 4.3: The group SO(4) acts on the space of 

SO(2)-invariant eigenfunctions for the four-dimensional har
monic oscillator. 
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Quantization of the conformal Kepler problem is defined and studied in or~er that the qua~tized 
system, which will be referred to as a conformal hydrogen atom, may assoc~ate the harmo~lc 
oscillator with the hydrogen atom. The conformal hydrogen atom shares With the harmomc 
oscillator the eigenspaces of negative energies. The four-dimensional conformal hydrogen atom 
reduces to the three-dimensional ordinary hydrogen atom. The symmetry group SO(4) of the 
hydrogen atom is brought out from the symmetry subgroup of the harmonic .oscillator. The 
conformal hydrogen atom gives an example of those quantum systems of which the 
configuration spaces are curved Riemannian spaces with nonconstant scalar curvatures and of 
which the Hamiltonian operators depend on the scalar curvatures. 

PACS numbers: 03.6S.Ca, 02.20. + b 

I. INTRODUCTION 

Quantization is a process of constructing from a gi~en 
classical system a quantum system that corresponds to It. 
However, the word "corresponding" does not here possess a 
definite meaning. According to various interpretations of 
the correspondence, various kinds of quantization have been 
proposed. The Schrodingerl and Weyl2 pr~cedures ar~ ones 
which give quantum operators correspondmg to classical 
observables. Feynman's quantization by the path integral 
method3 is another. Though these quantization procedures 
are originally applicable when the configuration space of the 
classical system is the Euclidean space with the Cartesian 
coordinates, they can be adapted so as to work in a Rieman
nian manifold. For example, Refs. 4, 5, and 6 are articles 
which contain generalizations of the Schrodinger, Weyl, and 
Feynman procedures, respectively. 

Generally speaking, Dirac's idea,7leading in this sub
ject, that quantization of a classical system is finding a repr.e
sentation of the Lie algebra of classical observables in a Hil
bert space has been realized in a series of works by van 
Hove,8 Segal,9 Souriau,1O and Kostant,1I which yield the 
geometric quantization theory. 12 

This article presents another method of quantization 
• 13 Th t' which is a quantum analogue to a prevIous paper. a IS, 

it deals with quantization of the conformal Kepler problem 
and its application to the hydrogen atom. Here quantization 
is interpreted as assigning a Hilbert space together with the 
Hamiltonian operator. That the configuration space of the 
conformal Kepler problem is actually a curved Riemannian 
space raises a question as to whether or not the curvature 
gives an additional term to the Hamiltonian operator which 
is supposed to be formed of the Laplacian and the potential. 
This paper shows that a term of the scalar curvature is added 
through a conformal transformation. Moreover, a Hilbert 
space this paper adopts is not the standard one that has the 
inner product defined with the standard volume element on 
the Riemannian space. 

alThis work was partially supported by Grant-Aid for Scientific Research 
56740018, Ministry of Education. 

This quantization will need explanation. According to 
Ref. 13, the conformal Kepler problem is closely related to 
the harmonic oscillator, and the four-dimensional confor
mal Kepler problem reduces to the ordinary three-dimen
sional Kepler problem. Quantization of the conformal 
Kepler problem should be performed in a manner consist~nt 
with the already established quantization of the harmomc 
oscillator and the Kepler problem. To meet this require
ment, the quantized Hamiltonian operator for the conformal 
Kepler problem is defined through that of the harmonic os
cillator on the following principle: The relation between the 
Hamiltonian operators of the quantum systems has an anal
ogy to that between the Hamiltonian functions of the corre
sponding classical systems. The Hamiltonian operator thus 
defined exhibits an unexpected property. The operator has a 
term depending on the scalar curvature of the configuration 
space. Moreover, it is not a symmetric operator with respect 
to the inner product defined with the standard volume ele
ment. Of course, there is an adequate inner product which 
makes the operator symmetric. In the four-dimensional 
case, the Hamiltonian operator thus obtained reduces to the 
ordinary Hamiltonian operator of the three-dimensional hy
drogen atom. 

Section II contains quantization of the conformal 
Kepler problem. The quantized system will be referred to as 
the conformal hydrogen atom. Unusual properties of the 
Hamiltonian operator are examined. Negative energy levels 
are derived by means of the relation to the harmonic oscilla
tOT- Section III is concerned with reduction of the four-di
mensional conformal hydrogen atom to the three-dimen
sional ordinary hydrogen atom. The negative energy levels 
of the hydrogen atom are brought out from that of the con
formal hydrogen atom together with their multiplicities of 
degeneracy. Section IV deals with the symmetry group of the 
conformal hydrogen atom with application to that of the 
hydrogen atom. Full use is made of the results obtained in 
Ref. 14. In Sec. V the operators which represent the (infini
tesimal) symmetry are discussed. A procedure is given for 
Obtaining the momentum and the Runge-Lenz vector for 
the hydrogen atom from the symmetry generators for the 
four-dimensional conformal hydrogen atom. 
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II. QUANTIZATION 

We start with a brief review of the conformal Kepler 
problem discussed in Ref. 13. Let (x j'P j) be the Cartesian 
coordinates in RnXRn, and R 2 = l:X]. The conformal 
Kepler problem defined in (Rn - ! 0 I) X Rn has the Hamil
tonian function and the canonical I-form 

He = 4R 2(!I p}) - k / R 2 (k a positive const), (2.1) 

(2.2) 

respectively. The configuration space is endowed with the 
conformally flat metric 

ds~ = 4R 2I dxJ. (2.3) 

Let Rn X Rn be another space with the Cartesian coordinates 
(x j' pj) on which the harmonic oscillator is defined as 
follows: 

H' = !Ip/ + (A 2/2)I x] (A a positive const), (2.4) 

(2.5) 

Of course, the configuration space R n has the standard flat 
metric l:dxJ. 

The mapping 

(Xj' Pj)--(x j , pj)=(x j , 4R2pj) (2.6) 

defines a symplectic diffeomorphism of (Rn - ! 0 I) X Rn into 
RnXRn, i.e., dOc = dO'. The Hamiltonian functions (2.1) 
and (2.4) are connected to each other as follows: 

4R 2(He +A 2/8) =H' - 4k. (2.7) 

We proceed to construct a quantum system corre
sponding to the conformal Kepler problem reviewed above. 
The quantum harmonic oscillator has the Hamiltonian 
operator 

A A2 a 
H' = l~ p~2 + -R 2 with P~ = - i-. (2.8) 

2L '2 'ax. , 
On the analogy of (2.7) we define an operator fie by 

4R 2(fie + A 2/8) = fi' - 4k. (2.9) 

Then fie has the form 

A I 1 a2 k 
He = - 2 4R 2 I ax2 - ji2' (2.10) 

, A 

In what follows we are going to examine He. A question 
arises as to whether the operator (1/ 4R 2)l:a 2/ ax] can be a 
symmetric operator or not, and as to how it is related to the 
Laplacian. To work out these questions, we begin with con
formal transformations of a Riemannian manifold. Assume 
we have conformally related Riemannian metrics such that 
their components are related by the equations 

(2.11) 

The standard volume elements dV* and dVassociated with 
(g*j k) and (gj k)' respectively, are then related by 

(2.12) 
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When applied to (2.3), Eq. (2.12) gives the standard volume 
element, denoted by d Ve , to the configuration space of the 
conformal Kepler problem: dVe = (2R )ndx, where dx de
notes dx I A ... A dXn in Cartesian coordinates. In view of 
the expression of d Ve , we are looking for a volume element in 
the form (2R )mdx, m being a positive constant, which de
fines an inner product for wavefunctions so that 
(1/4R 2)l:a2/ ax] may be symmetric. Unless stated otherwise, 
we understand that the operators to be dealt with are defined 
on the space of smooth functions of compact support on Rn. 
We denote the space by C o(Rn) as usual. 

Let/and h be in C o(Rn). Then one has 

i l-I-I a
2

h (2R t dx 
R" 4R 2 ax] 

= ( -I-I a
2

1 h (2R t dx 
JR" 4R 2 ax2 

J 

+ 4(m - 2/ (Ix j al + (n + m - 4) 1) JR" aXj 

xh (2R t -4 dx, (2.13) 

where the overbar indicates the complex conjugate. In view 
of this we employ the inner product 

(2.14) 

and denote by L 2(Rn;(2R )2dx) the Hilbert space of square 
integrable functions on R n with the inner product (2.14). In 
this Hilbert space, the operator (l/4R 2)l:aZ/ax] is symmet
ric. Thus we have 

Lemma 2.1: With respect to the inner product (2.14) the 
Hamiltonian operator fie given by (2.10) is a symmetric 
operator. 

Remark: To make description accurate, we have to ver
ify that the subspace C o(Rn) is dense in L 2(Rn;(2R fdx). 
However, the verification is easily made for n;;;. 3 by use of the 
well-known fact that the subspace C o(Rn) is dense in L 2(Rn) 
with the ordinary volume element. 

We tum to the Laplacian. As far as the conformal trans
formation (2.11) is concerned, the (x j) are understood to be 
any local coordinates of the Riemannian manifold. We in
vestigate the relation between the Laplacians.:1 * and .:1 
which are associated with (g*jk) and (gjk)' respectively. Let 
g* denote det(g* j k ), and (g*j k ) and (gi k ) denote (g* j k ) - I and 
(gj k ) - I, respectively. By definition we obtain, after a 
calculation, 

.:1*/= _1_ ~ ~ [(g*)I/Zg$jk a/ ] 
(g*)I/2 L aXj aXk 

= exp (_ n ~ 2 a ){.:1 Vexp ( n ~ 2 a)] 
_ / .:1 exp ( n ~ 2 a)} (2.15a) 

with 

(
n-2) n-2 (n-2) .:1exp -2- a = -2- exp -2-a 

( 
n - 2k ) X .:1 a + -2- I g' ajak , (2.15b) 
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whereuj = a ulax j' We here employ the formula aboutsca
lar curvatures!5 

e2uK* =K - 2(n -1l(..1 U + n ~ 2 DjkuPk). 

(2.16) 

where K * and K are the scalar curvatures formed from (g*j k) 
and (gjk)' respectively. From (2.15) and (2.16) we conclude: 

Lemma 2.2: The conformal transformation (2.11) gives 
rise to the conformal relation between the Laplacians..1 * and 
..1, 

(..1 *- n - 2 K *)f = exp (_ n + 2 U) 
4(n - 1) 2 

X(..1- n-2 K) 
4(n - 1) 

xexp ( n ~ 2 U )f. (2.17) 

We apply Eq. (2.17) to our conformally fiat metric (2.3) 
by setting g*j k = (2R )2Dj k and gj k = Dj k' Thus we obtain 

(2.18) 

where we have written..1e andKe for..1 * andK *, respective
ly, in order to indicate that the metric ds~ is concerned. 

From (2.10) and (2.18) it follows that 

fi = - 7(21 2R )In - 2112(..1e _ n - 2 K )(2R ) -In - 21/2 
e 4(n _ 1) e 

k 
(2.19) 

R2 

Equation (2.19) shows that the operator fie contains the non
vanishing scalar curvature 

Ke = - 12(n - l)(n - 2)(2R )-4, (2.20) 

which can be calculated from (2.16) with exp U = 2R. Our 
operator (2.19) should be compared in the coefficient of Ke 
with the correspondents appearing in Refs. 5 and 6; ours has 
the dimension-dependent coefficient. For n = 4 it is - i. 
The same operator was treated in Ref. 16 for n = 4. 

We now come to the following definition. 
Definition 2.3: A quantum system corresponding to the 

classical conformal Kepler problem is defined on the Hilbert 
space L 2(Rn;(2R )2dx) with the Hamiltonian operator fie 
given by (2.10) or (2.19). Below we refer to this quantum 
system as the conformal hydrogen atom. 

Our definition would require some remarks. We will 
discuss wavefunctions and m,.?mentum operators. First we 
calculate the mean value of He. For a functionf of compact 
support on Rn we have from (2.19). 

1!kf(2R f dX 

= - -..1 - K - - dV i -[ 1 ( n - 2 ) k] 
R"¢ 2 e 4(n _ 1) e R 2 ¢ e 

(2.21a) 
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with 

¢ = (2R ) - In - 2)12 f. (2.21b) 

This suggests the following: The right-hand side of (2.21a) 
has an invariant meaning if ¢ is a scalar on the Riemannian 
manifold (Rn

, d~), so thatfwhich is related to ¢ by (2.21b) 
could be thought of as a wave "density" rather than a wave
function. In spite of this consideration we employ Definition 
2.3 for convenience's sake. 

We next discuss momentum operators. Let a; be the 
one-parameter group given by 

a;: x j-+x j + t, and the others fixed. (2.22) 

For the sake of generality we write the volume element as 
(2R tdx, which was used in (2.13). Then the a; makes the 
change in the volume element, 

(2R )mdx-+[R (x)-!R (a;(x))]m(2R tdx. (2.23) 

Here we have adopted the notation R (x) = (~i)!/2, xeR", 
for convenience. Because of (2.23), the mapping 

f(x)-+[R (x)-!R (aj- '(x)) ]m12 f(aj- '(x)) (2.24) 
is a one-parameter group of unitary operators on 
L 2(Rn;(2R tdx). Whenfis smooth, this group can be differ
entiated with respect to t to give an essentially self-adjoint 
operator! 7 

~ = - {a~j + ;;j2). (2.25) 

The ~ with m = 2 is the momentum operator for our quan
tum system. As a consequence we see that - ia laxj is by no 
means a symmetric operator. 

Angular momentum operators are obtained by the 
same method. Let exp(tA ) denote an orthogonal matrix with 
A = (Aj k) an antisymmetric matrix. Since the volume ele
ment (2R tdx is left invariant under orthogonal transforma
tions, the mapping 

f(x)-+f(exp ( - tA )x) (2.26) 

defines a one-parameter group of unitary transformations on 
L 2(Rn;(2R tdx). Thus we obtain as - i times the infinites
imal generator of (2.26) the angular momentum operator 

i'LAjkxk~' (2.27) 
ax) 

which is essentially self-adjoint. 17 

In the remainder of this section we consider eigenfunc
tions for the conformal hydrogen atom. Iffis an eigenfunc
tion of fie of an negative energy, denoted by - Ii, 2/8, it be
comes an e~enfunction of fi " where fi, is defined through 
(2.9) from He: 

4R 2(fie + Ii, 2/8)f= (fi, - 4k )f= O. (2.28) 

As eigenfunctions of fi, clearlY belong to L 2(Rn;(2R )2dx), so 
does the eigenfunctionffor ~. 

Since the eigenvalues of H ' are Ii, (N + n12) with N non
negative integers, A, should be determined by 

4k = A, (N + n/2). (2.29) 

The eigenvalues of fie are therefore computed to be 
_A,2 k 2 

-8- = - 2(lN + ~n)2 . (2.30) 
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Theorem 2.4: The negative eigenvalues for the confor
mal hydrogen atom are given by (2.30), and the correspond
ing eigenfunctions are those for the harmonic oscillator with 
the eigenvalue (2.29). 

Ill. REDUCTION TO THE HYDROGEN ATOM 

In this section we discuss how the conformal hydrogen 
atom of dimension four reduces to the ordinary hydrogen 
atom of dimension three. We work in the coordinates de
fined by 

XI = Rcos [(I/! + q:; )l2]cos (012), 

X2 = Rsin [(I/! + q:; )l2]cos (012), 

X3 = Rcos [(I/! - q:; )l2]sin (012), 

x4 = Rsin [(I/! - q:; )l2]sin (012), 

and set 

Here the range of the angular variables are given by 

O';;;(I/! + q:; )12.;;;217', - 17'.;;;(I/! - q:; )12.;;; 17', 

0.;;;012';;;17'/2. 

(3.1) 

(3.2) 

(3.3) 

The volume element (2R fdx and the Hamiltonian operator 
then take the form 

(2R )2dx = Ay2sin 0 drdOdq:;dl/!, (3.4) 

All (a2 a 1 ) k He = - -- 4r- + 8- + -..:::11 - -, (3.5) 
2 4r ay2 ar r' r 

respectively, where..:::1 3 stands for the Laplacian associated 
wi th the unit sphere S 3, 

which was used in Refs. 14 and 18. By SO(2) we mean the 
one-parameter group exp(tN3), which acts on R4. In the co
ordinates (3.1) the group action is expressed as I/!-+I/! + t 
with the other coordinates fixed. The SO(2) defines the orbit 
space 

R4/S0(2) = R3
, (3.8) 

through which the coordinates (r, 0, q:; ) turn out to be the 
polar spherical coordinates of R3. By use of (3.8) we can de
fine for any SO(2)-invariant function/on R4 a reduced func
tion/red on R3: 

(3.9) 

where [xl denotes the equivalence class of x. Conversely, any 
function on R3 is pulled back to an SO(2)-invariant function 
on R4 through the natural projection associated with (3.8). 
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With N3 is associated the operator 

N3=~(X2~ -XI~ +X4~ -X3~) 
21 aX I aX2 aX3 aX4 

A a 
- i aI/!' 

(3.10) 

which is used for characterizing/red. The following was 
shown in Ref. 14. 

Lemma 3.1: A function/on R4 is SO(2)-invariant if and 
only if it satisfies N3/ = 0 and is invariant under the inver
sion X-+ - X, xER4. In terms of the coordinates (3.1),fis 
SO(2)-invariant if and only ifit is independent of I/! and peri
odic in q:; with the period 217'. 

Definition (3.9) provides us with a procedure for reduc
ing the conformal hydrogen atom. We start by considering 
the inner product ofSO(2)-invariant function/and h. By use 
of(3.4) and (3.8) we integratelh over R4 to obtain 

i!h(2R )2dx 

= r dl/! r 1 h Ay2sinO drdOdq:; 
J50(2) JR'/50(2) 

= 17' r lredh redy2sinO drdOdq:;, 
JR' 

(3.11 ) 

where we have employed the fact that SO(2) is identified with 
each orbit except the origin. From (3.11) we observe that for 
SO(2)-invariant functions the linear mapping/-+17'1I2/ red is 
an isometry from the space of all SO(2 I-invariant functions in 
L 2(R4;(2R )2dx) to the Hilbert space L 2(R3). Conversely, by 
inverting the above discussion, any function in L 2(R3

) is 
proved to be pulled back to an SO(2)-invariant function in 
L 2(R4;(2R fdx). 

We turn to reduction of fie. Let/b~ an SOi2)-invariant 
function, smooth to some extent. Since N3 and H / commute, 
as is proved easily, we obtain from (2.9) and Lemma 3.1 

N3[4R 2(fic +,.1, z/8)!] = (fi' - 4k)N3/= O. (3.12) 

As N3R 2 = 0, Eq. (3.12) implies t~at N3fie / = O. Further
more, from the definition (2.10), He is invariant under the 
inversionx-+ - x. Thus, from Lemma 3. 1, fie /proves to be 
SO(2)-invariant. The reduced operator fi ~ed is then deter
mined uniquely by 

(3.13) 

We get from (3.5), (3.6), and (3.13) the explicit form of fi~ed, 

fi~ed= _..l(~ + 2~ + ..l..:::1 z)-!5..., (3.14) 
2 ay2 r ar y2 r 

where..:::1 2 is the Laplacian associated with S 2, 

a2 a 1 a2 

..:::12 = -- + cotO- + ----. (3.15) 
ao 2 ao sin20 aq:; 2 

The fi ~ed is clearly equal to the Hamiltonian operator for the 
hydrogen atom of dimension three. 

The above discussion is summed up to give 
Theorem 3.2: The four-dimensional conformal hydro

gen atom defined in the Hilbert spaceL 2(R4;(2R )2dx) reduces 
to the three-dimensional hydrogen atom defined in L 2(R3

). 
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We next discuss eigenfunctions of fie and fi~ed. From 
(3.13) it follows that for an SO(2)-invariant eigenfunctionfof 
fie> if it exists,fred is an eigenfunction of fi ~ed. Conversely, 
the J?ullback of any eigenfunction of fi ~ed is an eigenfunction 

of He' 
Thus we see that findings SO(2)-invariant eigenfunc

tions for fie of negative energies suffices to get all the eigen
functions for fi ~ed of negative energies. Theorem 2.4 says 
that the conformal hydrogen atom shares eigenfunctions 
with the harmonic oscillator, so that we have only to show 
the existence of SO(2)-invariant eigenfunctions of fi '. Inci
dentally, the existence of such eigenfunctions is already 
proved in Ref. 14. According to it, for a nonnegative even 
number N there are (N /2 + 1)2 linearly independent eigen
functions of fi' invariant under SO(2). Thus we come to the 
following conclusion without solving the eigenvalue prob
lem fi~ed¢> = E¢>. 

Theorem 3.3: The negative eigenvalues for the Hamil
tonian operator of the three-dimensional hydrogen atom are 
given by (2.30) with N nonnegative even number and n = 4. 
The corresponding eigenspace, which is of dimension 
(N 12 + 1)2, is obtained from the SO(2)-invariant subspace of 
the eigenspace for the Hamiltonian operator of the four-di
mensional harmonic oscillator. 

We remark here that Ikeda and Miyachi 19 obtained the 
same conclusion by solving the eigenvalue problem for the 
four-dimensional harmonic oscillator. In Ref. 20 also the 
energy levels of the hydrogen atom were derived from those 
of the harmonic oscillator. 

IV. SYMMETRY GROUP 

We consider in this section the symmetry group of the 
hydrogen atom. Theorem 3.3 indicates that the symmetry 
group for the hydrogen atom may be induced from that for 
the harmonic oscillator, so that we begin with a brief review 
of the symmetry for the harmonic oscillator. 14 Let z) and z) 
denote the operators given by 

.a 
-l-, 

ax) 
(4.1) with pj = 

respectively. An infinitesimal symmetry of the harmonic os
cillator is expressed by the operator 

(4.2) 

where (e)k) is an anti-Hermitian matrix with vanishing 
trace. In particular,~hen (C) k) is N3 given by (3.7), the oper
ator (4.2) becomes N3 .&.iven by (3.10). Moreover, the unitary 
operator U, = exp (itF 1..1 ) gives a global symmetry. 

In the previous paperl8 about the classical harmonic 
oscillator we obtained 4 X 4 traceless anti-Hermitian matri
ces commutative with N 3, they were given by linear combi
nations of matrices N 3 , M a , and Ba , a = 1, 2, 3. Here Ma 
and Ba are anti symmetric real and anti-Hermitian pure 
imaginary matrices, respectively, and form the Lie algebra of 
SU(2) X.lSU(2). According to Ref. 14, the mapping (C) k) 
-(iIA )FisaLiealgebrahomomorphism. Therefore, the sub
stitution of Ma and Ba for the coefficie~ matrices (C) k) in 
(4.2) yields operators commutative with N 3, which we denote 
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by Ma and fi", respectively. The commutation relations are 
given by 

A A A 
[(iIA )M",(iIA )Mp] = (iiA )£apyMy, 

[(iIA )Ma ,(il A )~] = (i! ..1 )£apyEy, 

[(iIA )Ea,(iIA )Ep] = (iiA )£a!3yMy. 

(4.3a) 

(4.3b) 

(4.3c) 

With the above review we proceed to sy~metry of the 
hydrogen atom. Letfbe an eigenfunction of He withAthe 
eigenvalue - ..1 2 18, s~ thatfis an eigenfunction of H I by 
Theorem 2.4, and let Fbe a symmetry operator (4.2). Then 
from (2.28), with F fsubstituted forfand the commutativity 

A A 

of H' and F, we obtain 

(4.4) 

This equation means that F fis also an eigenfunction of fie, 
so that F acts on the eigenspace of fie. It is, however, to be 
noted that F and fie do not cummute in general [see (5.2)]. 

We now assume thatfis SO(2)-invariant and that F and 
N3 commute. To apply Lemma 3.1, we remark here that the 
inversion x- - x induces the mappings Zj- - z) and 
~_ - z)' Since Fand A\cQ.mmute and sinc)2Fis quadratic 
in z) and~, we see that N3F f = 0 and that F fis in~ariant 
under the inversion. Then Lemma 3.1 shows that F fis also 
SO(2)-invariant. 

Summing up the above discussion, we have 
Lemma 4.1: Assume that Fand N, commute. If/is an 

SO(2)-invariant eigenfunction of fie' s~ is F f 
By Lemma 4.1 the reduced operator Fred is defined after 

the same method as in (3.13). Furthermore, one has for an 
SO(2)-invariant eigenfunctionf 

fi ~ed F re'ired = (fie F fred = - (A 2/8)(F fIred 

= _ (..1 2 18)Fre'ired, (4.5) 

which shows that Fred acts on the eigenspace of fi ~ed. 
We have already obtained the operator Ma and Ea, 

a = 1, 2, 3, commutative with N" so that the reduced opera
tor M ~ed and E ~ed are defined a~d act on the eigenspace of 
fi ~ed. The commutation relations among them are the same 
as (4.3), since (4.3) remains as it is when a~plied to the SO(2)
invariant subspace of the eigenspace of He' Hence we have 

Theorem 4.2: The eigenspaces of fi ~ed of negative ener
gies are representation spaces of the Lie algebra ofSO(4) or of 
SU(2) X SU(2). 

We conclude this section by discussing the symmetry 
group of the hydrogen atom. In view of Theorems 3.3 and 4.2 
we have only to know which of SU(2) X SU(2) and SO(4) is a 
symmetry group acting on the space of SO(2)-invariant ei
genfunctions for fi'. Incidentally, the previous paper 14 pro
vides us with the group SO(4) acting on this space. Thus we 
get 

Theorem 4.3: The symmetry group SO(4) acts on the 
eigenspaces of fi ~ed of negative energies. 

Remark: The symmetry of the hydrogen atom, infini
tesimal (Theorem 4.2) or finite (Theorem 4.3) is described not 
in L 2(R3

) but in each eigenspace for fi ~ed, a finite-dimension
al subspace of L 2(R3

). This would deserve notice in contrast 
with the symmetry of the harmonic oscillator (see Ref. 14). 
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V. REMARKS ON OPERATORS 
'" ln the preceding section we treated the operators M a 

and B a' a = 1, 2, 3, in connection with the conformal hydro
gen atom. Strange to say, we will show that the Ba is not a 
~mmetricoperatorinL 2(R4;(2R ~dx). Furthermore,lt and 
He do not commute, though the Ba serve as infinitesimal 

A 

symmetries acting on the eigenspaces of He (see Theorem 
4.2). However, these are not contradictions, as will be seen in 
what follows. 

For a while we deal with the n-dimensional conformal 
hydrogen atom. Let (Aj k ) and (Bj k ) be anti~mme!...ric and 
symmetric real matrices, respectively. Let Land D denote 
the operators (4.2) with the coefficient matrices (Cj k) 
replaced bY",(Aj k) ~nd (iBj k), respectively, i being the imagi
nary unit. Land Dare first- and second-order differential 

'" '" oper~ors, respectively, and cover Ma and Ba , respectively. 
The L causes no problem although the volume element 
(2R )2dx is adopted. In fact, as was already seen in Sec. II [see 
(2.26) and (2.27)], [; is related to the orthogonal transforma
tion exp( - tA ), and is essentially self-adjoint. Moreover, 
since any orthogonal transformation leaves the Hamiltonian 
operator fie invariant, f and fie commute. 

We proceed to the operator 

A (2 a
2

) D=!LBjk A XjXk - -- . 
axjaxk 

A careful calculation yields the commutation relation 

[i),fie ] = R -22:,Bjk (Ojk + Xk ~ + Xj~) 
aXj aXk 

(5.1) 

X ( As2 + He). (5.2) 

This equation means that D and fie do not commute, but do 
when applied to the eigenspaces of fie. Further, becau~ of 
the volume element (2R fdx, operators a2/ axjax k and Dare 
not symmetric on a domain, for example, the space of 
smooth functions of compact support on R". Instead of 
a2/aXjaxk one can obtain a symmetric operator 

(5.3) 

where ~ are the momentum operators (2.25) with m = 2. 
However, this is not applicable to our case. 

A good way to obtain appropriate operators is suggest
ed ~ the fact that on!y when it is applied to the eigenspaces 
of He is the operator D thought of as an infinitesimal symme
try for the conformal hydrogen atom. We then replace A 2 in 
(5.1) by - sfie to get 

fi" = t2:,Bjk ( - Sxjxkfie - ~) 
axjaxk 

= !2::Bjk(R -2XjXk 2:: a: -~ + 8kR -2XjXk ). 
aXm axjaxk 

(5.4) 
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When restricted to the eigenspaces of fie, both D and Dc 
have the same action. TheDe is a good one for the conformal 
hydrogen atom. In fact, for functions / and h of compact 
support, one has 

so that with tr(Bj k ) = 0 the operator Dc is symmetric. Fur
ther, i! is easilY shown by a similar computation as in (5.2) 
that De and He commute. Thus we have 

Proposition 5.1: The operator Dc given by (5.4) with 
tr(Bj k) = 0 is a symmetric operator on C ;'(R") and is com-

A 

mutative with He on C ;'(R"). 
For convenience oflater discussion, we here give the 

commutation relation between Dc's. Let D ~ denote the op
erator (5.4) with the coefficient matrix (B lk)' Then a 
straightforward calculation results in 

(5.6) 

where the [B, B ']j k denote the components of the commuta
tor of the matrices B = (B; k ) and B ' = (B ; k ). 

We return to the case of n = 4. According to (5.4), the 
operators Ba can be modified to the svmmetric ones which 

A ~ A 

we denote by (Ba)e, a = 1, 2, 3. Let Dc be one of (Ba)e. Our 
next task is to make a r~uced gperator from De. To this end, 
we have to show that N3 and Dc commute. A stra~htfor-A 
ward calculation shows that the commutativity of N3 and Dc 
is deduced from that of the matrices N3 and B a' and from 

A A 

that of the operators N3 and He. (The latter commutativity is 
A A 

covered by the already kno~n fact that [L, He] = OJ In fact, 
from [N3' Ba] = 0 we get NJCI.BjkXjxd = 0 and [N3' I.Bjk 
a2/axjaxd = 0, wJ?ere)Bjk ) are the cO,tnpo"tlents of Ba, and 
therefore obtain [N~ Dc] = o from [N3' He] = O. Inaddi
tion, it is clear that Dc is invariant under the inversion. Thus 
we are allowed to define the reduced operator D~ed. 
Following a similar method as in (3.11), we can prove that 
D~ed is a symmetric operator. In effect, for functions/and h 
with compact support on R3 and their pullbacks/* and h * on 
R4

, respectively, we have 

1T L,S~edJh ds = L.SJ*h *(2R)2 dx 

= f J*Se h *(2R)2 dx = 1T f Jfj~edh ds, (5.7) 
JR4 JR3 

where ds denotes the standard volume element on R3. 
We are now in a position to describe the angular mo

mentum L = (La) and the Runge--Lenz vector A = (ia) for 
the hydro,$en atom. All we have to do is to find out a concrete 
form of(Ba)e in the coordinates (3.1). The calculation is too 
long to write down here. We give a part of the results: 
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AI =~(X2~ -X3~ +X4~ -XI~) = ~(sintp~ + cot()costp~ - csc ()costp~), 
I 2i aX3 aX2 aX I aX4 i a() atp ar/! 

(5.8) 

(i) =J.-[XIX3+X~4 L~ _(~ + ~)+ 8k(XIX3+X~4)] 
1 e 2 R 2 ax~ aX 1aX3 aX2aX4 R 2 

1( 4 . a2 4costp a2 ~ = - - sm() cos tp -- + ----- - 4 cos()cos tp --
2 r a() 2 r sin() atp2 ara() 

sin tp a
2 

4' () a 4 () a 4k' () ) + 4 ---- + sm cos tp - + - cos cos tp - + sm cos tp 
sin () aratp ar r a() 

1( . ()a 4. a 4 () a) a t + - - 4 sm tp cot - + - sm tp - - - cot cos tp - -, e c. 
2 ar r a() r atp ar/! 

(5.9) 

A A 

M ~ed and (B a )~ed are obtained by getting rid of the terms 
including a lar/!. We are eventually led to 

(5.10) 

(5.11) 

The final results are written in the form 

(ia )~ed = Ua, AI ~ed = - ALa. (5.12) 

The well-known commutation relations among Aa re
sult from (5.6). In fact, by (5.6) and (5.12) one has 

A A 1 A A red 
[Aa,Ap] = 4"[(BaL (Bp)e] 

= 2L([ - iBa' - iBp LkXk ~ )redfi~ed 
aX 

A A J 

= i€apyLy( - 2H~ed), (5.13) 

where we have employed the matrix commutation relations 
[Ba ,Bp] = €apyMy (recall that - i times Ba is a real sym
metric matrix). When all the operators are applied to the 
eigenspaces of fi ~ed, the commutation relations (5.13) turn 
out to be equivalent to (4.3c). 

We conclude this section with a remark on the so-called 
correspondence principle. It is a general thought that the 
momentum operator should be a symmetric first-order dif
ferential operator. However, it is not always true that multi
plications of symmetric first-order differential operators are 
the only method to make higher order differential operators. 
We now reexamine fie from the viewpoint of quantization of 
classical observables. We have endowed Rn with the metric 
(2.3) with respect to which the covariant momentums are 
pi = 4R 2Pr In terms of pi we get an alternative form of the 
classical Hamiltonian (2.1) as 

1099 

He =!Djkp;p~ -kIR 2=!(l/4R 2)LP;2_kIR 2, 

(5.14) 
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, 
where (gj k) is the in~erse of (gj k)' the metric tensor given by 
(2.3). Our operator He is obtained by substitution of 
pi = - ialaxr However, as was pointed out in Sec. II, 
- ialaxj is no longer symmetric. Ifwe employ the symmet

ric momentum operator (2.25) with m = 2, we obtain from 
(5.14) the symmetric operator 

(5.15) 

which is not applicable to our quantum system. 
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Para-Bose and para-Fermi operators as generators of orthosymplectic Lie 
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It is shown that the relative commutation relations between n pairs of para-Fermi operators and m 
pairs of para-Bose operators can be defined in such a way that they generate the simple 
orthosymplectic Lie superalgebra B (n,m). In a case of ordinary statistics this leads to mutually 
anticommuting Bose and Fermi fields. 

PACS numbers: 03.65.Fd, Il.30.Pb, 02.20.Sv, 05.30.Ch 

In this note we prove a theorem. 
Theorem: The relative commutation relations between 

n pairs efpara-Fermi operators (pF operators) and m pairs of 
para-Bose operators· (pB operators) can be defined in such a 
way that these operators generate the simple orthosymplec
tic Lie superalgebra osp(2n + 1, 2m) = B (n,m).2 

The motivation for an investigation along this line 
stems from the observation that the relative para-Bose para
Fermi commutation relations can be quite arbitrary. There
fore, it is useful to find criterion that limits the choice. One 
such reasonable requirement is that the creation and annihil
ation operators (CAO's) of the parafields generate a simple 
Lie superalgebra (LS). 

To justify the last statement, we observe that any set of 
only pF operators or only pB operators generate a simple Lie 
superalgebra. More precisely. any n pairs /.± .... J n± of pF 
operators generate under commutation and linear space op
erations the simple Lie algebra (and hence a simple LS) B n of 
the orthogonal group SO(2n + I)Y Similarly, m pairs b I± 

, ... ,b';;= ofpB operators constitute a basis in the odd part of 
the LS B (O,m) and generate it. 5 Therefore, if tP is a parafield 
describing spino! particles. any subset /t , ... Ji~ of its 
CAO's /I±' / f .. ··generate the algebra Bn , or. in other 
words. the CAO's of tP generate a simple infinite rank LS 
Boo' Similarly, the CAO's b l±' b 2± .... of a para-Bose field <p, 
i.e .• a field of integer-spin particles generate a LS B (0, 00 ). 

In view of the above properties. it is natural to assume 
that the CAO's of an arbitrary parafield <p, i.e., a field de
scribing particles with integer and half-integer spin also gen
erate a simple infinite-rank LS. 

The mathematical problem that arises is: Does there 
exist a simple LS generated by n pairs of pF operators and m 
pairs of pB operators? We shall show that such an algebra is 
B (n,m). The commutation relations among parafields were 
studied by Greenberg and Messiah.6 On the ground of some 
natural assumptions they came to the conclusion that for 
each pair of parafields there can exist at most four types of 
relative commutation relations: straight commutation. 
straight anticommutation, relative para-Bose. and relative 
para-Fermi. It turns out that the requirement of the CAO's 
to generate a simple LS leads to relative para-Fermi relations 

"'Permanent address: Institute of Nuclear Research and Nuclear Energy, 
1184 Sofia, Bulgaria. 

among the pF and pB operators. 
It is remarkable that one irreducible representation of 

B (n,m) is given with relatively anticommuting Bose and Fer
mi operators. Therefore, if one wishes to treat the ordinary 
statistics on an equal Lie superalgebraical ground, then one 
must assume that the Bose and Fermi fields anticommute. 

We now proceed to prove the theorem. 
The LiesuperalgebraB (n,m) can be defined as the set of 

all matrices of the form2 (T = transposition) 

a b u x Xl 

c _aT v Y y, 

_ vT _ uT 0 Z z. (I) 

Y; XT , ZT 
I d e 

_yT _XT _ZT / _d T 

Here a is any (n X n) matrix; band c are skew symmetric 
(n Xn) matrices; disany (m Xm) matrix; e and/are symmet
ric (mXm) matrices; u and v are (nx 1) matrices; x, x1,y,y, 
are (n X m) matrices and z, z, are (1 X m) matrices. The even 
(odd) part of B (n,m) is given with all block diagonal (resp. 
block off-diagonal) matrices in (1). 

Proposition: The algebra B (n,m) is generated from its 
odd elements 

ai-(I)=./2(eo.i -ei+m,o)] " 
- , I.} = I, ... m, 

a/(I)=~2(eo,j+m +ej,o) 
(2) 

and from its even elements 

ai- (0) = ii(e -i,O - eo, - i-n)] 
_ • i,j = I, ... n. 

a/ (0) = ~2(eo. _j + e _j_ n.O) 
(3) 

Proof Since the element ar(a) is of order a = 0, 1 for the 
Lie superalgebraical product of any two operators from (2) 
and (3), we obtain 

[a,+(O), a/tO)] =2(e_ j _ n,_i -e_i_n,_j)' 
[ai-tO), aj-(O)] = 2(e -j,-i-n - e -i,-j-n)' 
[a i - (0). a/ (0)] = 2(e _ i, _ j - e _ j _ n, _ i _ n),' 
{ai-II), a/(l)}=2(eji -ei+mJ +m), 
{a i+(I), a/(1)}=2(ej,i+m +eiJ +m), 
{a,- (I), aj- (l)}= - 2(ej+m,i + ei+ m)' 

(4) 

[ai-tO), a/II)] =2(e_ iJ +m +ej,_i_n), 
[ai-tO), aj-(l)] =2(e_ iJ -ej+m,-i-n), 
[a,+ (0). a/ (1)] = 2(e _ i- nJ+ m - ej, _ ,I, 
[a,+(O), a)-(l)] = 2(ej+m ,_i - e -i-nJ)' 
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Here and throughout the paper [x,y] = xy - yx and 
{x,yJ =xy+yx. 

One can easily check that the linear envelope of the 
elements (2)-(4) coincides with (1) .• 

Denote by [x,y] the LS productofx,y E B (n,m), which is 
a linear extension of the relation 

[x,y] = xy - ( - I)ldegx)(degy»x. (5) 

For the third powers of af(a) one obtains after some calcula
tions (throughout S, 1/, E = ± or ± 1 and a, p, r = 0,1) 

[[af(a),aJ(f3)),a~(r)) = ~(EY + r - I)DayD;k!5 - E)2aJ(f3) 

+ ~(EY - r + l)t5pyDjd1/ - E)2af(a). 
(6) 

Let ff = afrO) and bf = af(I). In the case a = p = r = 0(6) 
reduces to 

[[Jf,fJ],f~] = ~(1/ - E)2Djk ff - ~(s - EfDjk fJ, (7) 

whereas for a = P = r = 1 it gives 

[{bf,b J},b ~] = (E - S)D;k b J + (E -1/)Dkjbf. (8) 

Equations (7) and (8) are the defining relations of the para
Fermi and para-Bose operators, respectively. 1 Thus the op
erators (2) and (3) are para-Bose and para-Fermi operators, 
respectively. Hence, according to the proposition, the LS 
B (n,m) is generated by n pairs ofpF and m pairs ofpB opera
tors, which proves the theorem. 

As we have already remarked (::::is isomorphism), 

lin env. I fUfl,fZJli,j,k = I, ... ,n I ::::Bn' (9) 

linenv. I bf,{bJ,b~}li,j,k= I, ... ,ml::::B(O,m).(lO) 

Since BnnB (O,m) = 0, the LS B (n,m) is generated from the 
direct space sum B n + B (O,m) of its subalgebras B nand 
B(O,m). 

Equation (6) was derived from the defining representa
tion (I) of B (n,m). Since, however, this equation is written 
only in terms of Lie superalgebraical operations, it holds also 
in any other representation. In other words, Eq. (6) defines 
B (n,m) in an abstract way. It carries all information about 
the Lie superalgebra. Any (irreducible) representation of the 
operators arIa) extends to an (irreducible) representation of 
B (n,m) and vice versa. Therefore, the representation theory 
of the para-operators (2)-(3) coincides with the representa
tion theory for the LS B (n,m). 

In a case offield theory, when n-+oo and m-+oo and 
even if the CAO's are labelled with a continuum number of 
indices, the trilinear relation (6) remains well defined and 
determines the Lie superalgebraical products between the 
generators of an infinite rank orthosymplectic LS. 

From (6) one can immediately draw some further con
clusions about the CAO's and their representations. The set 
of all vectors 

(11) 

constitutes a basis in the Cartan subalgebra. From (6) we 
obtain 

(12) 

Therefore, in the basis (11) the creation (E = +) and annihil
ation (E = -) operators are negative and positive root vec-
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tors of the algebra, respectively. 
The Fock representations are defined in the usual for 

the parastatistics way,6 namely, with the requirement that 
the space contains a single vacuum 10) such that: (a) it is an 
eigenvector of the Cartan subalgebra H; (b) the operators 
a;- (a) annihilate 10); and (c) the whole space is a closure of 
all vectors generated from the vacuum by means of only 
creation operators. 

From these requirements one can draw consequences 
about the Lie superalgebraical properties ofthe Fock repre
sentations. Denote by N + the subspace of all positive root 
vectors and let H * be the dual to H space. From (a)-(c) it 
immediately follows that 

hIO)=A(h)IO), hEH, AEH*, 

N+IO) = 0, 

(13) 

(14) 

and hence all Fock representations are contained among the 
representations with a highest weight. 7 In a more mathemat
ical terminology, they are representations induced from the 
trivial representations of the subalgebra 

G = lin. env.{a;- (a), [aj- (f3 ),at (r)] Is = ± ,a,P,r = 0,11· 
(15) 

More explicitly the Lie subalgebra G is described in terms of 
the defining matrix representaion (1) of B (n,m) by the addi
tional conditions b = 0, U = 0, X I = 0, and e = 0. The alge
bra G contains as a subalgebra the general linear Lie superal
gebra (::::denotes an isomorphism) 

gl(n,m)::::lin. env. {[a;- (a),a/ (f3)] la,/3 = 0,11 (16) 

so that the following inclusion holds 

gl(n,m)CGCB(n,m). (17) 

Note that the Eq. (6) is satisfied if aj± (1)=a j±, 

i = 1 , ... ,m, and al (O)=aj~ m ,j = 1 , ... ,n, are assumed to be 
Bose and Fermi operators, respectively, provided that 

{af,aJ} = 0, i = I, ... ,m, j = m + 1, ... ,m + n, (18) 

i.e., the Bose and the Fermi operators mutually anticom
mute. In this case the Fock space W(m,n) has an orthon
ormed basis (with respect to the usual for the quantum me
chanic scalar product) the vectorsX 

(a 1+ Y"(a 2+ Y" ... (a r+ f' 
IPI'P2, .. ·Pr) = (p 1 I ••• 1)1/2 10), r = m + n, 

I!P2' Pro 
(19) 

where Pl, ... ,Pm are arbitrary nonnegative integers and for 
i> m,p; = 0,1. Ifm > I, the representation space W(m,n) is 
infinite-dimensional. A straightforward calculation gives 

a/ I ... ,po"') = (g; f' + ... +Pi- '(1 + g;p;)1/21 ... ,p; + 1, ... ), 
(20) 

a;-I ... ,p;, ... ) = (gjf' + "'+p, '(Pj)1/21 .. ·,pj - 1, ... ), 

whereg l =g2 = ... =gm = -gm+ 1 = ... = -gm+n = 1. 

To show that the representation of the operators 
a l± , ... ,ar± in W(m,n) is irreducible, consider two arbitrary 
vectors from the dense subspace V(m,n), which is a linear 
envelope of the basis vectors (19). Any two such vectors are 
of the form P 10) andQ 10), wherePandQarepolynomialsof 
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creation operators. Let for definiteness 

where the sum in (21) is overall (q " ... ,qr) # (p" ... ,Pr) such that 
q, + ... + qr<JJ, + ... + Pro From (20) one easily concludes 
that 

(anp' .. ·(ar- J"'Q 10) = KIO), K#O. 

Hence 

p 10) = (l/K)P(a - 1 ),,' ... (ar-)"'Q 10) 

and therefore the space W (m,n) is irreducible with respect to 
the operators a ,± , ... ,a,±. Since these operators generate a 
representation of B (n,m), we have the following. 

Corollary: Any set of mutually anticommuting Fermi 
and Bose operators generates one particular infinite-dimen
sional representation of an orthosymplectic Lie 
superalgebra. 

At the same time it is evident that the so-called normal 
type commutation relations 

[fr,b]] =0, i = 1, ... ,n, j = 1, ... ,m (22) 

of n pairs of para-Fermi operators and m pairs of para-Bose 
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operators close an irreducible representation of the semisim
pIe LS Bn + B (O,m). Therefore, in theories unifying in one 
irreducible multiplet (one super/ield) particles with integer 
and half-integer spin, it is natural to assume that within one 
mulitplet the Bose and Fermi fields anticommute, whereas 
the fields from different multiplets obey the normal commu
tation relations. 

ACKNOWLEDGMENTS 

The author would like to thank Professor Abdus Salam, 
the International Atomic Energy Agency, and UNESCO for 
hospitality at the International Centre for Theoretical Phys
ics, Trieste. 

'H. S. Green, Phys. Rev. 90, 270 (1953). 
2V. G. Kac, Adv. Math. 26, 8 (1977). Throughout the paper we use the Kac 
notation for the simple LS's. 

'S. Kamefuchi and Y. Takahashi, Nucl. Phys. 36,177 (1960). 
'c. Ryan and E. C. G. Sudarshan, Nuc1. Phys. 47, 207 (1963). 
sA. Gantchev and T. Palev, J. Math. Phys. 21, 797 (1980). 
"0. W. Greenberg and A. M. Messiah, Phys. Rev. 138, B1I55 (1965). 
7V. G. Kac, Lecture Notes Math. 676, 597 (1978). 
"T. D. Palev, J. Math. Phvs. 22, 2127 (1981). 

T. D. Palev 1102 



                                                                                                                                    

Hypervirial-perturbational treatment of the bounded hydrogen atom 
Francisco M. Fernandez and Eduardo A. Castro a) 

INIITA, Seccion Qu(mica Teorica, Sucursal4-Casilla de Correo 16, La Plata 1900, Argentina 

(Received 22 July 1981; accepted for publication 23 October 1981) 

The hydrogen atom model enclosed inside a container with impenetrable walls is studied by 
means of a method which combines hypervirial theorems and perturbation theory. From 
hypervirial relations, very useful recursion relationships for diagonal matrix elements of 
coordinate powers are given. Numerical as well as analytical results are compared with those 
given in previous works. 

PACS numbers: 03.65.Ge 

1. INTRODUCTION 

The bounded quantal systems such as atoms and mole
cules enclosed within arbitrary surfaces,I-28 and the finite 
harmonic oscillator29-42 are extremely useful for studying 
several quite different properties in various physics, chemis
try, and astronomy fields. Particular interest has been direct
ed towards the hydrogen atom enclosed in a spherical box 
with impenetrable'-7.9-'5.'7.'8,21 and semipermeable walls, 16 
or with different shapes, 19,20 during a period of many years. 

The mathematical procedures employed in the analysis 
of the hydrogen atom model enclosed inside a container with 
impenetrable walls can be classified as follows: (a) applica
tion of the confluent hypergeometric equation,1-3,6,7,13.17,21 
(b) use of the perturbation theory,4,5,10-12 (c) WKB method,3 
(d) employment of variational principles,9.'4 and (e) calcula
tion with finite elements. 15.18 

The purpose of this paper is to display the study of this 
model by means of a new method recently given by the pre
sent authors.43-45 This method has proved to be powerful 
enough for the analysis of a wide variety of models, and also 
has yielded very accurate numerical results. The procedure 
is based on a combination of the hypervirial theorems and 
the perturbation theory, and it is described in detail in Sec. 
II. It has been applied successfully to several models, such as 
(1) unidimensional harmonic oscillator under Dirichlet and 
von Neumann boundary conditions (DBC and VNBC, re
spectively),43.46 (2) multidimensional isotropic bounded os
cillator,47 and (3) the particle in an unidimensional box in the 
presence of a uniform electric field. 48 This latter model has 
been previously treated by other authors. 49.50 In each case we 
have obtained very accurate numerical results as well as suit
able analytical formulas for the coordinate powers matrix 
elements and energy perturbational corrections. 

The main advantage of our method is that perturbation
al corrections are generated from very simple recursion 
relations. 

The plan of the paper is as follows: Section II deals with 
the method to be applied, and the fundamental equations are 
deduced. Then that method is applied to the enclosed hydro
gen atom in Sec. III. Although various useful and important 
relationships are obtained in this section, the method dis-

alAny correspondence regarding this paper should be addressed to E. A. 
Castro. 

plays its full power in Sec. IV, where the enclosed hydrogen 
atom model is transformed in a bidimensional harmonic os
cillator via an appropriate change of variables. In this section 
analytical formulas are deduced which allow calculation of 
any energy level, with a remarkable exactness, in a wide 
range of values for the radius of the sphere. 

II. METHOD 

Let us consider the stationary unidimensional Schr6-
dinger equation 

-!¢" + V(x)¢ =E¢, (1) 

where we assume the normalization condition (¢ I¢ ) = 1 
and that ¢ is subjected to the DBC in the extreme points of 
the close interval [O,b], 

¢ (0) = ¢ (b ) = O. (2) 

It is deduced at once that, owing to these particular bound
ary conditions (BC), the following relations are satisfied: 

([H,XN]) = 0, (3) 

([H,xND ]) = !b N I¢ '(b W, (4) 

where D =d /dx and N = 1,2,· ... Also, from Gonda and 
Gray's results,51 we know that 

(5) 

The substitution of (5) in (4) allows us to obtain a modified 
version of the hypervirial theorems introduced by 
Hirschfelde~2 

(6) 

The expectation value of the commutator in Eq. (6) is not 
null because x N¢ '(x), does not fulfill the same BC as ¢ (x) 
does, and consequently does not belong to the domain of the 
operator H. For the particular case N = 1, we arrive to the 
well-known quantum virial theorem (VT)53,54 

([H,xD])=2(T)-(xV)'= -baE/ab. (7) 

The calculation of the commutator in Eq. (6) gives D and D 2 

terms, which can be removed by means of Eqs. (1) and (3), in 
the manner of the previously given procedure presented by 
Swenson and Danforth55 and Killingbeck. 56 It enables us to 
obtain a relationship among expectation values of the co
ordinate x functions: 

IN(N - l)(N - 2)(XN- 3 ) + 2NE (XN- I ) 

-2N(XN- I V)_(XNV') = _b NaE . 
ab 

(8) 
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In what follows, it will be enough for us to consider that V (x) 
has the form 

(9) 

The substitution of (9) in (8) gives us a set of relations among 
A N = (xN ), the eigenvalues E, and aE lab 

(N - 1)[1N(N - 2) -g2JA N-3 + 2NEA N-I 

-a(2N+k)AN+k-1 = -bNaElab. (10) 

The VT yields a new useful equation 

2E - (k + 2)aA k = - b aE lab, (11) 

which permits getting rid of aE lab in (10) and arriving at a 
set of equations which relate exclusively the diagonal matrix 
elements A Nand E, i.e., 

(N -IHlN(N - 2) -g2JA N-3 + 2NEA N-I 

- a(2N + k)A N + k -I - b N -I {2E - (k + 2)aA k j = O. 
(12) 

Expanding A Nand E power series in a, 

and applying the Hellmann-Feynman theorem (HFT) 

aElaa=A k
, (14) 

Eq. (12) is transformed into a recursion relationship that per
mits the determination of the whole set of elements A ~: 

b N N 
A~= -- - {l(N2_l)_g2jAN-2 (15) 

N + 1 2(N + I)E ° 4 ° , 
A N _ 2 - (k + 2)s b NA k 

S - 2(N + I)sE ° S - 1 

N {1(N2 1) ,.'1jA N-2 
2(N + I)E ° 4 ~ S 

+ 2N+k+2 AN + k _ _ 1_ ~ AJ_IA~_j 
2(N + I)E ° S - 1 E ° /~I j , 

s>o. (16) 

Equations (11) and (14) determine the form of the perturba
tive corrections ES(b), 

ES(b) = ES(l)b (k + 2)s - 2, 

ES(b) =A:_ db )/s, s>O. (17) 

On account of Eq. (17), it is only necessary to calculate the 
perturbation corrections for a single b value, say b = 1, 
because 

E(b)= f ES(I)asb(k+2)s-2 
s=o 

= E o( 1) + f as A : _ 1 (l)b (k + 2)s - 2 

b 2 
s=1 s 

(18) 

When a = 0, the change of variable 

t = x(2EO)I/2 

produces the following differential equation for the zero-or
der wavefunction: 

(19) 
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Therefore, ¢> O(t ) is related to the Bessel function Jc (t ) in the 
following way: 

¢>o = t 1/2Jc (t), c = (g2 + 1)1/2. (20) 

Denoting by jcn the nth zero of Je(t), we obtain from the 
BC(2) a formula for zero-order eigenvalues, 

E~n = j~nl2b 2. (21) 

The relation (21) and the normalization condition 

A ~ = ~os (22) 

are the starting point for the procedure that allows us to 
calculate the coefficients A ;'. From the foregoing deduc
tions, it is clear that Eq. (12) is valid when N> 0, while Eqs. 
(15) and (16) are valid whenN> - 1. For N = O,Eq. (6) is not 
applicable owing to 

([H,D]) = - (V') = - aE lab - !I¢> '(OW. (23) 

For the potential (9), the preceding equation has the form 

- g2A -3 + akA k -I = aE lab + !I¢> '(OW. (24) 

III. FIRST APPLICATION TO THE HYDROGEN ATOM 
INSIDE A SPHERICAL SURFACE 

Because of the spherical symmetry of the potential, the 
angular dependence of the eigenfunctions ¢> nlm for this mod
el is given by the spherical harmonics Y,!,(fJ,¢> ), while the 
radial part Rn' (r) satisfies the differential equation 

_ !!.{R" + ~R'- 1(1+I)R} _ Ze
2
R =ER, 

2m r r r 

R (ro) = 0 

(25) 

(26) 

where, from now on, to simplify the writing, we omit the 
indices n and I in the function R (r). The change of variables 

r = px, p = fz2lme2, 

transforms Eq. (25) into 

-~{f"(x)+ ~f'(x)-
2 x 

=EJ(x), 

where 

I (l + 1) fIX)} _ Z fIx) 
x 2 

X 

fIx) = R (px), E = fz2E Ime4
• 

(27) 

(28) 

(29) 

Equation (28) can be changed in such a way that it trans
forms in a form similar to that discussed in Sec. II. For such a 
purpose it is only necessary to define a new function h (x) as 
follows: 

h (x) = xf(x). 

Then, substituting (30) in (28), we arrive at 

- ~h "(x) + V(x)h (x) = Eh (x), 

V(x) = -Zlx+g2/2x2, g2=1(1+1}. 

(30) 

(31) 

(32) 

The potential (32) is a particular case of function (9) (when 
k = - 1). Besides, the solutions h (x) fulfill the Be (2) in the 
point b = X O' which assures the validity of equations de
duced in Sec. II. The recursion relationships (15) and (16) do 
not allow calculation of A s- J, and prevent a direct applica
tion of the method for the enclosed hydrogen atom model. 
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TABLE I. (,.-1), (,.), (r)2, and (T) values for Z = I, from the polynomial of Ref. 11, the VT, and Eqs. (40H42). 

XO E - (aElaxo) (,.-1) 

0.8 4.5433 15.4822 3.2991 
1.2 1.2693 4.0345 2.3028 
1.6 0.2713 1.4744 1.8163 
2.0 - 0.1250 0.6426 1.5352 
2.4 -0.3064 0.3105 1.3581 
2.8 - 0.3968 0.1599 1.2414 
3.2 - 0.4443 0.0859 1.1637 
3.6 - 0.4703 0.0479 1.1130 
4.0 - 0.4850 0.0280 1.0822 
4.4 - 0.4940 0.0179 1.0668 
4.8 -0.5001 0.0133 1.0638 
00 -0.5000 0.0000 1.0000 

However, the hypervirial theorems (12) are very useful be
cause they provide extremely important formulas for the ex
pectation values A N which are closely related to various 
physical properties. 

The substitutions a = - Z, k = - I, and b = Xo in (10) 
and (24) produce 

_g2A -3+ZA -2 =aElaxo +!If(OW, (33) 

(N - IH!N(N - 2) -g2JA N-3 + 2NEA N-I 

+ Z(2N - l)A N-2 

= - x~ aE laxo, 

and from Eq. (5) 

aEnllaxo = (- x~/2)lf :l(XOW· 

(34) 

(35) 

Equation (35) makes certain that Enl decreases for increasing 
Xo for any given pair (n,1 ). This result represents a generaliza
tion of a previous theorem for the ground state, given in Ref. 
11. When Xo (or ro) tends to infinity, aE laxo tends to zero, 
and this allows the fulfillment of the VT in its usual form, 
i.e., 

2E +ZA -I =0. 

The expansion of Ein a Z-power series is obtained from Eq. 
(18), 

E(xo) = f ES(I)zsro- 2 

s=o 
-0 A-I 

= E !1) + f ---=-=.2.. ro-2Z S
• (36) 

Xo s= 1 s 

If this expansion is cut off, then the simultaneous satisfaction 
of the VT and HFT is not possible. As an immediate conse
quence, the correct value will not be gotten when xo-oo. 
This difficulty was pointed out by Wigner4 and afterwards it 
was discussed at full length in several papers.~,8,10 It is inter
esting to notice how the employment of the VT and HFT 
leads to the exact result when the potential is considered as a 
perturbation. 

The combination of both theorems yields 

2E - Z aE laz = - Xo aE laxo' (37) 

Then, whenxo_oo, E_AZ2, with A a constant. According
ly, the variational method used in Ref. 11 must lead to the 
exact result if one takes a large enough number of terms, 
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(,.) (r)2 (T) 

0.3802 0.0276 7.8425 
0.5534 0.1261 3.5721 
0.7135 0.3560 2.0877 
0.8590 0.7605 1.4102 
0.9884 1.3670 1.0516 
1.1001 2.1486 0.8446 
1.1927 3.0383 0.7194 
1.2648 3.9236 0.6427 
1.3152 4.6602 0.5971 
1.3428 5.0931 0.5728 
1.3470 5.0877 0.5638 
1.5000 9.0000 0.5000 

because the trial function satisfies both VT and HFT. The 
method reported in Ref. 11 consists in minimizing the func
tional energy with respect to the radius of the sphere. This is 
confirmed in a plain manner, because the value of the radius 
for which the variational energy is a minimum increases with 
increasing number of terms in the trial function. 

From Eqs. (33) and (34) we can immediately deduce the 
results 

ZA -2= aE +W'(OW for 1=0, 
Jxo 

ZA -2_g2A -3= JE for 14=0, 
Jxo 

(a.uJ 

3 

2 

(r) 

o ----*. 

-1~ ___ ~_----,J~ __ ...J 
o 2.0 40 

Xo(a.u.) 

FIG. I. Matrix elements corresponding to the ground state. 
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A -I = Z -I { _ Xo aE - 2E}, 
axo 

(40) 

A I 1 { 2 aE ..2 - I } = -= - X o - + 15 A - 3Z , 
4E axo 

(41) 

A 2 I { 3 aE 2 I} = -= - X o - + (2g - 1) - 5ZA . 
6E aXO 2 

(42) 

These formulas can be verified at once through the employ
ment, for example, of the functions 2s and 3p corresponding 
to the free hydrogen atom, because they have a node at 2 a. u. 
and 6 a.u., respectively. The great importance of these rela
tionships rests upon the fact that relevant physical proper
ties, such as the diamagnetic screening constant, the polariz
a~ity, and the pressure, are proportional to A-I, (A 2)2, and 
aE laxo, respectively.2,6,13,16,21 It is only necessary to know 
the polynomial E(xo) in order to be able to calculate those 
physical magnitudes. 

In Table I and Fig. 1 we display the behavior of these 
quantities as a functions ofxo' For such a purpose, the poly
nomial presented in Ref. 11 was chosen. 

Now we will show a simple method for estimating the 
E(xo) value within an interval that contains the point xg, 
when (T)o= (T)(xg) and (V)o= (V)(xg) are exactly 
known. 

As the Hamiltonian operator satisfies the relation 

H(Z,x) = Z 2H(I,Zx), (43) 

it follows at once that 

(44) 

If (T)O and (V)O are known exactly when Z = 1 and 
X o = xg, then we can estimate E(Z,xg) in an approximate 
fashion as follows: 

E(Z,xg)9!! (T)O + Z (V)O 

and this permits us to evaluate E(I,Zxg), 

E(1,Zxg) 9!!Z -Z{ (T)O + Z (V )o}, 

so we have E (1 ,xo), where Xo = Zxg. 

(45) 

(46) 

The eigenfunctions corresponding to the free (unbound
ed) hydrogen atom which have zeros in (0, CIJ ) may be chosen 
as exact zero-order functions 4> ° (necessary for the calcula
tion). In Table II we show the values for the ground state of 

TABLE II. Ground state energy of the bounded H atom calculated from 
Eq. (46) Ixo = 2Z). 

Xo -E[Eq·(46)) - Eexact a 

1.90 0.0535 0.0541 
1.92 0.0690 0.0694 
1.94 0.0839 0.0841 
1.96 0.0982 0.0983 
1.98 0.1119 0.1119 
2.00 0.1250 0.1250 
2.02 0.1376 0.1376 
2.04 0.1497 0.1497 
2.06 0.1612 0.1614 
2.08 0.1723 0.1727 
2.10 0.1830 0.1835 

'Calculated with the polynomial given in Ref. 11. 
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the bounded hydrogen atom, using a 2s orbital of the free 
atom (xg = 2). Taking into account the rough approxima
tion involved in Eq. (45), we can properly consider that the 
results are excellent. A feasible explanation of this success of 
Eq. (46) is that the VT is satisfied 

aE aE 
-xo-(I,ZxO)= -Z-(I,Zxg)=2(T) + (V), 

axo az 
(47) 

where 

(T) = Z -Z(T)O and (V) = Z -I( V)0. 

Equations (43) and (44) are of peculiar interest because they 
permit a transformation of the Be perturbation into a Ha
miltonian perturbation. 

When the potential energy has the form (9), the general 
formula is 

E(I,a ll(k+2 Ixg) = a - 2/(2 + kIE(a,xg). (48) 

Although this procedure is restricted to the calculation of 
the energy for a small interval of known value, it possesses 
the advantage of being very simple and applicable to any 
state. 

IV. SECOND APPLICATION 

In the preceding section we have seen that a direct ap
plication of Eqs. (15) and (16) does not allow us to solve the 
problem. Generally, these equations are useful when 
k> 0.43

-48 Nevertheless, by means of an approximate treat
ment of the Schrodinger equation (28) it is possible to make 
use of our method in order to study the bounded hydrogen 
atom. Several years ago, Dingle3 showed that by a redefini
tion of the variable and the wavefunction, Eq. (28) can be 
transformed to one corresponding to a two-dimensional har
monic oscillator. 

Starting from the definitions 

q = (8IEI)1/4X I / 2 (49) 

and 

h (q) = x3/'Y(X), 

Eq. (28) changes to 

_ Ih " + gZh + aqZh = Wh, 
2 2q2 

where 

and 

E= +2Z z/W z, 

i = (21 + 1)2 - 1, 

{ ~ forE<O 
a = _! for E> O. 

(50) 

(51) 

(52) 

(53) 

Equations (49) and (52) allow us to relate Xo with qo and W, 
i.e., 

xo=q~ W /4Z. (54) 

The solutions h (q) satisfy the DBC in 0 and qo, so that we can 
apply freely the method just sketched in Sec. II, using a as 
the perturbational parameter and Was eigenvalue. The zero
order equation is gotten from Eq. (51) for a = O. In this case, 
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TABLE III. Eigenvalues for the energy levels Is, 13, and 2p corresponding to the bounded H atom through the perturbational method described in Sec. II. 

qo Xo Ea Eb EC Ed E" 
Is level (n = 1,1 = 0) 

2.1917 0.8100 4.3960 4.935 4.392 4.392 4.4025 
2.1392 0.9100 3.1608 3.427 3.159 3.159 3.1710 
2.0820 1.0100 2.3025 2.518 2.301 2.301 2.3146 
2.0385 1.0800 1.8506 2.193 1.849 1.849 1.8643 
1.9916 1.1500 1.4871 1.928 1.486 1.486 1.5023 
1.7348 1.4480 0.5400 0.500 0.540 0.540 0.5607 
1.3114 1.7110 0.1263 0.125 0.126 0.126 0.1516 
1.0815 1.7780 0.0541 0.0566 0.054 0.054 0.0806 

-0.0000 1.8352 0.000 0.0000 0.000 0.000 0.0275 
1.1264 1.9020 - 0.0556 -0.0566 - 0.056 -0.056 -0.0269 
1.2440 1.9343 -0.0800 -0.0800 -0.080 -0.080 -0.0507 
1.4142 2.0000 - 0.1250 -0.1250 - 0.125 -0.125 -0.0945 
1.7043 2.1782 - 0.2223 -0.2222 - 0.222 -0.222 - 0.1884 
1.7320 2.2005 -0.2323 - 0.2323 -0.232 - 0.232 - 0.1981 
2.0007 2.4720 - 0.3277 - 0.3273 -0.327 - 0.327 -0.2880 
2.0999 2.6000 - 0.3595 - 0.359 - 0.359 -0.3170 
2.2393 2.8070 -0.3989 -0.3965 - 0.398 - 0.398 - 0.3515 
2.2430 2.8130 - 0.3999 - 0.399 -0.3523 
2.3761 3.0413 - 0.4307 - 0.428 -0.3774 
2.4559 3.1920 -0.4463 - 0.4417 -0.443 - 0.3887 

2slevel (n = 2,1-0) 
3.2713 1.7600 4.6213 4.935 
3.2383 1.9200 3.7289 4.078 
3.2152 2.0300 3.2416 3.427 
3.1895 2.1500 2.7985 2.920 
3.1644 2.2650 2.4432 2.518 
3.1366 2.3900 2.1182 2.193 
3.0722 2.6700 1.5620 1.611 
3.0130 2.9150 1.2123 1.234 
2.8270 3.6090 0.6130 0.6143 
2.7627 3.8230 0.4983 0.5000 
2.2458 5.1110 0.1217 0.1250 
1.9221 5.5890 0.0546 0.0556 
1.6979 5.8080 0.0308 0.0312 

-0.0000 6.1523 0.0000 0.0000 
1.6035 6.4290 -0.0200 -0.0200 
1.8181 6.6110 - 0.0312 -0.0312 
1.9689 6.7850 -0.0408 - 0.0408 
1.9982 6.8240 - 0.0428 - 0.0429 
2.1731 7.0960 - 0.0554 -0.0566 
2.2360 7.2120 -0.0601 -0.0601 
2.4445 7.6770 - 0.0757 -0.0764 
2.4967 7.8150 -0.0795 -0.0800 
2.8074 8.8520 -0.0991 -0.1021 
3.1200 10.3600 - 0.1104 - 0.1165 

13 level (n = 2,1 = 1) 

2.7758 1.4100 3.7332 3.943 
2.7506 1.5500 2.9784 3.116 
2.7264 1.6800 2.4472 2.524 
2.5472 2.5280 0.8234 0.8261 
2.5057 2.6980 0.6769 0.5000 
2.0168 4.1100 0.1224 0.1250 
1.7374 4.5540 0.0549 0.0556 
1.5279 4.7700 0.0299 0.0312 

-0.0000 5.0823 0.0000 
1.4666 5.3550 - 0.0201 -0.0200 
1.6626 5.5280 -0.0313 -0.0312 
1.8042 5.6960 -0.0408 -0.0408 
1.9999 6.0000 - 0.0555 -0.0566 
2.2356 6.4970 - 0.0740 -0.0740 
2.3150 6.7010 - 0.0799 -0.0800 
2.4484 7.0890 - 0.0894 - 0.0895 
2.8299 8.5400 -0.1099 -0.1097 
3.1625 10.2350 -0.1194 - 0.1193 

'Present calculation with Eq. (68). bReference 2. cReference 12. dReference 14. "Perturbational energy up to the second order (Ref. 11). 
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TABLE IV. 2p level energy of the bounded H atom calculated via numerical integration of the Schriidinger equation. 

Xo 

E 
1.379 
3.943 

the change of variable 

z = (2W)1/2q 

1.412 
3.7332 

produces the following equation: 

1.523 
3.116 

y"(z) + (1 - .f/Z2lY(Z) = 0, y(z) = h (Z/(2W)1/2), (55) 

whose solutions are associated with Bessel functions of the 
first kind, 

y(z) = z1/2J21 + I (z). (56) 

Ifjnj is the nth zero of the ith Bessel function J j (x), the DBC 
y((2W)1/2qO) = 0 yields the zero-order eigenvalues 

W~l =j~21+ 1/2q~· (57) 

Through formula (54) we obtain the corresponding Xo value 

(XO)nl =j~21+ 1/8Z. (58) 

The quantitiesjni have been tabulated to great accuracy. 57 
For the procedure shown in Sec. II, it is possible to write W 
as a power series in qo 

W = f WS(qo = l)aSqri"- 2. (59) 
s=o 

When qo is small, W ~ WO(qo = 1 )qo- 2 is large, E tends to 
zero, and Xo tends to the values given by the formula (58). For 
these particular X o values, the energy changes sign?·3 This 
transformation, which was recently discussed by Rowley,58 
transforms the hydrogen atom model into a harmonic oscil
~tor (a = !, E < 0), or an inverted oscillator41

,42 (a = -!, 
E>O). 

The iterative resolution ofEqs. (15)and(16), withk = 2 
and b = 1, permits us to obtain without further difficulties, 
the following quantities: 

2 1 1 -...2 A o = - - -(0.75 -~), 
3 3w 

(60) 

TABLE V. Is, 2s, and 2p level energies calculated from the coth z method. 

XO E" XO 

1.9020 - 0.0556 6.4290 
1.9340 - 0.0800 6.6110 
2.0000 - 0.1250 6.7850 
2.1780 - 0.2223 6.8240 
2.2000 - 0.2322 7.0960 
2.4720 - 0.3279 7.2120 
2.6000 - 0.3595 7.6770 
2.8070 - 0.3985 7.8150 
2.8130 - 0.3995 8.8520 
3.0413 - 0.4295 10.3600 
3.1920 - 0.4442 12.3862 
5.0200 -0.4972 16.0118 
6.1270 - 0.4997 20.2502 
8.0000 - 0.5000 
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1.552 
2.9784 

1.661 
2.524 

1.682 
2.4472 

2.529 
0.8234 

£" 

Aci =~ - _2 {~-.f} 
5 15w 4 

+ - --.f (0.75 -.f) 2 {15 } 
15w2 4 ' 

(61) 

A 1 = - + -:--!0.75 -.f) - -(0.375 -.f) -2 2 {I 8 } 1 
45w 3 45 w2 

+ {~(0.375 - .f)(0.75 -.f) 
45 

1 -...2 2} 1 --(0.75 -~) -3' 
9 w 

(62) 

whereA ~ represents thes-order correction for (tI")(qo = 1) 
and w = WO(qo = 1). With these elements it is possible to 
deduce an expression for W, corrected up to the second 
order, 

W = ~ + a{~ - _1_ (0.75 - .f)}q~ 
q~ 3 3w 

+ a2 {_1_ + [~(0.75 -.f) - ~(0.375 - .f)]_1 
45w 6 45 w2 

+ [~0.375 -.f)(0.75 -.f) 
45 

- ~0.75 - .f)2]_1 }q~. (63) 
18 w3 

This formula gives the best results for small qo and large w 
values. For the purpose of determining the accuracy of (63), 
it is necessary to compare our results with those given by 
other methods. After a careful search, we found that those 
published by DeGroot and Ten Seldam2 are the most com
plete, so that we have chosen them for comparative pur
poses. Our results and those calculated in Ref. 2 for the levels 
Is, 2s, and 2p are displayed in Table III. In order to make a 
rigorous comparison, we have added the ~s (xo) values re-

Xo £'p 

- 0.0200 5.3550 - 0.0201 
- 0.0312 5.5280 - 0.0312 
- 0.0407 5.6960 - 0.0408 
- 0.0427 6.0000 - 0.0555 
- 0.0553 6.4970 - 0.0739 
- 0.0600 6.7010 - 0.0799 
- 0.0758 7.0890 -0.0893 
- 0.0797 8.5400 -0.1100 
-0.1005 10.2350 - 0.1196 
-0.1151 12.3190 - 0.1236 
- 0.1223 16.0056 - 0.1249 
-0.1248 25.000 - 0.1250 
- 0.1250 
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TABLE VI. Perturbational calculation of the Is energy level up to convergence. 

0.808900 8 
4.4080236 
1.8352464 
0.0000000 
2.601 147 1 

- 0.359 231 68 

0.9092505 
3.1662738 
1.901 923 8 

- 0.005 555 555 4 

1.009 354 2 1.079 469 I 
2.305 3970 1.852 3899 
1.934 345 6 2.000 000 0 

- 0.080 006158 - 0.125 000 0 

ported by Gray and Gonda 12 and Ludeiia. 14 Gray and 
Gonda performed the calculation with the polynomial of 
Ref. 11, which gives the ground state energy corrected up to 
the fifth order. On the other hand, Ludeiia made a diagonali
zation of the Hamiltonian in a basis set of Slater-type func
tions which are properly adapted to the Be of the problem. 
Both methods agree completely in their results for the whole 
interval of Xo values, and naturally we can consider that they 
are exact. A perusal of the third, fourth, fifth, and sixth col
umns (n = 1, 1= 0) shows that our values are better than 
those of Ref. 2, in nearly the complete range of Xo values 
studied. DeGroot and Ten Seldam's eigenvalues, calculated 
from the confluent hypergeometric equation with the help of 
the method described in Ref. 21, present appreciable errors 
for the ground state in the interval of small Xo values. This 
behavior has been pointed out before by Gray and Gonda. 12 

The eigenvalues ~s and ~p obtained by DeGroot and Ten 
Seldam are probably subject to marked errors, which pre
cludes using them for comparison with ours. 

From the zeros of the eigenfunctions 1J12s ' 1J13s ' and 1J13p 
corresponding to the free hydrogen atom, we can deduce the 
following exact values: 

£ls(1.9019) = - 0.0556, 

£1,(2.0000) = - 0.1250, 

E2P (6.0000) = - 0.0556. 

Our values are nearer to these latter values than those report
ed in Ref. 2. In order to confirm that, we show in Table IV 
the £2P results for different spherical radii calculated via 
Killingbeck's method 59 with h = 0.01. Again we can see that 
our results are better than those displayed in Ref. 2. 

It must be taken into account that the error ofEq. (63) 
increases with increasing qo values, that is to say, when Xo is 
very small, or when it is large. For these two extreme cases, 
Eq. (63) is not credible. The seventh column in Table III, 
corresponding to the Is level, contains the eigenvalue E;s (xo) 
corrected in a perturbational way up to the second order, 
considering the potential term Zr- 1 as a perturbation. 4.5.1 0-12 

1.1496208 
1.488021 7 
2.178319 

- 0.222 254 84 

1.4479307 
0.540 02280 
2.200 577 8 

- 0.232 288 71 

1.7109593 1.7780187 
0.1262907 0.054093 298 
2.472 625 6 

- 0.327 582 88 

The energy calculated in this manner is subject to large er
rors, even though Xo is relatively small. Then, we follow that 
it is wholly convenient to make the transformation proposed 
by Dingle3 before applying the perturbation theory. 

From the preceding discussion, we conclude that Eq. 
(63) yields eigenvalues for the bounded hydrogen atom with 
an acceptable exactness and for a relatively large range of Xo 

values. However, the main significance ofEq. (63) is that it is 
the first non-numerical expression presented in the current 
literature that enables us to calculate any eigenvalue for the 
bounded hydrogen atom in a wide interval of xo values. Al
though Graio has shown how to obtain the different pertur
bation corrections in a closed form, he did not obtain a 
unique non-numerical formula for all the levels. When Xo 

increases, qo also increases, and this establishes failure ofEq. 
(63) conclusively. Nevertheless, such equation renders an
other useful service because it constitutes a solid starting 
point for constructing a valid expression in the whole range 
where £<,0. Such an expression can be obtained, for exam
ple, from the method proposed by Vawter39 and recently 
discussed by the present authors in relation with the hyper
vi rial theorems.46 The method consists of representing Wn 
by means of the function 

Wn = 2n coth F(q~), (64) 

F(u) = f cj u2H 
I. 

j=O 

(65) 

Thc coefficients cj are chosen in such a way that the expan
sion of (64) in qo power series must reproduce the perturba
tional polynomial for Wn . In this work we keep only the first 
two coefficients of F(u), so that we can only adjust (63) up to 
the second order in qo (first perturbation order). In Table V 
we present results for £IS (xo), £2s (xo), and £2P (xo). It is im
mediately clear that this actual procedure gives results prac
tically identical to those obtained from Eq. (63) in the inter
val of validity of the perturbational polynomial. But, in 
addition, the correct result is obtained when XO' 

The coth z-method was initially developed for analyz-

TABLE VII. Perturbational calculation of the 2s energy level up to convergence. 

x" 1.6830292 1.862 1968 1.9823225 2.111 7885 2.234504 4 2.366536 I 2.6582054 2.910 305 2 
E 5.0536857 3.9639410 3.3993304 2.900 678 6 2.510 2275 2.1603310 1.575 908 0 1.2162686 

3.6\3 722 9 3.8284479 5.1124340 5.589240 5 5.808080 I 6.1523071 6.4289962 
0.611 369 19 0.49682044 0.12165705 0.054614547 0.030 795 925 0.0000000 - 0.019 993 993 
6.610 837 1 6.784500 4 6.8233314 7.0980763 7.2094416 7.669240 5 

- 0.031251306 - 0.040 810 217 - 0.042 802 871 - 0.055 555 555 - 0.060 116 537 - 0.758 86665 
7.804 823 7 8.806340 8 10.188698 

- 0.079 735 049 - 0.100 123 54 - 0.114 10142 
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TABLE VIII. Perturbational calculation of the 2p energy level up to convergence. 

1.4211508 
3.6743654 
4.553991 8 
0.054919 274 
6. ()()() ()()() 0 

- 0.055 555 555 

1.5597304 
2.9410485 
4.7700307 
0.029 939 697 
6.4965595 

- 0.073 980 894 

1.6888194 
2.421 597 0 
5.0883082 
O. ()()() ()()() 0 
6.700 280 9 

- 0.079 970161 

ing the unidimensional harmonic oscillator symmetrically 
bounded. 39.46 Then it was applied to multidimensional oscil
lators enclosed within spheres with impenetrable walls.47 In 
this work we have extended successfully its application to 
the bounded hydrogen atom model. Equations (15) and (16) 
can be programmed easily, and consequently it is possible to 
arrive at the desired number of perturbative corrections 
without any additional difficulty. Tables VI-VIII display 
the energies for the first three levels and for a considerable 
number of Xo values. In each case, the number of perturba
tive terms necessary to reach constancy in the last numerical 
digit was added. A comparison with the exact values 

Els (1.901023789) = --(g, 

Els (2.000000000) = -!, 
E;s(7.098076211) = --(g, 

E;p(6.000000000) = --(g 

allows us to be sure that our results are the most accurate 
existing up to now in the current literature. The method 
permits the calculation, without further difficulties, of the 
expectation values of the x powers, because 

(/Ix(N-2)/2/) = 2A N 1(8IEI)(N+ 1)/4, (66) 

(II (N-2)/2'f) AN 
x = (X(N-2)12) = 22- N_(WIZ)(N-2112. 
(/IJ) A 2 

(67) 

As a particular case, for N = 0 we obtain (11 x) , 

(lIx)=4ZIA 2W. (68) 

This last formula is very useful for determining aE laxo, 

aE - 4Z
2 

{ II} -xo-= Z(lIx) +2E= - - =+= -. (69) 
axo W A2 W 

Obviously 

aEI -Xo- =4Z2IwA~(I). 
axo q.=O 

(70) 

Equations (68)-(70) allow us to calculate the whole set of 
quantities shown in Table I and Fig. 1, and consequently, the 
physical properties mentioned in Sec. III. 

v. FURTHER DISCUSSION 

In this communication we have presented several useful 
original contributions from a theoretical as well as a practi
cal viewpoint. The method developed in Sec. II,owing to its 
great generality, permits us to treat a large number of prob
lems with a marked actual physical interest. It has already 
been applied with success in various cases,43-48 and it remains 
under study in. our laboratory. As pointed out earlier, this 
method is preferable to any other when it can be used. The 
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2.5317867 
0.82093346 
5.3554317 

- 0.020163585 
7.0876580 

- 0.089 419 86 

2.700 8620 
0.67549402 
5.527960 8 

- 0.031 255 843 
8.5338224 

- 0.11007968 

4.110 1749 
0.12241672 
5.6958978 

- 0.040 824 827 
10.2227830 

- 0.119 644 81 

Rayleigh-Schrodinger perturbational theory and the for
malism of the Green's function50 do not lead to so simple and 
general a formulation as that offered in this work. 48 Our 
method is equally useful when numerical and/or analytical 
results are desired. The direct application made to the hy
drogen atom model in Sec. III, shows that Eqs. (15) and (16) 
are of no value in this example. The same occurs for any 
potential with k < 0 [see Eq. (9)]. However, hypervirial rela
tionships are intrinsically very useful if one knows E(xo), be
cause there exist several physical properties closely related 
to the moments (r N

). For example, the expectation values 
(lIr) and (r)2 calculated in Sec. III are proportional to the 
diamagnetic screening constant and polarizability, respec
tively.2.6.13.16.21 Besides, in Sec. III we briefly displayed a 
very simple approximate method for determining E (xo) with
in an interval ofxg whenever one knows in advance (T )(xg) 
and (llr)(xg). When the kinetic and potential energies are 
known for a finite set of Xo values, such a method enables us 
to obtain E(xol for in-between points whenever the distance 
between a pair of points is small. 

Undoubtedly, the most significant contribution in this 
communication is given in Sec. IV. The substitution pro
posed by Dingle3 and recently discussed at length by Row
ley,58 transforms the bounded hydrogen atom into a bidi
mensional bounded harmonic oscillator, and it allows us to 
solve the problem by means of Eqs. (15) and (16). The two 
non-numerical expressions discussed in Sec. IV are the sole 
formulas valid for any energy level that have been published 
up to now. Besides, the ease of programming Eqs. (15) and 
(16) has enabled us to obtain excellent numerical results. 

It is necessary to recognize that our method is not re
stricted to the DBC, but is applicable to more general 
BC.43-45 Ley-Koo and Rubinstein 16 proposed the utilization 
of enclosed atoms within boxes with permeable walls for 
studying certain physical problems. Using that proposal, we 
have recently deduced the proper formulation of the VT 
when sectionally-continuous potentials are used.60 

Our actual interest is directed toward the deduction of 
appropriate hypervirial relationships and combining them 
with the perturbation theory for analyzing similar, but more 
complex, systems of physical interest, in a way similar to that 
used in this work. Results will be given in a forthcoming 
paper, which will be published elsewhere. 
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Variational principles for calculating the complex poles of Green's function are given. 
Convergence of the numerical procedure is proved. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

This note is a continuation of Ref. 1, where the follow
ing problem was considered: 

( - V2 - k 2)U = ° in fl, u\r = O. (1 ) 

Here fl is an exterior domain, r is its closed smooth bound
ary, and D = R3 \fl is bounded. Problem (1) has nontrivial 
solutions if and only if (=ift) k is a complex pole kg of the 
Green's function G (x,y,k) of the exterior Dirichlet problem. 
In Ref. 1 a stationary variational principle for resonances, 
i.e., complex poles kq, was given 

k 2 =st!(Vu,Vu)/(u,u)1. (2) 

where st is the symbol of stationary value, 

(u,v) = lim fexP( - crln r)u(x)v(x) dx, 
€-+o 

(3) 

In Ref. 1 the test functions for (2) were taken in the form 
N . 

UN = r-Iexp{ikr) I IlmI0r-J~m(n)cJmg(x), (4) 
)=0 

where n = xlx\ -I, 1)m are the spherical harmonics, cjm are 
constants, k is a parameter, and g(x);>O is a fixed smooth 
function vanishing on r and equal to 1 outside of some ball 
containing D. It was not proved in Ref. 1 that the numerical 
procedure suggested there converges. The question formu
lated in Ref. 1 concerning the justification of the numerical 
approach is still open. The purpose of this note is to formu
late another variational principle for calculating the com
plex poles kq and to prove the convergence of the numerical 
procedure. The method in Ref. 1 is similar to Ritz's method. 
The method suggested in this note is similar to Trefftz's 
method. The advantage of this method is that one deals with 
the compact operators, while in Ref. I the operator was not 
compact. Our construction is natural in the framework of 
the singularity and eigenmode expansion methods. 2 The 
convergence of the method will be proved. A result which is 
of general interest, as it seems to the author, is a construction 
of a stationary variational principle and a proof of conver
gence for a class of non-self-adjoint symmetric operators 
(B * = ff\ which occur frequently in the scattering theory. 

.iSupported by AFOSR 80024; AMS subject classification 47 A 10, 78A45, 
81F05, 35105. 

II. A VARIATIONAL PRINCIPLE 

The starting point is the following observation: k is a 
complex pole of G (x,y,k ) iff the equation 

AI = Lg(s,t,k )/(t) dt = 0, Imk < 0, 

g(s,t,k) = exp(ik Is - t I )/(41Tls - t I), (5) 

has a nontrivial solution. This observation and some conse
quences are discussed in Ref. 3. For the convenience of the 
reader let us note that 

G = g - [g(X,t,Z) a~~,z) dt, (6) 

where Nt is the unit outer normal to r at the point t. If k is a 
complex pole of G of order r one can multiply (6) by (z - k r 
and take z---+k and x = sET. This yields Eq. (5) (see Ref. 3, pp. 
290--291) with/~D. 

Let us formulate the following variational principle 

F(/)=IAII~ = min, IIIII = I, (7) 

where I lip is the norm in the Sobolev space Hp = W ~ (r), 
II III = I I I o' From the above observation it follows that (7) 
has solutions and the min is zero if k = kq, where kg are the 
polesofG (x,y,k). Ifk #kg then infll fll = I IAIII > O. Indeed,if 
there exists a sequence II In \I = 1, lAin I r-~O, then 
In ---+f, Ilfll = I, AI = 0, and therefore k = kg (see Ref. 3, p. 
291). The only point which is to be explained is the conver
gence in H: In ---+/ In Ref. 3 it is explained that A is a pseudo
differential operator of order - 1, that is, 

(8) 

Here a l,a2 > 0 are some constants, - 00 <p < 00 if re c oc, 
and the fact that k #kq was used essentially: if k #kq then 
ker A = I f AI = 01 = ! Oland A maps Hp onto Hp + I . If 
lAin I [ ........ 0 and Illn" = 1, then (8) withp = 1 shows that 
II In 11 ........ 0. This contradicts the equation II In" = 1. Therefore 

inf IAII [> ° if k =/kq • (9) 
11/11 ~ I 

Consider a numerical method for solving problem (7). 
Let I J; 1 be a basis of H, 

n 

1=/(n l= Ic)J;. (10) 
)~ I 

The necessary condition for F(/) to be minimal and 
min F(/Inl) = 0, 1I/Inll! = 1, yields: 

n 

I ajmcm = 0 1 <'J<,n, 
rn -;-0- I 

(11 ) 
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ajm =ajm(k) = (Alm,A./j), IlcjI2>0. (12) 
j= 1 

Thus 

det ajm(k) = 0 1 <'j,m<.n. (13) 

Let k ~nl denote the roots of Eq. (13). Our first result is 

Theorem 1: There exists limn~oo k~) = kq, and kq are 
the poles of Green's function G (x,y,k ). Every pole kq is a limit 
of a sequence k ~nl, where k ~nl are the roots of (13). Conver
gence is uniform in q for any finite interval 1 <.q<.Q. 

Proof We will prove that: (i) Eq. (13) has roots in the 
circle I k - kq I < e for any fixed e> 0 however small if 
n > n(e) is large enough. (ii) Ifn > n(e) and there are no points 
kq in the circle Ik - zl <e then Eq. (13) has no roots in the 
circle I k - zl < e. An important part of the proof is the re
duction of the problem to the problem with the operator 
1+ T(k), where T(k) is compact. 

Let us fix e> 0 such that in the circle [k: Ik - kq I < el 
= K€ there are no other poles. The operator A = A (k ) can be 
written as 

A (k) = Ao[1 + T(k)], 

where 

Ao = A (0), A ~ = Ao > 0 III H = L 2(T), 

Aol= f Idt , 
Jr 41Trst 

and 

T(k) = A 0- 1 [A (k) - Ao]' 

The operator Ao is a bijection of Hp onto Hp + 1 ; 

(14) 

( IS) 

(16) 

b,l/lo<.IAo/l,<.b21/10,b"b2 = const>0, (17) 

while T(k) is compact as a map Hp_Hp (see Ref. 3 for de
tails) because A (k ) - Ao is an operator with a nonsingular 
kernel. Let us rewrite functional (7) as 

FU) = IAo(I + T)/I~ = min, 11/11 = 1. 

From (18) and (17) it follows that the problem (7) is 
equivalent to 

(18) 

FoU) = 1(1 + T)/I~ = min, 11I11 = 1. (19) 

The matrix of the system (II) can be written as 

ajm = ((I + T)lm,(I + T)./j), (20) 

where (.,.) denotes the scalar product which is metrically 
equivalent to the scalar product in H. This means that 
d t(f,I)o«f,I)<d2(f,I)o, whered t > Oandd2 are constants, 
IEll is arbitrary. In the sequel we will not discriminate be
tween (.,.) and ("')0' This is possible because ((I + T)f, 
(I + T)/) and ((I + T)f, (I + T)/)o attain their zero values 
simultaneously. The system (11) can be considered as the 
system which corresponds to the Ritz method for functional 
(19) with the test functions {./j J. This completes the reduc
tion of the original problem to the problem with the operator 
1+ T(k), where T(k) is a compact analytic-in-k operator 
function on H. To prove (i) let us assume that for a fixed e > 0 
and kq and all n there are no roots k~) ofEq. (13) in the circle 
Ik - kq I <e. The system (11) with the matrix (20) says that 

((I + T)/lnl,(1 + T)./j) = ° I <'j<.n,/In) =1=0, (21) 
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where 

jlnl = I cj./j. (22) 
j= t 

In particular, our assumption means that 
(T=T + T* + T*T,I + T= (I + T*)(I + T)), 

(/+PnT(k))/ln)=~/lnl=O, Ik-kql<e, (23) 

where Pn denotes the projection in H onto the linear span of 
[ II, ... ,/n l· Equation (23) says that I + Pn T(k ) is invertible 
in the circle I k - kq I < e. If n is large enough this implies that 
1+ T(k) is invertible in the circle Ik - kq I < e, because 
(*) III + T(k) - (I + Pn T(k )II-Oasn-oo. This is a contra
diction since I + T(kq ) is not i~vertible. Let us expla~ (*). 
We need to show that 11(1 - Pn)T II-Oasn-oo. Since T(k lis 
compact it can be written as TN + BN , where IIBNII <dN , 

dN-O as N-oo, and TN is a finite-dimensional operator. It 
is sufficient to prove that 11(1 - Pn)TNII-O as n-oo. With
out loss of generality one can assume that TN is a one-dimen
sionaloperator, TNI = (f,v)u. Then 

11(1 -Pn)TNIII = 11(1 -Pn)ulll(f,v)1 

<.ll/llllvllllu - Pnull-O as n-oo, (24) 

since Pn -I strongly. Thus the statement (i) is proved. Note 
that the orthogonality of Pn is not used in (24). In order to 
prove (ii) we suppose that for any en > 0, en-a, Eq. (13) has a 
root k Inl in the circle Ik - zl < en and show that under this 
assumption z has to be a pole of the Green's function. The 
assumption means that 

(25) 

Since 11/1n)11 = I, one can extract a weakly convergent in H 
subsequence which is denoted againjln1j1n)-'"/(-'" means 
weak convergence). Since T(k) is compact the sequence 
T(z)/ln l converges strongly in H: 

T(z)/lnl_T(k )[ 

On the other hand, 

IIT(kn) - T(z)II-0· 

From (25)-(27) it follows that 

Ilnl_f, 11I11 = I, 

and 

[I + T(z)]/= 0, 11I11 = 1. 

The proof is complete. 

III. DISCUSSION 

(26) 

(27) 

(28) 

(29) 

The variational principles (19) and (18) can be viewed as 
the least square method. Let us consider instead of(13) and 
(20) the following equation: 

det bjm(k) = O,Iq,m<.n, bjm=((1 + T(k ))Im'./j). (30) 

Arguments similar to the ones given in Ref. 3, pp. 192-193 
show that: (i) For any e> ° and kq there exists a root k ~I of 
Eq. (30). such that I kq - k ~)I < e if n > n(€). (ii) If k ~n) is a 
sequence of the roots ofEq. (30) and k~n)_kq as n-oo, then 
kq is a pole of the Green's function. Equation (30) can be 
viewed as a necessary condition for the linear system of the 
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Galerkin method for the equation (I + T(k))f = 0 to have a 
nontrivial solution. The Galerkin equation is of the form 

(31) 

where!,n) is defined in (22). The basic idea is that the poles kq 
are the points at which the operator 1 + T(k) is not inverti
ble. These points can be found by the Galerkin method, by 
minimizing functional (19) or by some other method. It is 
interesting to note that the Galerkin equation (31) can be 
obtained also as a necessary condition for the stationary vari
ational principle 

((I + T(k ))f,f) = st, Ilfll >0, (32) 

where st means stationary value. This is not true for an arbi
trary operator, but the operator B ==1 + T (k ) is a symmetric 
non-self-adjoint operator on H = L 2(F), that is 

B * = B or B (s,l) = B (l,s) [=1= B (l,S)]. (33) 

Therefore the necessary condition for (32), which can be 
written as 

(Bf,h) + (Bh,f) = 0 for all hEll, 

yields 

(34) 

0= (Bf,h ) + ( B *f ,h) = (Bf,h ) + (BJ,h). (35) 

Let h = v, where vEll is an arbitrary real-valued function. 
Then (35) says that 

O=B(j+!). (36) 

Let h = iv. Then (35) says that 

O=B(j-!). (37) 

From (36) and (37) it follows that the equation 

Bf=(/+T(k))f=O,lIfll>O (38) 

is a necessary condition for (32). 
Our aim is to show that Eq. (31) is a necessary condition 

for the problem 

(Bf,f) = st, Ilfll >0. (39) 

Let us takef = !,nJ and rewrite (39) as 
n 

I bjmcmS = st, bjm = (Bfm.fA· (40) 
}.m = I 

In general assumption (33) does not imply the equality 
bjm = bmj . Therefore the following lemma is of use. 

Lemma 1: Assume (33) and 

fj =~, j = 1,2,.··. (41) 

Then 
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bjm = bmj . (42) 

The proof is immediate. 
Proposition 1: Assume (33) and (41). Then a necessary 

condition for (40) is the system (31). 
Proof The operator B = I + T(k) satisfies (33). From 

this and Lemma 1, Proposition 1 follows. 
Remark 1: The results of Sec. III give a convergent nu

merical scheme for a stationary variational principle (32) 
with a compact operator Tsatisfying condition (33), i.e., 
symmetric non-self-adjointness. Such operators occur fre
quently in the scattering theory. A simple example is prob
lem (1). There are other examples in Ref. 4. 

Remark 2: A numerical scheme for calculating the re
sonances based on theorem 1 is as follows: (1) Calculate ma
trixajm by formula (11). (2) Find roots ofEq. (13). The corre
sponding solutions of (1) can also be calculated by this 
numerical procedure: Findfln) by formula (10) and 
ulnJ = Afln) is the approximate solution of (1). which con
verges to the exact solution of (1) as n~ 00. This exact solu
tion is of the form u = A (kq )f,f = lim fin) as n-+ 00 and lim 
here means the limit in H = L 2(F). 

Remark 3: For numerical calculations instead ofprinci
pIe (32) one should use the equivalent principle 

(A (k )f,f) = st, Ilfll > O. (43) 

The equivalence of (43) and (32) follows from the fact that the 
necessary condition for (43) is the equation 

A (k)f=Ao(1 + T(k))f= 0, IIfll >0, (44) 

which is equivalent to the necessary condition (38) for (32) 
because ker Ao = [0 J. If one takesf = fin) as in (22), then the 
analog of (30) is 

det(A (k )fm ,fj) = 0 1 <.m,j<.n, (45) 

and the convergence of the numerical procedure follows 
from the arguments given for Eq. (30). 
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If nc RV(v>2) is an exterior domain co~taining a half-space and contained in a half space, we 
prove that the wave operators W ± = s-hm exp(itH) Jexp( - itHo) are partial isometries and that 

(_± 00 

the invariance principle W ± (~ ) = W ± holds for suitable real functions ~ on R ("admissible" 
functions). Here Ho is the negative (distributional) Laplacian in L 2(RV)(v> 2); His H D or H N' the 
?ega~ive ~irichlet or Neumann Laplacians indY' = L 2(n), respectively; Jis an appropriate 
ldentificatlOn operator; and W ± (~ ) are defined as were W ± ' but with Ho and H replaced by 
~ (Ho) and ~ (H), respectively. Suppose, in addition, that n has a suitable periodicity property and 
that when H = H N it has a certain mild local compactness property. Then we prove: (1) that 
W ± are asymptotically complete, in the sense that Ran W = Jf' (H) = JrBJf' (H)' (2) ± scatt surf , 
that Jf' scatt (~ (H)) = Jf'scatt (H) and Jf'surf(~ (H)) = Jf'surf(H) for each "admissible" function~, 
and hence that W ± (~ ) are asymptotically complete in a similar sense for each such~. Here, for 
any self-adjoint operator A in 2, Jf'scatt (A) and Jf'surf(A ) are naturally defined, mutually 
orthogonal subspaces of scattering and surface states of 2, respectively. No smoothness 
assumptions on an are made in this paper. Its results entail the asymptotic completeness, in a 
physically very satisfactory sense, of wave operators describing acoustic and certain types of 
electromagnetic scattering by a very wide class of periodic surfaces. 

PACS numbers: 03.65.Nk 

1. INTRODUCTION 

In a previous paper,1 we established the existence, par
tial isometry, and asymptotic completeness (in a suitable 

sense) of the wave operators W ± = s-lim exp(itH) 
t_± 00 

XJ exp( - itHo) describing quantum-mechanical scattering 
in an exterior domain n bounded by an impenetrable period
ic surface of very general type. HereHo is the negative (distri
butional) Laplacian inJf'o = L 2(RV)(v>2), HisHD, the neg
ative Dirichlet Laplacian acting in Jf' = L 2(n ), and J is an 
appropriate identification operator. The results of Ref. 1 
provide a rigorous foundation for the theory of quantum
mechanical scattering of low-energy atoms by crystal sur
faces, modeled as impenetrable periodic surfaces. 2 

In the present paper, H will stand for either H D or H N' 

the negative Neumann Laplacian inJf', and the results here
in extend those in Ref. 1 to the case of the homogeneous 
Neumann condition on an. In addition, we establish an in
variance and an asymptotic completeness result for the wave 
operators W ± (~ ) for a class of real functions ~ on R which 
we call "admissible" (see Sec. 2), where W ± (~)aredefinedas 

were W ± ' but with Ho and H replaced by ~ (Ho) and ~ (H), 
respectively. The theorems of the present study have the 
physically important consequence that certain wave opera
tors, which describe acoustic and certain kinds of electro
magnetic scattering by a very wide class of periodic surfaces, 
are asymptotically complete in a physically natural sense. 

The organization of the paper is as follows. In Sec. 2 we 
prove Theorem 2.1, which asserts that W exist and are 
partially isometric, and that W ± = W ± (~ ) for admissible 

01 Also at the Department of Physics, Catholic University of America, 
Washington, D. C. 20064. 
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functions ~, provided only that n contains a half-space and 
is itself contained in a half-space (Property (I)). No smooth
ness assumptions on an are made in Theorem 2.1 or else
where in the paper. In the proof of this theorem, we used the 
extension mentioned in the Appendix of results of Chandler 
and Gibson. 3,4 

Theorems 3.1 and 3.2--our main results- are stated in 
Sec. 3. Assume that n is a domain with Property (I) whose 
surface is periodic in the sense of Property (II) of Sec. 3, and 
that, in addition, n has the local compactness Property (III) 
of that section, which is a mild regularity property not im
plying the smoothness of an. Then Theorem 3.1 asserts that 
Ran W ± equals Jf'scatt (H), the subspace of scattering states 
of Jf'. For any self-adjoint operator A in Jf' Jf' (A ) is a , scatt 

subspace of Jf' whose elementsf are such that exp ( - itA )fis 
evanescent when t-+ ± 00 from the intersection (if non
empty) of n with each half-space whose boundary is parallel 
to that of a half-space containing n. When combined with 
Theorems 2.1 and 3.1, Theorem 3.2 entails the following 
result: under the assumptions on n in this paragraph, the 
wave operators W ± (~ ) are asymptotically complete for ad
missible functions ~, in the sense that Ran W ("") = Jf' ± 'f' scatt 

(~ (H)) = Jf' e Jf'surf (~ (H )). If A is a self-adjoint operator in 
df', the subspace of surface states df'surf(A ) consists ofthosef 
E Jf' such that exp ( - itA )fremains "close" to an, in some 
sense, for all time. Under the latter assumptions on n, 
Theorem 3.2 also asserts that the subspaces df' scatt (~ (H)) and 
df'surf(~ (H)) are independent of the particular admissible 
function ~ considered. 

Theorems 3.1 and 3.2 are proved in Secs. 4 and 5, re
spectively, by using direct-integral techniques and methods 
related to those of Lyford.5

-
7 In particular, a version, due to 

Lyford,S of well-known theorems of Birman and Belopol's
kii9 was used in the proof of Theorem 3.1. 
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After having essentially completed the present study, 
we learned that Wilcox 10 proved the completeness of wave 
operators analogous to W ± for exterior domains in R2 with 
periodic boundaries, under conditions stronger than ours 
and by an approach different from the present one. Howev
er, important results, not obtained in our paper, are derived 
in Ref. 10 [see Remark (3) after Theorem 3.1 for more de
tailed comments on Ref. 10]. 

Remark on Notation: Let A be a self-adjoint operator in 
a Hilbert space %. The spectrum (respectively, point spec
trum) of A will be denoted by 0' (A) [respectively, 
up (A )]. The subspace of absolute continuity of % with re
spect to A will be called ~ac (A ), and ~p (A ) will denote the 
closed span ofthe eigenfunctions of A. We write Pac (A ) [re
spectively, Pp(A )] for the projection operator from % onto 
~ac(A) [respectively, ~p(A )]. The spectral measure of A 
will be denoted by E (.;A ). 

2. EXISTENCE, PARTIAL ISOMETRY, AND INVARIANCE 
OF WAVE OPERATORS FOR SCATTERING BY A 
GENERAL CLASS OF SURFACES WITH THE DIRICHLET 
OR NEUMANN CONDITIONS 

Let fl be an external domain in RY(v;;;.2) having the 
property 

(I) fl is contained in a half-space and contains a half
space. 

We will frequently denote points x E RY by (x,x y), with x 
E RY - I, Xy E R, where the coordinates are chosen so that the 
half-space I (x,Xy) E RY: Xy > ° I contains fl and so that the 
boundary Xy = ° of this half-space is at a positive distance 
fromafl. 

Let 

~0=L2(RV), ~=L2(fl). 

The basic self-adjoint operators of our theory are Ho = - Ll, 
the negative (distributional) Laplacian in ~o, and H, which 
acts in ~. Here, H denotes the familiar negative Dirichlet or 
Neumann Laplacians, HD or H N , respectively, acting as 
- Ll in their respective domains, which are defined by 

D(HD ) = L 2(Ll;fl) nHb(fl), (2.1) 

D(HN) =L 2(Ll;fl) nHI(fl) n {uEH:(Vv,Vu)n 

= (v, - Llu) n' VE H I(fl)}. (2.2) 

The notation in (2.1) and (2.2) is as follows. For each 
open subset M C RV, H I (M) and H b (M ) are the usual Sobo
levspaces,andL 2(Ll;M) = IfEL 2(M):LlfEL 2(M)!. For any 
measurable set MeL 2(Rn) (n = 1,2, ... ), we write 

("')M = ("')L'IM)' 
We will need the 
Definition: Let A, B be self-adjoint operators in the re

spective Hilbert spaces %0' %, with A having a purely ab
solutely continuous spectrum, and let /: %0-% be a 
bounded operator. We then define the wave operators 

W ± (B,A:/) = s-lim exp(itB )/exp( - itA) (2.3) 
l_±r$) 

if they exist. 
In this section, we will consider the wave operators 
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W ± = W ± (H,Ho;J), (2.4) 

where J: ~o-~ is a bounded operator defined by 

(Jf)(x) = j(xYlf(x),J~o' a.e. x = (x,Xy)Efl. (2.5) 

Here,j E C ""(R) vanishes for Xy <a < ao and equals unity for 
xy;;;.b > bo' where ao, bo, a, and b are constants such that 
O<a<ao<bo<b< 00 andafl C !(x,xy)ERY:ao<xy <bol. 

Definition: A function </> will be said to be admissible if it 
is-an extended real-valued, Borel-measurable function on R 
whose values on [0, 00 ) are all finite and is such that there 

N(¢» 

exists a finite union I (</> ) = u In(</» C R of open intervals In 
n=l 

(</> ) on each of which </> I is continuous, locally of bounded 

variation, and strictly positive. Moreover, I (</» ::J [0,(0). 
Theorem 2.1: Let fl have Property (I). Then 

(a) W ± exist as partially isometric operators with initial sets 

~ ± = {f~oj(k ) = ° for a.e. 

k = (kl, ... ky) E RYwith kySO}; (2.6) 

where/is the Fourier transform of/; 

(b) the wave operators 

W ± (</> ) = s-lim exp(it</> (H ))Jexp( - it</> (Ho)) (2.7) 
t_± 00 

exist and equal W ± for each admissible function </>. 

Remarks: (1) The assertion in part (a) ofthe theorem 
concerning the initial sets of W ± has a transparent physical 
meaning. I I 

(2) By virtue of the admissibility of </> and since Up (Ho) 
= 0, and Ho, H;;;.O, it follows that </> (Ho) and </> (H) exist as 

self-adjoint operators in ~o and~, respectively. 
(3) The obvious extension of part (b) of the theorem to 

the case when the definition of admissible function in this 
section is generalized to include functions </> whose deriva
tives can be strictly negative in some of the In (4) )'s is of no 
physical interest here. 

Proof of Theorem 2.1: (a) Let !iJ I be the set of allg's in Y 
(RY) of the form 

g(x) = gl(X)g2(Xy), x = (x,xy)ERY
, 

where the Fourier transforms gl' g2 of gl' g2 are such that 
glEC t'(RY - I \ I OJ) and g2EC t'(R\ I OJ). Using, in particu
lar, the fact that JgED (H ) for every such g and an estimate of 
Davies, 12 we conclude that 

II~Xp(itH)JeXp( - itHo)glln <constlt 1- 1
--<, 

€>O, Itl>l, gE!iJ I, 

whence, since !iJ I is dense in JY'0 and t f--+ exp(itH) 
xJ exp( - itHo)g can be shown to be a strongly continuous
ly differentiable map from R to JY' for each such g by a 
standard argument, the existence of W ± follows. The asser
tion that W ± are partially isometric with initial states JY' ± 

follows by the same arguments used earlier. 13 

(b) We remark that !iJ I has the two properties 
(i) !iJ 1 C JI(Ho); 
(ii) for all u E !iJ I' there exists a compact interval 

Ll = Ll (u) C (0,00) such that u E E (Ll;Ho)JY'o; 
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where Jt(Ho) is defined by (AI) of the Appendix. 
Properties (i) and (ii) follow easily from the definition of 

9 I and the well-known expressions for the Fourier trans
form of E (..j;H o)u. 

Now, oi,Ho) = [0,(0) is purely absolutely continuous 
and JYac(<p (Ho)) = JYac(Ho), where the second assertion fol
lows by the approach of Kato. 14 By the properties of Ho in 
the last sentence, together with (i) and (ii), and the fact that 
t f---+ exp(itH )Jexp( - itHo)u is a strongly differentiable map
ping for each u E 9 1, we may apply Theorem A.1 of the 
Appendix (with A = H o' B = H, / = J, T = (0,00), and 
9 = 9 1) and thus conclude that part (b) of the present 
lemma is true .• 

3. SCATTERING BY PERIODIC SURFACES WITH THE 
DIRICHLET OR NEUMANN CONDITIONS: MAIN 
RESULTS 

In the remaining Secs. 3-5 of this paper, we will only be 
concerned with scattering by periodic surfaces. More pre
cisely, henceforth.o will denote a domain in R V having Prop
erty (I) of Sec. 2 and the additional Properties (II) and (III) 
stated in this section (unless an explicit statement to the con
trary is made). 

(II) (Periodicity) For alII E L, (i,xv) E .o=>(i + I,xv) 
Efl,/EL. 

Here, 
v-I 

L = !IERv- I: I = I a;n"n;EZ,i = 1, ... ,v - 1 J, (3.1) 
i=1 

with I a; ) 7:: / a set of v - 1 linearly independent vectors in 
Rv - I . 

If A is a subset of R V
, we will write 

A (r) = AnlxERv:lxl <r), rER+, 

where R+ = (0,00), and 

Aa = I x = (i,xv)ERv:xv < a ), aER. 

(3.2) 

(3.3) 

Definition: An open subset A C RV is said to have the 
local compactness (LC) property for a bounded subset B C 
H I(A )ifBisprecompactinL 2(A (r))forallrER + ,i.e., ifeach 
sequence lin) C B has a subsequence lin,) such that 
lin, IL 2(A (r))) is Cauchy inL 2(A (r)) for all such r. (Notice that 
the subsequence lin, I can be chosen to be independent of r.) 

Thanks to Lemma 4.6 of Ref. 1, it is not necessary to 
assume in Theorems 3.1 and 3.2 that.o has properties other 
than (I) and (II) when H = H D • Unfortunately, it is not 
known whether this is true when H = H N' We will make the 
following assumption: 

(III) If H = H N , then.o has the LC property for all 
bounded subsets of H 1(.0 ). 

This is a very weak regularity assumption. Wilcox 15 has 
shown that (III) is true if .a has the "finite tiling" property, 
which holds for all exterior domains likely to arise in appli
cations. Wilcox's result generalizes the corresponding result 
proved by Agmon 16 for domains possessing the "segment" 
property. 

Definition: If A is a self-adjoint operator in JY = L 2(.0 ), 
we define the closed and mutually orthogonal subspaces 
JYscatt (A ) and JYsurf(A ) of scattering and surface states by 
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JYscatt (A ) = liE£": lim Ilexp( - itA )/lln. = 0, aER + I, 
l_± 00 

(3.4) 

JYsurf(A ) = liE£": lim supllexp( - itA )/lln ,no = ° I, (3.5) 
a_oo rER 

where II·IIM = II·IIL'(M)· 
This definition of surface states agrees with that ofDa

vies and Simon. 17 In view of the intuitive meaning of scatter
ing and surface states stated in the Introduction, the follow
ing definitions of completeness and asymptotic 
completeness are very natural for the exterior domain.o con
sidered here. 

Definition: Let A, B be self-adjoint operators in JY 0' JY, 
respectively, and let /: JYo~JY be a bounded operator. If 
they exist, the wave operators W ± (B,A;/) defined by (2.3) 
will be said to be complete if 

Ran W ± (B,A;/) = JYscatt (B) (3.6) 

and will be said to be asymptotically complete if, in addition 
to (3.6), 

JYscatt (B ) EI1 JYsurf(B ) = £' 

holds. 
Theorem 3.1:The wave operators W ± in (2.4) are 

complete: 

W~ W± =E±, (3.7) 

W ± W~ = Pscatt(H), (3.8) 

where E ± and Pscatt (H) are projection operators with do
mains JYo and JY, respectively, with E ± JYo = ,J¥' ± [see 
(2.6)] and Pscatt (H),J¥' = JYscatt (H). 

Theorem 3.2: (a) We have, 

,J¥'scatt (H) EI1 ,J¥'surf(H) =,J¥'. (3.9) 

(b) If <P is an admissible function, then (3.9) holds withH 
replaced by ifJ (H). More specifically, the equations 

,J¥'scatt (<p (H)) = JYscatt (H), 

JYsurf(ifJ (H)) = JYsurf(H), 

holds for each admissible <p. 
Theorems 2.1(b), (3.1), and (3.2) entail the following 
Corollary: If ifJ is an admissible function, then the wave 

operators W ± (<p (H)) are asymptotically complete. 
Remarks: (1) Theorems 3.1 and 3.2 with H = H D apply 

to the above model of quantum-mechanical scattering of 
atoms by crystal surfaces. 

(2) The above corollary implies the asymptotic com
pleteness of the wave operators W ± (<p) with ifJ (x) = Ix1 1/2, 
pertinent to acoustic scattering in R2 and R3 by suitable hard 
(Neumann) or soft (Dirichlet) periodic surfaces, and electro
magnetic scattering in R2 by appropriate perfectly conduct
ing gratings in the case ofTE-(Dirichlet) or TM-polarization 
(Neumann). 

(3) For v = 2, Wilcox 10 proved a completeness property 
(more precisely, the unitarity) of wave operators of the type 
mentioned in the previous Remark, but with H 0 replaced by 
the specialization of H to the half-plane Xv > 0. He accom
plished this by means of an eigenfunction expansion meth
od,18 under stronger conditions than those of Theorem 3.1, 
namely that ,J¥'surf(H) = 0 and for H = H N that the bound-
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ary of a is sufficiently smooth. On the other hand, as stated 
in the Introduction, Ref. 3 contains important results not 
derived in the present paper. 

(4) Theorem 3.2, and therefore the Corollary, is true if 
the notion of admissible function is understood in the 
broader sense of Remark (2) after Theorem 2.1. 

Our strategy for proving Theorems 3.1 and 3.2 is simi
lar, grosso modo, to that adopted in Ref. 1 to establish the 
corresponding theorems for H = H D' and hence will not be 
explicitly outlined here. An acquaintance with the strategy 
of Ref. 119 would perhaps be helpful to the reader in order to 
gain a panoramic view of our approach in Secs. 4 and 5 of this 
paper. 

4. PROOF OF THEOREM 3.1 

In what follows, we will refer to various Frechet spaces, 
such as L foc(Ll;fl), H Iloc(fl), H ~,Ioc(fl), etc., which are local 
versions of L 2(Ll;a ), H I(a ), H ~ (a ), etc., where flis used to 
denote that the relevant integrability properties hold up to 
the boundary. Out notation is as stated in Appendix A of Ref. 
1 and is similar, e.g., to that used in Ref. 6. 

In the special case when a is the half-space 

aO=Rv-IXR+, (4.1) 

we will denote H D by H ~ and H N by H~, and H ° will stand 
for H ~ and H ~ in the respective cases H = H D and 
H = H N' The operator H ° is an auxiliary self-adjoint opera
tor introduced to facilitate the proof of Theorem 3.1. 

Since a ° and a have the periodicity property (II), it is 
not surprising that there exist unitary operators UO and U, 
defined previously, 19 which map ~ = L 2(a 0) [do not con
fuse with JZPo = L 2(RV)] and JZP = L 2(a), respectively, into 
direct integrals of Hilbert spaces 

Uo~ = L'" L 2(euO) dji, 

UJZP = L'" L 2(eu) dji. 

Here, euO and eu are the periodicity cells 

euO = G XR+ ' eu = eu°n{J 

of a ° and a, respectively, with 
v-I 

(4.2) 

G= {yeRv-l:y= Ii'Ja;. i '1E(O,I),i= l,oo.,v-lj. 
j= I 

(4.3) 

Moreover, 
v-I 

[§ = {OERV - 1:0 = I 0 (11b;.0 (IJE(O,21T),i = 1, ... , v-I J, 
;=1 

where I b j ) ~::: l is a set of linearly independent vectors in 
RV- I such that aj.bj = oij(i,j = l,oo.,v - 1), and dji 
= I [§ I-I dO, where dO is Lebesgue measure in RV - I and 
I [§ I is the Lebesgue measure of [§. We will denote the "com
ponent" of a vector kEUJZP in the Oth fiber of L 2(eu) by k(). 

Definition (Bloch-Periodicity): A complex-valued func
tionf on a is said to have Property (P ()) for some OE[§ if it is 
of the form 

f(i,xv) = exp(iO.i)u(i,xv) 
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a.e. on a, where uti + I,xv) = u(i,xv) a.e. on a for all/EL 
[see (3.1)]. 

We proceed to define families {h ~,OE[§ j, {h(),OE[§ l of 
self-adjoint operators h ~,h(). If H = HD, then h() = hD.() for 
all OE[§ and if H = HN , then h() = hN,() for all such O. Each 
h(),N is an operator in L 2(eu) with domain 

D(hN,()) = {fEL 2(Ll;eu)nHl(eu):fhas an extension fEB ioc (n) 

with Property (p()) and (Vg, Vf) '" = ( g, - Llf)W, gEDe j, 

where D() is a (closed) subspace of H I(eu) defined by 

De = {fEB I(eu):fhas an extension fEB Iloc (n) 

(4.4) 

with Property (Pe)}. (4.5) 

Each hD,() has a domain given by (4.4) and (4.5), but with 
H Iloe (n) replaced by H ~,Ioc (fl) in these two equations. Every 
h() acts by - Ll on each element in D (he). 

The specialization of each h() to a = a ° will be denoted 
by h ~, and h ~ will be denoted by h ~,() and h ~,e in the respec
tive cases HO = H~ and HO = H~. 

A spectral representation of h ~(OE[§) can be readily 
obtained,20 which yields an explicit formula for the spectral 
function E (,;h ~) of each h ~. 21 From the latter formula it 
follows that every h ~ has a purely absolutely continuous 
spectrum. 

The next lemma is true if only (I) and (II) hold. 
Lemma 4.1: Each h()(OE[§) is self-adjoint and 

UHU -I = L" he dji. (4.6) 

Remarks: (1) 0 t---+ h() is measurable. This was shown22 

when he = hD,e, the proof being similar when he = hN,e' 
Hence (4.6) makes sense. 

(2) Specializing a to a 0, (4.6) becomes 

(4.7) 

Proof of Lemma 4.1: It was proved in Ref. 1 for 
H = H D' Henceforth in this proof, H = H N' The proof that 
each h N,e is self-adjoint is similar to the corresponding proof 
for hD,e.23 We will show that (4.6) holds by proving that its 
r.h.s and l.h.s coincide on the set of all gEUfwithfED (H) of 
bounded support,24 which is a core of UHU - I. Henceforth 
in the proof, we fix our attention on a g of this type and a 
fixed OE[§. We proceed to show that g()ED (hN,())' It is clear 
that ge has all the required properties for this to be true, 
except perhaps for the partial integration property in (4.4), 
which we will now show is fulfilled. Arguments of a kind 
used previously25 entail that 

(4.8) 

where ifJED () and '¢eH toe (fl) is its extension, in the sense of 
(4.5). Moreover, 

(V~,Vf)n = (~, - Llf)n = (t/J, - Llg()w' (4.9) 

where the first equality in (4.9) follows by (2.2) and the sec
ond equality therein can be proved similarly to (4.8). By (4.8) 
and (4.9), ge has the partial integration property in (4.4), and 
hence is in D (h N,())' One now readily shows that 
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(UHNU-Ig)e = hN,ege by proceeding as before.23
• 

By (III), the condition of the next lemma is satisfied 
when H = H N' and the lemma will prove to be very useful in 
this case. 

Lemma 4.2: Let n have the LC property for all bound
ed subsets of H I(n). Then (j) has the LC property for each 
boundedsubsetB C H I{(j)) which is contained in De for some 
()e::1. 

Proof Let B C H I{(j)) be such a subset and let {In J be a 
sequence in B. Let r e Co (RV

- I) have the property that 
r{i) = 1 for ieG [see (4.3)] and definegnEB I{n) by 

gn{x) = r{i)ln(x), x = (i,xv)Efl, 

for each n, wherel" is the extension of In to H loe (ii) having 
Property (Pe) for some (}e::1. We then have, 

IIgnlltn = IIV(rlnlll~ + IIrlnll~ 
<!II In Vrlln + IlrVlnll n )2 + Ilrlll~ 
<constWl/nllw + IIV/nllw)2+ Il/nll:] 

<const(lI/n II: + IIVfII:) = constil/n Ili,w 

foreachn, where II'III,M = II'IIH'(M) an~ where we have used, 
in particular, the (Pe) property ofthe/n's and the stated 
properties of r. Whence {gn J is a bounded subset of H I(n ), 
and hence has a subsequence which is Cauchy inL foe (ii) if n 
has the LC property assumed in the present lemma. By this 
result and the fact that 

Ilin -Imllw(r) = IIgn -gmlla>(r)<lIgn -gmllnlr) 

for all n,m and all reR + , where we have used the notation 
(3.2), we see that lin J has a subsequence which is Cauchy in 
L foc(ii) if n has the stated LC property .• 

Let 

W e± = W ± (he,h ~;77), ()e::1, 

W'± = W ± (H,HO;r), 

(4.10) 

(4.11) 

where 77 and J O are the respective restrictions of J in (2.5) to 
L 2{(j)0) andL 2(n 0) [see (4.1) and (4.2)]. Define the projection 
operator P ~c (H): JY ~JY by 

UP~c(H)U-I = LED Pac(ho) df.l. (4.12) 

This definition makes sense because the function () ...... Pac (he) 
from::1 to.if (L 2((j))) is measurable, as follows from a more 
general result stated in the sentence after (5.3). 

As in the case of the less general Theorem 3.1 of Ref. I, 
the present Theorem 3.1 can be easily proved once we 
establish 

Lemma 4.3: Wet exist as partially isometric operators 
satisfying 

W': W'± = IL2(nop 

W'± W': =P~c(H). 

(4.13) 

(4.14) 

ProololLemma 4.3: It was proved in Ref. 1 for the case 
HO = H~, H = H D .By(4.6),(4.7),(4.1O),and(4.11),inparti
cular, the present lemma will follow for the case 
HO = H~, H = H N if each pair WI with h ~ = h ~.e and 
ho = hN .() exists and is complete in the usual sense: 

(4.15) 

1119 J. Math. Phys .• Vol. 23. No.6, June 1982 

(4.16) 

Since each h ~,() has a purely continuous spectrum, a 
theorem of Lyford8 entails that (4.15) and (4.16) hold with 
W I understood in the present sense if the following three 
conditions are satisfied for all (}e::1 and all bounded intervals 
oCR: 

(i) 77D {h ~,8)CD (hN,()),77*D (hN,())CD (h ~,8); 
(ii) (77*77 - IL 2Iwo))E (o;h ~.()) and 

(7777* - I L 2(w))E(o;hN,8) are compact; 
(iii) (h N.()77 - 77h ~.())E (o;h ~.()) is trace class. 
In the remainder of the proof, we will consider a fixed 

()e::1 and a fixed bounded interval o. 
(i) We will show that 77D (h ~.()) CD (h N.())' (The proof 

that 77*D(hN.())CD(h~.8) is similar.) It is easily seen that 
1JfeL 2(A;(j))nH I((j)) and that 1Jfhas an extension to H loc (ii) 
with Property (Po). There only remains to prove that 

(VI/1,v(1Jf) w = (1/1, - A (1Jf) w' I/JED(), 
i.e., that 

(4.17) 

The sum of the first two terms on the l.h.s of (4. 17) vanishes, 
sincelED (h ~.8) and since 77*4> is in the specialization of D 8 to 
(j) = (j)0 [recall the definition of D (h ~.() I]. By, in particular, 1/1, 
IEB 1((j)), (j) C (j)0, and supp aj/axv C [a,h] for some 
O<a <h< 00, ~xlf(x)aj(x)laxv can be extended ina natural 
way to G XR [see (4.3)] and approximated in theL I(G XR) 
sense by a smooth function of bounded support. A simple 
limiting argument now shows that the integral over (j) in 
(4.17) vanishes for the stated functions 1/1,f 

(ii), (iii): For the caseHo = H~, H = H N , these proper
ties can be proved as before,26 using, in particular, the LC 
property of (j) for all subsets of D (h N.e) which are bounded in 
H 1((j)) and the explicit formula for E (.;h ~.()) mentioned 
above. 21 This LC property of (j) follows from (4.4), (4.5), 
Property (III), and Lemma 4.2 .• 

Proolol Theorem 3.1: Since we have already proved it 
for HO = H~, H = HD in Ref. 1, we will only prove it here 
for HO = H~, H = HN • By imitating the arguments of Ap
pendix B of that reference, explicit expressions for the wave 
operators Wo± = W ± (H~,Ho;PO) can be obtained and 
shown to satisfy 

WO: WO± =E±, 

WO± WO: = I L 2(n op 

where pO: JYo---+~ is defined by 

(PO/)(x) = I(x), leJYo, a.e. xEfl 0. 

(4.18) 

(4.19) 

(4.20) 

Using in particular, (4.13), (4.14), (4.1S)-{4.20), (2.5), and the 
definition ofj immediately after (2.5), 
W ± = W ± (HN,Ho;J) are seen to obey (3.7) and (3.8), but 
withP scatt{H) replaced by P ~(HN) [see (4.12)]. However, as 
follows from the proof of Theorem 3.2 (see Sec. 5), 

P~c(H) = Pscatt{H) 
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if H = H D, H N , whence the proof of Theorem 3.1 is 
complete .• 

5. PROOF OF THEOREM 3.2 

One of the main ingredients in the proof is the next 
lemma. 

Lemma 5.1: he has an empty singular continuous spec
trum for all fJEf1 if H = HD or H = H N • 

This lemma has already been proved I for H = H D' Its 
proof for H = H N will be sketched after a brief preliminary 
discussion. 

Let 

!iJ e = IfEL ~oc(.1;ii»nH Iloc(ii»:fhas an extensionJEL ~oc(.1;ff) 
I -nH loc (n ) with Property (P e) such that 

(Vg,Vf)w = (g, - .1J>wifgEDeis of bounded support). 

fJEf1, (5.1) 

where De is as in (4.5). Notice that !iJ e is a local version of 
D (h N.e) in (4.4). The terminology "modified Lemma ... " will 
denote the identically numbered lemma of Ref. I, but with 
De understood in the sense (5.1) and with he understood as 

hN •e· 
In the proof of Lemma 5.1, we will use the modified 

Lemmas 6.2 and 7.5, whose proof, sketched in (c) below, 
makes use of the auxiliary results (a) and (b). Let H = H N • 

Then we have, 
(a) The modified Lemmas C.2, C.4, and C.5 hold, their 

proofs being essentially the same as those of the original 
lemmas. 

(b) The modified Lemmas 7.1,7.3, and 7.4 hold. They 
follow similarly to the original lemmas by using, in particu
lar, (a) and the spectral representation of hNe. 20 

(c) By (a) and (b), Lemma 4.2 of the pre~ent paper, and 
arguments similar to those used in the proof of the original 
lemmas, the modified Lemmas 6.2 and 7.5 follow. 

Proof of Lemma 5.1: For H = H N the lemma follows 
from the modified Lemmas 6.2 and 7.5, and arguments of 
the same type as those used27 in the case H = H D'. 

In the remainder of this section, the notion of admissi
ble function can be understood in the less restrictive sense of 
Remark (3) after Theorem 2.1. 

The next two lemmas will also be needed in the proof of 
Theorem 3.2. Before stating them, we define the projection 
operators P ~c (t,6 (H )) and Ps (t,6 (H )) from Yi'" into Yi'" when t,6 is 
an admissible function, as will be assumed in the remainder 
of this section: 

UP ~c (t,6 (H)) U - I = I" Pac (t,6 (he ))dJl' 

UPs(t,6(H))U- 1 = I" Pp (t,6(h e ))dJl. 

(5.2) 

(5.3) 

Since t,6 (H) and t,6 (he )(fJEf1) are self-adjoint [as was seen for 
t,6 (H) in Remark (2) after Theorem 2.1 and as follows for the 
t,6 (he)'s similarly, using he >O(fJEf1) in particular], and since 
the functions fJ I---+Pac (t,6 (he)) and fJ I---+Pp (t,6 (he)) are measur
able, definitions (5.2) and (5.3) make sense. The measurabil
ity of fJ I---+Pp(t,6 (he)) follows28 by that fJ ~ (he) [which itself 

1120 J. Math. Phys., Vol. 23, No.6, June 1982 

follows29 from that of fJ I---+he, the equation 
E (.1;t,6 (he)) = E (t,6 -1(.1 )n[O, 00 );he), the admissibility of t,6, 
and standard arguments]. The measurability of 
fJ I---+Pac (t,6 (he)) is a consequence of that of fJ I---+P (t,6 (he)) and 
the equation P 

Pac (t,6 (he)) + Pp(t,6 (he)) = I L '(wp fJEf1, 

which is a by-product of results established in the proof of 
Lemma 5.2. 

Lemma 5.2: If t,6 is an admissible function, then 

Ran P~c(H)=Ran P~c(t,6(H))CYi"'scatt(t,6(H)) (5.4) 

and 

Ran Ps(H) = Ran P,(t,6 (H))CYi"'surf(t,6 (H)). (5.5) 

Proof Since t,6 is admissible and he >0 for all fJEf1 , the 
approach of Kato 14 entails that 

Pac (he) = Pac (t,6 (he)) 

for each such fJ. Therefore, by (5.2) and (5.6), 

P~c(H) = P~c(t,6 (H)). 

We now show that 

hence completing the proof of (5.4). 

(5.6) 

(5.7) 

LetfERan P~c(H)=Ran P~c(t,6(H)). Theng= Ufis 
such that geEYt'ac (t,6 (he)) = Yi"'ac (he), a.e. fJEf1. Consider a 
fixed fJEf1 for which this holds and a bounded subset b or R. 
We claim thatXaE(b;t,6 (he)) is a compact operator if 
aER + ,X a being multiplication by the characteristic function 
of UJa (see (3.3)). This follows by E(b;t,6 (he)) = E(t,6 -I(b) 
n(O, 00 );h e), the fact that t,6 - I (bn[O, 00 )) is a bounded Borel 
subset of R, and the LC property of UJ for all H I (UJ I-bounded 
subsets of D (he) (entailed by Lemma 4.6 of Ref. 1 when 
H = H D and established in the proof of Lemma 4.3 of the 
present paper in the case H = H N)' By the compactness of 
X aE (b;t,6 (he)), the relation geEYt'ac (he), and standard argu
ments, we infer that 

To complete proving (5.7), we need the equation 

Uexp( - itt,6 (H))U -I = L" exp( - itt,6 (he))dJl, (5.9) 

which is implied30 by Lemma 4.1 and the self-adjointness of 
t,6 (H) and of each t,6 (he). By (5.8), (5.9), and the bounded con
vergence theorem, we conclude that 

lim Ilexp( -itt,6(H))fll,(J =0 
t-+ ± 00 {.I 

for each aER + ' and hence thatfEYt'scatt (t,6 (H)). Whence we 
have proved (5.7). 

We now prove (5.5). By Lemma A.1 of the Appendix, 

Pp(h e )<Pp (t,6 (he)) fJEf1, (5.10) 

for the admissible function t,6 considered, since, in particu
lar, he >0 (8Ef1). 

Now, 

(5.11 ) 
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by Lemma 5.1. whence the symbol..; in (5.10) can be re
placed by =. Therefore. 

Ran Ps(H) = Ran Ps(t/J (H)) 

is seen to hold by using (5.10) with the equality sign and (5.3). 
Finally. one can show that 

Ran Ps(t/J (H)) CJY'surf(t/J (H)). 

and hence (5.5). holds by arguments of the same type as those 
used earlier?!. 

Proof of Theorem 3.2: Using Lemma 5.2. (5.2). and (5.3) 
[with t/J (H) replaced by Hl. (5.11). and the orthogonality of 
the subspaces (3.4) and (3.5). we deduce that 

JY'scatt (t/J (H)) E9 JY'surf(t/J (H)) 

:::> Ran P;c (t/J (H)) E9 Ran Ps (t/J (H )) 

= Ran P;c (H) E9 Ran P.(H) = JY' (5.12) 

for each admissible function t/J. By (5.12) and this orthogona
lity property, the symbol C in (5.4) and (5.5) can be replaced 
by =. Since. in addition. (5.4) and (5.5) hold when t/J (H) is 
replaced by H therein. the proof of Theorem 3.2 is 
complete .• 
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APPENDIX: AUXILIARY RESULTS 

In this Appendix. we will state a simple result about the 
point spectra of suitable functions of self-adjoint operators 
and an invariance principle of wave operators. 

Lemma A.l: Let M be a self-adjoint operator in a Hil
bert space and t/J an extended real-valued function on R 
which is M-measurable and finite a.e. with respect to M.32 

Then 

JY'p(M)CJY'p(t/J (M)). 

Proof Follows easily from the spectral theorem .• 
Let A,B be self-adjoint operators in the respective sep

arable Hilbert spaces JY'!. JY'2 and let /:JY'1-JY'2 be a 
bounded operator. For each Borel set..::1 CR. we define the 
local wave operators 

W l' = s-lim exp(itB)/ exp( - itA )Pac (A )E (..::1;A ). 
l_± 00 

W l' (t/J ) = s-lim exp(itt/J (B ))/ exp( - itt/J (A ))Pac (A )E (..::1;A ) 
t_± 00 

for a suitable real function t/J when the respective limits exist. 
Finally. let 

vU'(A) = {UeJY'I:esS sup d (u.E(( - 00. A )];A )U)K IdA 
AER I 

< 00 J. (AI) 

The following theorem is due essentially to Chandler 
and Gibson. 33 

Theorem A.I (Invariance Principle of Wave Opera
tors): Assume that 

(1) t/J is an extended real-valued function which isA
measurable and B-measurable. finite a.e. with respect to A 
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and B. and such that there exists a subset TC R which is a 
finite or denumerably infinite union of open intervals Tn 
(n = 1 •...• N(t/J)) on each of which t/J I is continuous, locally of 
bounded variation. and such that one and only one of the 
inequalities t/J I > 0 or t/J I < 0 holds; 

(2) there exists a dense subset PlJ CvU' (A ) of E (T;A ) 
JY'ac (A ) such that. for all uEPlJ. uEE (..::1;A ) JY'ac (A ) for some 
bounded interval..::1 =..::1 (u)C T; 

(3) for each UEPlJ l' t f-->-w(t) = exp(itB)/ exp( - itA )u is 
a strongly differentiable map from JY'! to JY'2 such that 

Ildw(t )/d! 11K, EL !(RT)nL 2(Rr ). 

It lalldw(t )/dt Ilw, EL I(RT ). 

for some positive constants r.a independent of u, where RT 
= ( - 00, - r)u(r, 00). Then W rand W r (t/J ) exist and 

Wr(t/J) = WrE(T +;A) + WiE(T _;A). 

where T + (respectively, T _ ) is the union of those intervals 
Tn (n = 1, ... ,N (t/J )) on which t/J I > 0 (respectively. t/J I < 0). 

Proof Since it involves only minor changes in the perti
nent arguments of Ref. 3. we will omit it. • 
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Convergence of the T-matrix approach to scattering theory a) 
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The T-matrix numerical scheme is widely used in practice. Convergence of this scheme was not 
proved. A proof of convergence is given in this paper. 

PACS numbers: 03.80. + r, 11.20. - e, 02.30.J r 

1. INTRODUCTION 

At the international symposium on wave scattering I 
most of the speakers pointed out that the T-matrix scheme 
needed a justification, its convergence was not proved. In 
this paper a proof of convergence is given. This proof also 
clarifies another basic question, namely, convergence of the 
variational method of finding stationary points of function
als. o Many physical problems are formulated as the prob
lems of finding stationary points and/or stationary values of 
some functionals, and these points are not extremal. A neces
sary and sufficient condition for a stationary principle to be 
extremal is given in Ref. 2, p. 90. The standard T-matrix 
approach is described in Ref. 1, pp. 64. The principal differ
ence between the standard and our approach is as follows. In 
the standard approach the scattered field is represented as 
the series in the outgoing spherical waves and the coeffi
cients of the series are found from a linear system. One as
sumes that the series converges on r (the Rayleigh hypoth
esis) which is not true in general. In our approach one uses a 
basis of L "(T ) and no difficulties with convergence arise. 

Let us describe a modified T-matrix approach to the 
problem 

( - V" - k 2)U = f in n, k > 0 (1) 

ulr=O, r(au/ar-iku)_O asr=lxl-oo (2) 

Here n is an exterior domain with a smooth closed boundary 
rand D = R 1 \n is a bounded domain. From the Green 
formula it follows that 

u(x) = v(x) = L g( x,s)h (s)ds, XEn (3) 

o = v(x) - L g( x,s)h (s)ds, xED (4) 

v(x) = ( gfdy, g = exp(ik Ix - yl), h = ~. (5) 
In 41Tlx - yl aN 

N is the unit normal to r directed into n. If h is found, then 
u(x) can be found from (3). Let us rewrite Eq. (4) as 

Ah = vIs), Ah = L g(s,s')hds', SEr. (6) 

Let! cPj !.J = 1,2, ... be a basis of H _ 1/2' where 
H = Ho = L 2(T), Hq = Wi (T) are the Sobolev spaces, 14 

" 
h" = I CjcPj , 

j~ I 

" I QjmCm := Vj' 
m -- I 

"'Supported by AFOSR 800204, 

(7) 

(8) 

where 

ajm = (AcPm ,cPj)' Vj = (v,cPj)' (f,V) = (f,v)II' (9) 

Let (tjm ) be the inverse matrix aJ'; 1l, I<J,m<n. Then cj , 

1 <J<n, can be calculated ifvj' I<J<n, are given. From for
mula (7) one calculates hn' and from formula (3) with h = hn 
one calculates the approximate solution Un to problem (1)
(2). The problem is to prove that (i) for sufficiently large n the 
matrix ajm in (8) is invertible, (ii) Ilhn - h 11---+0 as n-+oo, 
where 11·11 is the norm in H. Actually, convergence will be 
proved in Hq , where q depends onf and on the smoothness of 
r. Let us assume for simplicity that re Coo. Then q depends 
on the smoothness offifmeas(Tn suppf) > 0 (suppfis the 
support off) and q is arbitrary if dist(suppf,r) > O. 

The basic idea of the proof is very simple and is given in 
Sec. 2. In Sec. 3 some technical details are provided. 

2. MAIN RESULT 

Theorem 1: System (8) is uniquely solvable for suffi
ciently large nand IIh n - h 11---+0 as n-+oo [without loss of 
generality we assume that the operator 1+ T (k ) is invertible; 
see the proof below, n.l of Sec. 3]. 

Proof The basic idea is to factorize A in (6) as 
A = Ao[ I + T (k )), where Ao = A (0), T (k ) = A 0- I 

X [A (k) - A (0)). The operator Ao > OisabijectionofHq onto 
Hq t l,whileT(k)iscompactinHq foranyq (see, e.g., Ref. 2, 
p. 287). The system (8) can be written as 
(Ao[ 1+ T]h,JPj) = (v,cPj)' I<J<n. SinceAo>O the form 
(Ao u,f) is a scalar product which we denote by 
[u,f) = (Ao u,f). This scalar product generates a norm 
[u,u) 1/2 = IIA b/2ull which is equivalent to the norm in 
H -1/2' This follows from the fact thatA o is a pseudodifferen
tial elliptic operator of order - I and therefore 
ord A i/2 = -~. Thus (8) is of the form 
[( I + T)h" ,cPj j = (v,cPj)' 1.;;; J<n. Let w = A 0- IV. Then 
(V,cPj) = [w,cPj]andh" +P"Th" =Pnw,wherePn is the 
orthoprojection in H _ 1/2 on the linear span of ! cb I" •• ,cP" I. 
The operator 1+ T (k ), k > 0, can be assumed invertible (this 
will be shown in Sec. 3), and T(k) is compact on H with 

. q 

arbItrary q, - 00 <q < 00. Therefore 11(1 - P,,)Tllq_O as 
n-+ 00, and the norm is the norm of operators on Hq (this will 
be explained in Sec. 3). Thus 1+ P" T = I + T - ( 1- Pn)T 
is invertible for sufficiently large n. This means that system 
(8) is uniquely solvable for sufficiently large n. Furthermore, 

h - h" = (I + T) - I W - (I + P" T )P" w 

= B [I - (I - p1nlTB )-IPn ]w, (10) 
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where B = (I + Tj-I, p(nl = I - Pn. Thus 

Ilh - hn Ilq<cll(I - Q,,)-IQnPnwllq 

<cdIQnllqIiPnwllq, c,cl=const>O, (11) 

where Q" = P("ITB, IIQn Ilq---+O as n---+oo. If Ilwllq 
= IIA 0- Ivll q < 00 then (11) shows that Ilhn - h Ilq---+O as 

n---+ 00 and the rate of convergence is given by the rate of 
decay of the magnitude liP (niT Ilq as n---+oo. In order that 
IIA 0- 1/2Vllq < 00 it is necessary and sufficient that vEllq -1 1/2' 

This is so if IEllq I (fl ) because in this case vEllq + I (fl ) and 
its trace vlrEllq+ 1/2' Our argument shows that if/EL 2(fl) 
= H (fl ) the smoothness of v I r is even higher than we need. 

This completes the proof. Theory of the Hq spaces and the 
trace theorems can be found in Ref. 4. 

3. ADDITIONAL DETAILS 

(1) Let us show first that I + T (k ), k > 0, is invertible. 
Since Tis compact, it is sufficient to show that the nullity of 
this operator is trivial. If [I + T(k )]h = 0 then A (k)h 
= Ao[I + T(k )]h = O. Therefore the function 

u(x) = f r g(x, s)hds solves the homogeneous problem (1)
(2). It is well known that the solution of (1 )-(2) is unique. 
Thus u(x)=O in fl. If k 2 is not an eigenvalue of the Dirichlet 
Laplacian in D then u(x)=O in D, and from the jump relation 
for the normal derivative of u one derives that h = O. If k 2 is 
the eigenvalue of the Dirichlet Laplacian in D, then the argu
ment is the same but instead ofg(x, y, k) in (3)-(5) one should 
use the Green function g. (x, y, k ) of the exterior of a small 
ballB. cD. This ball is so chosen that k 2 is not an eigenvalue 
of the Dirichlet Laplacian in D, = D \B <' Obviously such a 
ball can be found (there are infinitely many such balls). 

Remark I: The idea of applying g, (x, y, k ) in order to 
deal with the case when k 2 is an eigenvalue of the interior 
problem was used in Ref. 3. 

(2) Let us show that II P ("IT 11---+0 as n---+ 00. Since I ¢j I is 
a basis, one has II P l"lf 11---+0 as n---+ 00 for any IEll. Since Tis 
compact it cl!n be written as T= TN + dN , where 
II d 'v II < Co\" C N---+O as N---+ 00, and TN is finite dimensional: 
Tv I = 'J-t~ I (f, 'h )wj . Clearly it is sufficient to prove that 
II pln'TN 111<Dn 11/11, where 15,,-0 as n---+oo. One has 
II pllI'TN/II< 'J-jV_ I II P1nIWj(f, tPj)11 
<11/11 'J-jN~ I II tP;1111 p(n'Wjll<Dn 11111, where Dn-O asn-oo 
because II plnlWj 11-0 as n---+oo, 1 «j<N. In this argument 
II . II can denote any norm. What is essential is that plnl_O 
strongly. In particular one can use the norm of H -1/2 pro
vided that the system I ¢j I forms a basis of H _ 1/2' Note that 
H _ I /2 ~H, so that if the system I ¢j I forms a basis of H _ 1/2' 

then every elementlEll can be represented in the form 
1= 'J-t I Cj¢j, where the series converges in H _ 1/2' It does 
not converge in H, generally speaking, but there exist bases 
such that iflEll then the above series converges in H. For 
example, such a basis is the basis consisting of the eigenfunc
tions of the operator Ao (see also Lemma 1 below). If! ¢j I is a 
basis of Hq then! A ;)¢j I is a basis of Hq + s' This follows from 
the fact that A ;) is a bijection of Hq onto Hq + ,.(A ~ is an 
elliptic pseudodifferential operator of order - s). Since I I Iq 
« I II, for q < s, it is clear that if the series 'J-j". I cj ¢; con-
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verges to/in H = Ho it converges to/in H -1/2' It is conve 
nient to have a system (¢j I which forms a basis in any of H, 
and iflEllq the series I = 'J-t~ I Cj¢j converges in H q. For 
example, if S I is the unit circle and Hq = Hq (S I) then the 
system \ exp(inx)/v21T I forms a basis of Hq for any q. Thl 
same property has the system I tPj I of the eigenfunctions 0 

the Laplace-Beltrami operator on F, but practically this sy~ 
tem is difficult to construct explicitly. Let us prove that for 
starlike domain D the system Ilj(5)), where 5 = (e, ¢ ) is 
point on a unit sphere S 2 and lj are the normalized spheric! 
harmonics, forms a basis in each of H q • A domain is calle( 
starlike if there exists a point 0 inside the domain such tha 
every point of the boundary of the domain can be seen fror 
this point. This means that the equation ofthe boundary is ( 
the form r = R (8, ¢ ) = R (5), where the origin is at the 
point o. It is well known that 

-f lj(5 ')d5' lj(5) 
QOYn= ----, j=0,1,2, ... 

s· 41TrgS ' 2n + 1 

where rl;!:' = 15 - 5'1- The system llj I ,j = 0,1,2, ... , fom: 
an orthonormal basis of H = L 2(S 2) and in any Hq (S 2) th 
scalar product in Hq (S 2) can be defined as (u, v)q 
= (Q () qu, Qo qv)o, Ho = L 2(S2), and (Y", Yon)q 
= (2n + l)q(2m + l)q(yN , Yon) = (2n + W(2m + l)qD"m' 

where Dllm is the Kronecker delta. 
Lemma 1: The system llj (5)1 forms a Riesz basis of h 

= Hq (F), provided that D is starlike, FC C =, and the elc 
ments of Hq are considered as functions of 5ES 2

. 

Proof Consider the eigenfunctions of the equation 

f w,,(s')ds' , 

r 
=A"tPn(S), r" = Is-s I, SET. 

41Tr". 
( 1) 

Since D is starlike one can rewrite this equation as 

f <P" (5 ')Po(5 ')d5 ' - A <P 
Q<P" = s. 41TIR (5) _ R (5')1 - n n(5), 

( 1) 

wheres = R (5) is the equation of the surface Fin the spheri 
cal coordinates, 5 = (e, ¢ ), <P n (5) = tP n (R (5 )), ds = Po(5 )ds 
P:j(5) > 0, and d5 = sin e de d¢. The function 
Po(5) = IR ~ XR ~ I, where X denotes the vector product anI 
r = R (e, ¢ ) is the parametric equation of the surface r. Th 
system ! <Pj I of the eigenfunctions of the operator Q define, 
in (13) forms an orthogonal basis of the weighted space 
L 2(S2,Po(5 )).Since(**)O <C I <Po(5) < C2the normalized sys 
tem ! <Pj Po- 112) forms an orthononnal basis of L 2(S 2). 
Therefore this system is an image of the system !lj I ' 
j = 0,1,2, ... , under a unitary transfonnation of L 2(S2):Ul' 
= Po- 1/2<Pj or <Pj = P612Ulj. The operator P612U is a bije( 

tion of L 2(S2) onto itself. Let us introduce the operator J4 
= tPj,j = 0,1,2, ... , where tPj are the nonnalized eigenfunc-

tions ofEq. (12). The operator J defined on the basis elemen1 
is isometric and can be extended to the isometric bijection 
J:L 2(S2)---+L 2(r) = H. Therefore tPj = Jpl/2Ulj,j 
= 0,1,2, ... , and Lemma 1 is proved forH = Ho- Forq¥:Oth 

system lj forms an orthogonal basis of H q (S 2) and the spac 
Hq = Hq (F) is metrically equivalent to Hq (S 2) because r 
Coo diffeomorphic to S 2. Thus the system !lj I fonns a bas: 
of Hq (F ) for any q. If instead of C 00 diffeomorphism one 
assumes that F is C I diffeomorphic to S 2, then !lj 1 fonns 
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basis of H q , q<.l. Lemma 1 is proved. 
(3) Let us consider another projection method of solving 

Eq. (6) corresponding to the least squares method; namely 

(Ahn -v,A¢j)=O, l<'j<.n, (14) 

or 
n 

L bjmcm = dj , 1 <.j<.n, (15) 
m= 1 

where 

bjm = (A¢j' A¢m)' dj = (v, A¢j)' (16) 

Since (bjm ) is a positive define matrix (if ker A = ! ° 1 which 
we assume for simplicity), the system (15) is uniquely solv
able for any n. This system can be obtained from the least 
squares method as a necessary condition of the minimum of 
the functional 

II Ahll - vl1 2 = min, (17) 

or 

( 18) 
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Since / + T is a bijection of H _ 1 onto itself and A 0- 1 is a 
bijection of Hq onto Hq _ 1 the solution of (18) tends to 
(/ + Tj-I w as n~oo in H _I ifvEHo' and in Hq_ 1 ifvEHq. 
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U sin.g the formalism ~f ~omplex %-spaces, we show that all real, Euclidean self-dual spaces that 
admit (at least) one KillIng vector may be gauged so that only two distinct types of Killing 
vectors appear; in Kahler coordinates these are the generators of a translational or a rotational 
symmetry. We give explicit forms both for the Killing vectors and for the constraint on the 
Kahler potential function n which allows for such a Killing vector. In the translational case we 
show how all such spaces are determined by the general solution of the three-dimensional, flat 
Laplace's equation and how these are related to the multi-Taub-NUT metrics of Gibbons and 
Hawking. In the rotational case we simplify the equation determining n, but this is not sufficient 
to obtain the general solution. 

PACS numbers: 04.20. - q 

I. INTRODUCTION 

In this article we make an application of a considerable 
body of information on (complex) Jrc-spaces, which has been 
accumulated in the last few years, to the determination of 
real, self-dual, Euclidean Einstein spaces. I There has, of 
course, been a large amount of interest in such spaces in 
recent years. Hawking and co-workers2 have shown that 
these spaces are very important in the calculations of quan
tum gravitational effects via the path-integral formalism. 
They have determined many distinct real, self-dual solutions 
to the Euclidean Einstein equations and sorted out a subset 
which are regular and complete, which they call gravitation
al instantons. As well, some other groups2 have become in
terested in these spaces. Tod and Ward3 have considered the 
case of complex Jrc-spaces with at least one Killing vector 
whose covariant derivative is self-dual. They show that all 
such spaces are just those already given by Gibbons and 
Hawking,4 which have real, Euclidean cross sections re
ferred to as generalized multi-Taub-NUT metrics. 

We generalize this work by considering all possible 
types of Killing vectors, but specialize it by considering only 
real, Euclidean self-dual spaces. Any Jrc-space may be de
scribed in the n formalism of Plebanski.5 In this approach, 
there is a simple way to pick out real Euclidean cross sec
tions, which are simply manifest real realizations of the 
space as a complex Kahler manifold (of complex dimension 
two). 

In the next section we first spell out in detail our par
ticular approach to coordinatization of the desired spaces 
and then discuss the appropriate group of gauge transforma
tions which leaves invariant the general form ofthis coordin
atization, and its physical interpretation. In Sec. III we then 
solve Killing's equations for such a manifold, obtaining the 
form which any Killing vector must take in these coordi-

alCurrentiy on sabbatical leave at Harvard University, Cambridge, Mass. 
blWork supported by the Fomento Educacional, A. C., Mexico 5, D. F., 

Mexico, and by the C. I. E. A. del Instituto Politecnico Nacional, Mexico 
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nates and a single (scalar) master equation which gives the 
constraint which the Kahler scalar n must satisfy in order 
that the space which it determines admit such a Killing 
vector. 

The general form of a Killing vector contains arbitrary 
functions which simply indicate that there is yet consider
able gauge freedom. We demonstrate that the available 
gauge freedom can always be used in such a way as to reduce 
anyone Killing vector in a real, self-dual Euclidean space to 
one of two specific forms. (This is similar to the five forms 
which are necessary6 to describe all Killing vectors of a com
plex Jrc-space.) At that point we note that n is determined5 

as the solution of a certain nonlinear partial differential 
equation, whose general solution is not known. Therefore, 
we introduce the (linear) constraint on n introduced by the 
existence of a Killing vector in the space and use this to 
simplify the general equation for these two cases. In the one 
case, where the Killing vector is like a translation (in the 
Kahler coordinates), we reduce the equation to the three
dimensional (flat) Laplace equation and, thereby, generate 
the multi-Taub-NUT solutions again. The other case is a 
rotational Killing vector and, although it does simplify the 
equation, we have so far been unable to find interesting solu
tions. (This problem will be discussed in more detail in that 
section.) Nonetheless, we feel the result is of sufficient inter
est to merit this explication. 

II. BACKGROUND FROM JIi"'-SPACES 

An Jrc-space admits two distinct congruences of totally 
null, two-dimensional surfaces,5.7 which determine compli
mentary foliations of the entire space. It is this foliation 
which picks out the natural coordinates to use in describing 
such a space. We denote the 2-form which is (co-)tangent to 
one of these congruences by ~, which must be closed and 
simple. Therefore, we may pick a pair of coordinates, de
scribed as a single spinor q A , which labels the leaves of this 
congruence: 

(2.1) 
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Similarly, the other congruence,~, permits for another pair 
ij B' such that 

~ = dqR I\dijB' (2.2) 

Since the two congruences are complimentary foliations, i.e., 

(2.3) 

we may use q A ,ij B as a coordinate system for the entire 
space. 8 In terms of this geometry it is shown in Ref. 9 that the 
space is an Jr'-space when 

g = 2p ABdqA ® dijB' (2.4a) 
s 

p AB = fl qAijB and detP AB = !flqAijBfl~ijB = 1, (2.4b) 

where fl is the Kahler scalar of the manifold and sUbscripts 
such as q A indicate partial differentiation with respect to that 
variable. One can easily see that the coordinates qA and ijB 
are all null and that a real Euclidean space is obtained by 
looking at the cross section given by setting 

(2.5) 

Any real, Euclidean self-dual space may have coordinates 
chosen on it in such a way that it may be described by this 
approach. 5 After giving a complete description of the com
plex form of the allowed gauge transformation, and the gen
eral Killing vector and master equation, we will proceed to 
the real, Euclidean case by then insisting on the restriction of 
the coordinates given by Eq. (2.5). 

To determine the allowed transformations we note that 
~ and ~ are both closed anti-self-dual 2-forms. Since the 
anti-self-dual curvature vanishes, we may choose a basis of 
anti-self-dual 2-forms which is closed. It is straightforward 
to check that a basis composed of 

SAB = (~,PABdqAdijB~) (2.6) 

suffices for this purpose. In fact, choosing ~ and ~ as two of 
the members and requiring the third to be of the form 
WABdqA I\dijB, ensures that WAB cx.flqAijB=PAB . So we re
quire a set of transformations which relabel the sets of null 
strings, 

q/R = q'R(qA,ijB), 

-IS -/s(...A -B) q = q 'I ,q , (2.7) 
but which preserve the closed nature of our basis S AB_ 
which is equivalent to vanishing of the anti-self-dual connec
tions, rAB , in this basis. Since the SAB are true spinorial 
quantities, they will transform as 

S /Ii.s = (Ii. A (S BS AB, (Ii. A ESL(2,C). (2.8) 

This requirement is quite strong and has the solution 

dq'R = (d R A )(..1dqA - iTfl _BdijB), qAq 

dij'S = (d S B )(XdijB + iffl A _ dqA), q qB (2.9a) 

where d R A' d S B are independent arbitrary elements of 
SL(2,C) and ..j, X, 1", i' are constant scalars related by 

1 =..jX + 1"f, (2.9b) 

which is the requirement that the volume form on the mani
fold is preserved. (Since everything is complex the factors of i 
are not essential but are inserted to make simpler the transi-
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tion to the real, Euclidean case.) The inverse transformations 
are 

while 

(Ii.. = (..1, +_i1") (R = d R (2.11) 
A + if, ..j' A A , 

where the matrices (R A transform undotted spinorial indi
ces. In particular, 

SAB=2dqIA I\dqBI (2.12) 

transform as 

S'RS=(RAfSBSAB. (2.13) 

Lastly, we want to know how fl itself transforms. In order to 
specify this transformation, it is necessary to introduce a pair 
of poten tials the existence of which is guaranteed by the con
straint equation on fl, 

(if4Jafl )(aAaBfl) = 2. (2.14) 

This equation implies the existence of functions F and F such 
that 

(Jafl )aAaBfl = qA + aAF, (if4fl )aAaBfl = ijB + aBp. 
(2.15) 

Then we find that 

fl / = fl + i X1"(F + PL-..1f(F + P) +A (q) + A (ij), 
..1..1 - 1"f 

(2.16) 

where P, P are new arbitrary functions of all four variables 
while A and A are new functions of qA only and ijB only, 
respectively. 

All the transformation equations given retain the form 
of the metric, the coordinates as labels for a pair of sets of 
null strings which, together, span the space, as well as pre
serving the closed property of our choice of basis of anti-self
duaI2-forms. Upon restriction to the real, Euclidean case, qA 
should be interpreted as ~ with fl real, and, as well, all 
quantities with a tilde are interpreted as the complex conju
gates of the similar symbols without the tilde. 

III. KILLING'S EQUATIONS 

In order to determine the form of an allowed Killing 
vector, we write it in the form 

K=LAaA +LAaA· (3.1) 

The homothetic Killing equations 

K{Jl;VI = Xo8"/lV (3.2) 

then become the three sets 10 

PIA BaCILB = 0, (3.3a) 

pCIAJaILc = 0, (3.3b) 

L DaDP AB + L DaDP AB + pADJaLD + p DBif4LD 
= 2XoP AB. (3.4) 
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The solutions ofEqs. (3.3) are given by 

LA = B(JA[J + JA (q), 

LA =BJt[J +P(ii), (3.5) 

where B, B are arbitrary, while J A is a function of qA only 
and JA a function of iiA only. 

Insertion ofEqs. (3.5) into (3.4) gives 

iJB'JC(JDaD +JDaD -2Xo)[J 

+ iJB [B ((JA[J jaAac[J ] + ac [B('JD[J )aDiJB[J ] 

=0, 

from which it follows that Band B must be constants, which 
are therefore written from now on as bo and boo Therefore, we 
have simply 

iJBac [i [J - 2xoil + bel + bel] = O. 

This allows us to infer the existence of functions H = H (q A ) 

and ii = ii (iiA ) and a master equation 

K[J = 2xoil - boF- bel+H + ii, (3.6) 

which describes the relation which a Killing vector K and 
the Kahler function [J must have in order for the space in 
question to admit a Killing vector. There are, however, yet 
some integrability conditions which such a solution must 
satisfy. I I These can be shown to require the existence of a 
constant Co and functions t = t(qA ), t = t(iiA ) such that 

LA = b~[J + {to - !ico)qA + (JAt, 

LA = b~[J + {to + ~icoW + Jtt. (3.7) 

The particular integrability condition involved here is that 

(3.8) 

must be constant, where V A A is the usual spinorial covariant 
derivative and K B B is the spinorial form of the components 
of the Killing vector. (In the vector picture, tAB is the spinor
ial image of the anti-self-dual part of the covariant derivative 
of K. Therefore, tAB = 0 is the case considered by Tod and 
Ward. 3

) In general, the covariant derivative of tAB would be 
proportional to the anti-self-dual part of the curvature. II 
However, in an K-space, viewed in a basis where dS AB = 0, 
this simply means that tAB must be constant. As a summary, 
we see that the Killing vector is determined by three con
stants, bo, Co, bo' two pair off unctions of two variables only t, 
t, H, ii, and the homothetic constant X o. In the real, Euclid
ean case all that is necessary is, again, to replace all tildes by 
complex conjugates. 

We now want to consider a single, specific, allowed 
Killing vector and to use the group of coordinate transfor
mations to simplify its form as much as possible. In doing 
this we will restrict our attention to the real, Euclidean case. 
Also, we restrict attention to the pure Killing vector case
X 0=0. We first focus attention on the matrix 

flAB _ _ 2(bo iCo) I (- . b-' Co rea. 
ICo 0 

(3.9) 

The determinant of tAB is just 4(lbol2 + C0
2

). The determi
nant is invariant under the transformation group. Therefore 
we may split the discussion into only two cases: (1) dettAB 
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= O-bo = 0 = c, i.e., tAB = 0; (2) dettAB #0. 
In case ( 1), tAB = 0 and therefore the Killing vector has 

a purely self-dual covariant derivative. Then we have simply 

LA = (JAt. (3.10) 

We write 

(3.11) 

and then perform a transformation 

q: =~=t(q'P)}detdRA = I ~q 
p =J(q,p) Jq 

~P 1= 1. 
Jp 

(3.12) 

Herej is a function chosen so as to satisfy the determinant 
condition and t is assumed nonconstant since a constant t 
generates only 0 as a Killing vector. We also choose an [J 
transformation (..1 = 1, r = 0) with A p = - H, resulting in 
the form 

(3.13) 

as the simplest possible form for this type of Killing vector 
and the constraint it imposes on [J. This Killing vector sim
ply generates a translation in the variable Rep. 

In case (2), tAB #0, so we note that it satisfies 

t,RS = dRAd S
B tAB, 

which results in 

b b = Ll 2bo - 2Llrco - rbo, 
cb = co(ILl 12 - Ir12) + b;fr + boLlf, 

(3.14) 

(3.15) 

The procedure to follow to simplify this Killing vector is 
somewhat involved, but we give an outline here. First, if bo 
happens to vanish, choose a transformation with nonzero Ll r 
so that b b # O. With bo surely nonzero, then perform an [J 
transformation with r = 0 and A = t lbo, which leaves 
(dropping primes) 

K = ((JAboil - !ic~ )a A + c. c. 

At this point we note that there is also some additional 
gauge freedom in the potential F. From Eq. (2.15) it is clear 
that F is undefined to within the addition of an arbitrary 
function h(iiA)' only. Therefore, by choosing such an 
h = - jj lbo, the master equation is left in the form (drop
ping primes) 

K[J = - boF - b;F. 

At this point, we see that we may always tranform to b b = 0 
by choice of r, causing thereby cb =! [dettA~I/2, which 
gives 

(3.16) 

At this point we have not yet used the freedom of d R A • By 
choosingq'=qlp,p'=!p2,(detd R

A = 1),andcb = -2,we 
finally have (again dropping primes) 

K[J = i(pap - pap)[J = 0 (3.17) 

as an optimal form for those Killing vectors whose covariant 
derivative has a nonzero anti-self-dual part. (By setting 
p = I pleio, we can rewrite K as ao and see that K generates 
rotation of the p, p plane.) 
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IV. RELATION TO SOLUTIONS OF THE HEAVENLY 
EQUATION 

In this section we impose the existence of a Killing vec
tor on the manifold and use this to simplify the determina
tion of solutions of the n equation, (2.4b). First, consider 
Killing vectors for which tAli =0. Then Eq. (3.13) tells us 
that 

n = n (p,q,p,1j) = L [i(p - p),q,q]. (4.1a) 

Setting u = i( P - pI, we reduce Eq. (2.4b) to 

LuuLqq - LuqLuq = 1. (4.1b) 

By setting U = Lu and Q = Lq we may write this partial 
differential equation as the vanishing of a pair of 3-forms I2

: 

dQ I\.dU I\.dq - dq I\.dij I\.du = 0, 

dU I\.du I\.dp + dQ I\. dq I\.dij= 0. (4.2) 

Then, choice of U, q, ij as new independent variables can be 
made explicit by the Legendre transformation 

U=Lu' V=Uu-L= V(U,q,q), 

which transforms Eq. (4.1b) into 

(4.3a) 

Vuu + Vqq = 0, (4.3b) 

thereby making the problem linear. Equation (4.3b) is equiv
alent to the original (4.1b) provided that dU I\.dq I\. dij=/=O. 
However, ifdU I\. dq I\.dij=/=O, it is easy to showthatthe space 
so generated is fiat. Using the Legendre transformation, we 
have that 

n = n (p,q,p,1j) = uU - V[U(u,q,1j),q,q], (4.4) 

with u = i (p - pI, and with u = V u( U,q,1j) determining 
U = U(u,q,1j) while V(U,q,1j) is any solution ofthe three-di
mensional Laplace equation. However, it is also useful to 
rewrite the metric in terms of V. Therefore, setting 
p = W + iu), q = ~(v + iw) changes the canonical form of 
Eq. (2.4) to 

ds2 = (uu)(dv2 + dw2 + dU)2 
+ (uu)-I(dt + uvdw - uw dV)2. (4.5) 

Bysettinguu = <P,definingxi = (u,w,U) as coordinates, and 
setting Wi = (u w ' - uv'O), we can write this in the form 

ds2 = <P13ijdxidxi + <P -I(dt - widxi)2, 

where Ejkiak Wi = 13jfa I'<P, while, of course, Eq. (4.3b) 
becomes 

13ijaA<P = 0, 

(4.6a) 

(4.6b) 

which is the form of metric first given by Gibbons and 
Hawking4 and first shown by Tod and Ward3 to be the gener
al form of (real, Euclidean, self-dual) metric which permits a 
self-dual Killing vector, i.e., tAli = 0. 

It is also worth writing down the general form of the 
curvature tensor for this case, which does not appear to be in 
the literature. Selecting the obvious orthonormal tetrad 

ei = <P 1/2dxi, ~ = (dt - widxi)l<P 112, (4.7a) 

and then going to a null basis by 

el = W + ie2)/21/2 = (ez)·, 

tJ = W + i~)l21/2 = (e')., (4.7b) 
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we may display the usual Penrose forms of the conformal 
curvature in the form 

e(S) = !<pa+a+<p -2, e(4) = !<pa+ao<p -2, 

e(3) = !<paoao<p -2, (4.8) 

e(2) = !<pa_ao<p -2, CO) = !<pa_a_<p -2, 

where a ± = + (ax' ± iax2), ao = ax' are basis vectors for a 
helicity space. The invariants of this curvature are, of course, 
of algebraically general type except for very special choice of 
<P. 

The other case, where we permit tAli to be different 
from zero is considerably more complicated. To consider it, 
we begin by integrating Eq. (3.17) (which ensures the exis
tence of such a Killing vector) in the optimal gauge discussed 
in Sec. III. The general solution is given by a function 
H = H (q,ij,r) such that 

n = H (q,ij, pji). (4.9) 

The heavenly equation then takes the form 

(rHr)rHqq - (rHr)qHrq = 1. (4.10) 

In order to simplify the form of this equation, again write it 
in terms of an ideal of differential forms. Set J =rHr' Q =Hq 
and we have 

dJ I\. dQ I\. dq - dr I\. dq I\. dq = 0, 

dr 
dJ I\. - I\. dq + dQ I\. dq I\. dQ = 0. 

r 
(4.11) 

Another choice of independent variables, J, q, ij, allows Eq. 
(4.10) to be transformed into 

Fqq + (eF)JJ = 0, (4.12) 

where F = Inr. (The degenerate case where dJ I\. dq I\. dij = ° 
again only generates fiat manifolds and is therefore not of 
interest here.) This can be accomplished by means of the 
(Legendre-like) transformation 

W = W(J,q,1j) = FJ - H, (4.13) 

with Inr = F = F(J,q,1j) determined by J = rHr. 
The problem now is to solve Eq. (4.12) [or the equivalent 

Eq. (4.10)]. Any such solution is a real, Euclidean self-dual 
space with at least one rotational Killing vector. However, it 
is possible that any particular solution so determined will 
also have another Killing vector. In that case it is rather 
easier to find the solution by using the solution to the linear 
equation (4.3b) given explicitly by Eq. (4.6). Therefore we 
characterize a nontrivial solution to Eq. (4.12) as one which 
generates a space without any translational symmetries. As 
yet we have found no nontrivial solutions. 

A plausible method to attempt such a solution is to con
sider the case when both terms in Eq. (4.12) vanish separate
ly. In the complex case this actually generates interesting 
solutions,6 but they have no real Euclidean cross sections. 
An attempt to generalize this to the case where each term is a 
constant (which cancel) generates only the well-known 
Eguchi-Hansen metric2 which is given in this formalism by 
n = N + b In[(N - b )/(N + b)), withN 2 = b 2 - 4(q + Wpp 
[see Eq. (3.10)) and b an arbitrary constant. 

In an attempt to understand why these nontrivial solu
tions are so difficult to obtain, we considered the set of such 
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spaces which have two "rotational" Killing vectors where 
the Lie algebra so generated closes upon itself. That is, let K I 
and K2 be two distinct pure Killing vectors with nonzero 
matrix tAB' permitted by some (class of) spaces, and two con
stants a and {3 (possibly zero) such that 

[KI,K2] = aKI + {3K2• (4.14) 

We gauge KI [as in Eq. (3.17)] to have the form 

KI =rt~-rt~, 
at{' a1l' 

(4.1Sa) 

and write K2 as 

a - a 
K2 = (br/lqA + ;qJ -a + (br/lqA + ;qJ -a' (4.1Sb) 

qA 1l' 

where we have taken the liberty of adding a term !coK I to the 
most general form K2 could have had, thus ensuring that K2 
and KI are independent. Using Kin = 0, it is then a matter 
of straightforward algebra to show that a = 0, {3 is pure 
imaginary, and bo==O! Therefore tAB vanishes for K 2, which 
is then "translational," contrary to assumption. The conclu
sion, then, is that there are no real, Euclidean, self-dual 
spaces with two rotational Killing vectors whose algebra is 
closed upon itself. In fact, when one tries to find such a space, 
the equations insist that one of the Killing vectors be "trans
lational," thereby generating what we have referred to as a 
trivial solution ofEq. (4.12). 

It is not difficult to see that the only possible symmetry 
algebras which do not contain a two-dimensional, solvable 
subalgebra are the one-dimensional algebra and SU(2). A 
subclass of solutions belonging to the latter case [when SU(2) 
acts transitively on 3-surfaces] was given in Ref. l(c). 

V. CONCLUSIONS 

We have reduced the problem of finding all real, Euclid
ean, self-dual spaces with one Killing vector to two cases. 
These correspond to the possibilities that the Killing vector 
be either of a "translational" type (with respect to Kahler 
coordinates) or of a "rotational" type. Killing vectors of the 
"translational" type all have self-dual covariant derivative 
and are therefore of the type already considered by Tod and 
Ward.3 All spaces which admit such a Killing vector are 
determined by the different solutions of the (flat) three-di
mensional Laplace equation (4.4a) and are therefore easily 
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studied further. Regular, complete solutions ofthis type are 
given by the multi-Taub-NUT metrics of Gibbons and 
Hawking.4 

Spaces which admit only Killing vectors of the "rota
tional" type may be determined by finding solutions of Eq. 
(4.12). (These Killing vectors have the anti-self-dual part of 
their covariant derivative nonzero.) Since this equation is 
difficult to solve, whereas the Laplace equation is quite 
straightforward, it is relevant to look only at solutions which 
generate spaces not having any "translational" Killing vec
tors. As yet we have been unable to find any solutions of this 
type. As an indication of why this should be expected to be 
difficult, we have shown that there are no spaces which ad
mit two and only two Killing vectors both of which are of 
"rotational" type. 
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In the last few years several papers have appeared which give linear deformation problems for 
the Ernst equation. In this paper we investigate the relationships between the different problems 
and show that essentially there are two distinct problems up to a gauge transformation 
corresponding to a finite or infinite dimensional realization of the algebraic prolongation 
structure associated with the Ernst equation. 

PACS numbers: 04.20.Cv 

1. THE PROLONGATION STRUCTURE AND 
DEFORMATION PROBLEMS FOR THE ERNST 
EQUATION 

The stationary axially symmetric empty space-times 
are those solutions of the empty Einstein field equations 
which admit two commuting Killing vectors, one spacelike 
and the other timelike. The determination of the metrics can 
be reduced to solving a complex equation in two variables, I 

(ReE)'V1E= VE·VE 

where 

V2E ==.xl~ I~ (xlaE) + a
2
E 

aX I aX I aX2 
and 

(Ua) 

(Ub) 

The complex function € is defined in terms of the metric 
functions which occur in Lewis's canonical form for the 
metrics,l 

namely, E = I + ig, where g is the "twist potential". This is 
conveniently defined using the Hodge * operator by 

*dg = - XI~ 1/2dUJ 

with 

*dz = - idz, *dz = idz, z = XI + ix1• (1.3) 

where - denotes complex conjugation. Considerable pro
gress has been made in obtaining solutions to the Ernst equa
tion (1.1) by exploiting the internal symmetry group of the 
equation. In particular the Kinnersley-Chitre representa
tion of the Geroch group K has been especially useful. 3-8 

A more recent alternative approach has been to associ
ate the Ernst equation with a linear deformation problem. In 
this method the Ernst equation arises as the integrability 
conditions of the deformation problem. One can then gener
ate new solutions from known "seeding solutions" by means 
of the Backlund transformation deduced from the deforma
tion problem9

•
10 or by using the technique of Zakharov and 

Mikhailov. II 
The first linear problems of this type were derived by 

Belinskii and Zakharov,11 Maison,t3 and Harrison9
; al

though Kinnersley-Chitre6 contains an earlier example it 

was not developed by them in this fashion. In this paper we 
present in Sec. 1 a unified derivation of these problems as 
well as those due to the authors l4 and Kramer and Neuge
bauer. 10 In Sec. 2 the inter-relations between the different 
problems are considered in detail as well as the correspond
ing Backlund transformations relating solutions of the Ernst 
equation. In particular, we show that there is a commuting 
diagram whereby one can pass from the problem in Ref. 14 
to the Belinskii-Zakharov problem. 11 This provides an ex
ample of a transformation from a deformation problem in 
which the seeding operators do not commute to one in which 
they do. 

The method we use to obtain the deformation problems 
is the Wahlquist-Estabrook prolongation technique, 15 
which yields an incomplete Lie-algebraic structure which 
can be associated with the equation in a manner explained 
below. The structure is closed by imposing constraints on the 
algebra which do not destroy its nonabelian nature. The lin
ear deformation problems result from choosing some appro
priate representation of the resulting Lie algebra. 

By putting € = 1+ ig, the complex equation (1.1) can 
be written as the first order system, 

Pj = l~l,x}, Qj = I~I g.Xj' j = 1,2, 

XI-IPI +PI.x , +Pz.x , = -Qi -QL 

x I- IQI + QI.X, + Qz.x, = QIPI + QZP1, 

and if 4'>; = I-I¢,;, then 

(1.4a) 

(l.4b) 

(I.4c) 

4'>;.j - 4'>j.; = P;4'>j - Pj 4'>;. i,j = 1,2, (1.5) 

where ¢.j=a¢ lax j' Putting ¢ = lor ¢ = g then Eqs. (1.5) 
represent the integrability conditions on p;.Q; which, to
gether with (1.4), can be used to generate an exterior system 
E (M) on the manifold MeR 8 with local coordinates 
(x;./, g,P; ,Q;) equivalent to the Ernst equation (1.1) provided 
dXI 1\ dX1 =f.O on a solution manifold. 16.17 The generators of 

E(M) are (a l ,a2./31./31'YI,Y1'Y3,Y4)' where 

a l = dPI f\dx. + dP1f\dx1, (1.6a) 

a1 = dQ.f\dxl +dQ1f\dx1 -1.dxl f\dx1, (1.6b) 

/31 = dPI f\dX2 - dP2 f\dxl - 12dx 1 f\dx2, (1.7a) 

/32 = dQ. f\dX2 - dQ1f\dx I - 13dxI f\dx1, (1.7b) 

YI = dlf\dx l + PJdx. f\dx2• (1.8a) 

Yl = dlf\dx2 - Pzfdx. f\dx1, (1.8b) 

Y3 = dg f\dXl - QJdx l f\dx2, (1.8c) 
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Y4 = dg I\dxl + Qddx l l\dx2, 

and 

(1.8d) 

II=PIQ2-P2Ql' 12 = -(XI-IPI+Q~+Q~), 

13 = -XI-IQI + QIPI + Q2P2' (1.9) 

It is easy to check that Eqs. (1.6)-( 1.9) generate an exte
rior system, that is, a differential ideal of the exterior algebra 
on M which is closed under the operation of exterior differ
entiation,dE (M) CE (M). Ifwethenusethestandardideason 
the existence of a linear Wahlquist-Estabrook prolongation 
of E (M), 15 we require to determine matrix valued functions 
F,G on M such that the vector valued one form 

w = dy + Fy dX I + Gy dX2 (1.10) 

prolongs E (M) to an exterior system E (N) with generators 
(a l ,a2./31./32'YI,Y2'Y3'Y4'W) on the trivial vector bundle 1TN 

:N = M X Y ---+M. It is straightforward to show that w deter
mines a Wahlquist-Estabrook prolongation, provided 

F = Xo + PIXI + P2X 2 + QIX 3 + QzX4' (Ula) 

G = X5 - P 1X2 + PzXl - QIX4 + QzX3' (1.1Ib) 

where the X;'s (i = 1, ... ,5) are matrix valued functions of XI' 
x2,/, and g, which satisfy the following incomplete Lie alge
braic or prolongation structure: 

X s.x , - Xo.x, + [XO,x5] = 0, (1.l2a) 

Xt,x, + X 2•x , - x I- IX2 + [XO,x2] - [XI,x5] - fXs,J = 0, 
(1.l2b) 

X 3•x , +X4•x, -XI-
IX4 + [XO,x4] - [X3,x5] - fXs.g = 0, 

(1.12c) 

X 2•x , - X I.x , - [XO,xI] - [X2,x5] + fXo.! = 0, (1.l2d) 

X4.X , - X 3•x , - [XO,x3] - [X4,x5] + fXo,g = 0, 

fX2,J + [XI,x2] = 0, 

X4 + [X I ,x4] + [X3,x2] - f(X4,J + X 2,g) = 0, 

X 3 - [X2>X4] - [XI,x3] + f(X3,J - XI,g) = 0, 

X2 - [X3,x4] - fX4.g = 0, 

where the bracket [ , ] denotes matrix commutation, 
[A,B] = AB - BA. 

(U2e) 

( 1.13a) 

(1.13b) 

(l.13c) 

(1.l3d) 

Equations (1.12) give the XI' X 2 dependency whereas 
Eqs. (1.13) are functionally simpler and determine the pro
longation structure for the subalgebra generated by 
(XI,x2,x3,x4)' To obtain a representation we have to close 
this structure so that the resulting Lie algebra is nonabelian 
and consistent with the prolongation structure. This condi
tion is satisfied if we assume that X;'s are independent off 
and g. In this case Eqs. (1.11) reduce to 

[X I ,x2] = 0, X 4 + [X I ,x4] - [X2,x3] = 0, 

X 2 - [X3,x4] = 0, X3 - [X2 ,x4] - [X I ,x3] = 0. (1.14) 

Two apparently nonequivalent representations are pos
sible, one in which X I is poroportional to X2 and the other in 
which Xl and X 2 are distinct. In fact, these two cases do not 
yield distinct deformation problems, as there exist gauge 
transformations of the prolongation ty) variables which 
transform between the two cases. For this reason we shall 
deal solely with the dependent case, 
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XI =..1.%2' A=A(X\,x2), (USa) 

Xl - [X3,x4] = 0, X4 + [X2,A.X4 - X3] = 0, 

(USb) 

X3 - [X2,x4 + AX3] = 0. 

A 2 X 2 matrix representation of this algebra in terms of 
the SL (2, q basis, 

[ZO,ZI] = Z2' [ZO,Z2] = - ZI' [ZI,Z2] = Zo (1.l6a) 

with 

_li(O 
2 I 

~ J ZI = -~(~ 
~), 

is given by 

XI = i (sinO )Zo, X2 = i (cosO )Zo, 

X3 = ZI + i (sine) Z2, X4 = i (cose )Zz, 

- 1) 
° ' 

(1.l6b) 

where tane = A. (1.17) 

It is convenient at this stage to introduce half-angles 
into the representation. Putting cotO = - 2v/( 1 - v2

), we 
find that 

XI = ill - VI) Z X
2 

= - 2iv Z 
(l+vl) n. (1+v2 ) 0' 

(1.18) 

To complete the representation we have to determineXo,x5' 
and v to be compatible with Eqs. (1.12). Herein lies a radical 
departure from the usual prolongation technique as applied 
to the Korteweg-<le Vries equation, for example, 15 in that 
these equations can be satisfied by an infinite dimensional 
representation of the Lie algebra. Geometrically this 
amounts to erecting a line bundle over N, P = N X E so that 
Xo and X5 are vertical vector fields on this trivial bundle, 1T p 

:P---+N. Equations. (1.12) and the representations (1.18) are 
now defined on P and consequently in the future we shall 
write v = V(XI,X2,7]), where 7] parametrizes E. Let 

a a 
Xo=h(v)-, X5 =l(v)-, 

a7] a7J 
then we find that Eqs. (1.12) become, after some 
rearrangement. 

- (I + v2 )v,x, + x l - 1(1 - v2
) - h (1 + v2 )v'

l 

=0, 

- (1 + V2)V.x, + lx l ' IV
2 -/(1 + V2)V,'1 = ° 

h ' dm w erem=-, 
dv 

If h ;f0, I ;f0 then a solution to (1.20) is given by 

(1.19) 

( l.20a) 

(1.20b) 

(1.2Oc) 

2v - 2 XI 
h = , I = , and v = -. (1.21) 

(I+v2) (l+v2) 7] 

It is easy to check that (XO,x5) do not form an involutive 
distribution on P, 
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-4v a 
[XO,X5 ] = X6 , where X6 = 2 2 (1.22) 

7](1 + v) a7] 

Ifwe now piece the information from (l.lS), (1.21), and (1.11) 
together, we obtain the deformation problem given earlier by 
the authors, 14 

2v 
Y,x, + (1 + v2) y.'1 

= - I-I [it 1 - v2)Zo Ix - 2ivZo Ix 
(1 + v2) • , • , 

+ ((1 + V2)ZI + i(l - v2)Zz)g.x, - 2ivZ2g.x,)Y, (1.23a) 

2 j-I 
Y Y - [2ivZolx, + i(l - v

2
)Zolx, 

,x, (1 + v2 ) .'1 - (1 + v2 ) 

+ 2ivZzg.x , + (( 1 + VZ)Z I + i(l- V2)Z2)g.x, )y, 

(1.23b) 

where v = xJ7] and (ZO,ZI,Z2) are given by (1.16). 
In the case h = 0, I = 0, then Eqs. (1.20) can be integrat

ed to yield 

v= 1 +E(l +m2)1/2, m(xl,x2)=XI-I(X2-k), (1.24) 

where k is an arbitrary constant of integration E = ± 1 and 
we have used - to distinguish this case from the previous 
one. If we introduce the complex function 

XI - i(X2 - k) (l.25a) y= , 
XI + i(X2 - k) 

then we find that 

(1 - UZ)/(l + UZ) = 

_ Em(l + m 2)-1/2- - !iE(yI/2 - y-1/2) (l.25b) 

and 

v/(l + UZ) = !(1 + m 2)-1/2 !E(yI/2 + y-1/2). (1.25c) 

Using (1.25) and introducing the complex variable 
z = X I + iX2' the deformation problem can be written in this 
case as 

w.z = - Er- I [yI/2(fzZo + g.zZ2) + E g,zZI ]w, (1.26a) 

w.z = - Ej-I [ - y-1/2(fzZo + g. zZ2) + g.zZI ]w. 
(1.26b) 

Equation (1.26) is the linear deformation problem intro
duced recently by Kramer and Neugebauer. to Their repre
sentation results from choosing the SL (2,q basis, 

and rescaling the dependent variable, 

w = j-1I2(jj. (1.27b) 

This completes the derivation of two of the different 
representations which can be associated with the Ernst equa
tion. In order to investigate the correspondence more close
ly, rewrite (1.23) in the form given in Ref. 14, 

LV' = (A7] + B}y, L2Y = (C7]-1 + D}y, (l.2Sa) 

where 

and 

A =1-1(/.x,ZO - xl-lg.x,Z_), 

B ==j-l(i/.x,Zo + g.x,Z+), 

(1.2Sb) 

C=I-I( - iXI-I/.x,Zo - xl-lg.x,Z+), 

D==j-l(i/'x,Zo-g,x,Z_), Z± =ZI ±Z2' (1.2Sc) 

The solution of the homogeneous system, 

Llu = 0, L 2u = 0, (1.29) 

obtained by the method of characteristics, is 

u = u(k), where k = X 2 + !(7] - 7]-lx t). (1.30) 

The expression in (1.30) can be inverted to give 

7]= - [(x2 -k)+E(Xt + (x2-k)2)1/2], E= ± 1 
(1.31a) 

which also defines the relationship between the functions v, 
v, 

(1.31b) 

It follows that if we introduce the vector valued functions 

w£(z,z,k) Y(X I,x2' - [(X2 - k) + E(X~ + (X2 - k )2)1/2 ]), 
(1.32) 

then (1.23) is transformed into (1.26). Notice that the two 
cases E = ± 1 in (1.26) are related by the transformation 

yl 12-+Eyl12 (1.33) 

which corresponds to the choice of root in (1.25a). Since yl/2 
is single valued the map defined by (1.32) is double valued, 
y_(w+,w_). 

The Harrison deformation problem results from a 
gauge transformation of (1.l6). Ifwe write this system as 

w.z = Hw, w,z = iiw 

and then apply the gauge transformation 

w = Uy, U = exp(hZo) 

(
1 - iEyl/Z) 

h= -11n , E= ±1 
1 + iEyl /2 

and use the representation (1.16), we find that 

(h ) _ (exp( - ih 12) 0) 
exp Zo- o exp(ih /2) 

(1.34) 

(l.3Sa) 

(l.35b) 

(l.3Sc) 

and that (1.26) transforms to the system given by restricting 
the prolongation form 

0= dy + Ej-I [(yI/2/.z - !fXI-lyl/2)ZO + g.z(EZI - y Il2Z Z)] Y dz + Ej-I [( - y-1/2 /.z + !jx
1
- 1y- I I2)Zo 

- g.z(EZI + y- I12Z 2)]ydz (1.36) 
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to a solution manifold on which dz 1\ dz #0. Using the same kernel letter to denote the homomorphic image of the SL (2,e) 
basis in the set of vertical vector fields on N, we find that 

Zo = - !i~1 a~1 - Y2 a~J, ZI = - !~2 a~1 - YI a~J, Z2 = - ~i~2 a~1 + YI a~J (1.37) 

If we introduce the homogeneous coordinate q = Y/Y2 
then the vector fields (1.37) become 

Zo= -iq ~, ZI= _!(l+q2):q' 

Z2 = - V(l - q2) :q' (1.38) 

which are vertical vector fields on the trivial bundle 1/'N' 

:N' = M X Q_M, where Q is a one-dimensional fiber para
metrized by q. This can be obtained from the action of ele
ments of SL (2,e) on Q as fractional linear transformations. 
Harrison's prolongation form9 is given by the SL (2,e) 
representation 

- - i€ -2 a 
Zo = --2-(q - 1) aq' 

- -€-2 a 
Z2 = -2-(q + 1) aq 

upon introducing the variables 

t = 2f-l([z + i g,z) - x l- 1, 

V = 2f-l([z - i g,z) - Xl-I, 

(1.39) 

(1.40a) 

(1.40b) 

w = t, v = ii, X = ¥, Y =!Z, ; = iy1/2, (1.40c) 

It is clear from (1.26), using the basis (1.16) for SL (2,e), that 
ifw is a solution of the equation then w = wis also a solution. 
For the deformation problem (1.36) a second solution is giv
en by 

Y= (~ ~ 1" 
In either case one can therefore introduce the fundamental 
solution matrix, <P, whose columns are these solutions and 
then (1.26) or (1.36) can be written as 

<P,z = (Ay1/2 + B )<P, 

<P,z = (Ay-I 12 + ii )<P, 

(1.41a) 

(1.41b) 

with appropriately defined A, B, and ii. If we now apply a 
gauge transformation to (1.41), 

U = G<P, (1.42) 

then the transformed system can be written as 

U,z = (1 + iyl12)CU, 

U,z = (1 - iy-1/2)CU, 

where C= - iGAG -I, 

provided G - I satisfies 

G ,; I = (iA + B )G - 1, 

G ,"i I = ( - iA + ii)G -I. 

(1.43a) 

(1.43b) 

(1.43c) 

(1.44a) 

(1.44b) 

This system is precisely (1.41) with yl/2 = i. Consequently, 
given a solution of the Ernst equation, the complete integra
bility of (1.41) ensures the existence of G - I since r1z = r1z in 
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general. However, in this case there is not necessarily any 
relationship between the column vectors comprising G - I. 

The problem (1.43) has the same form as the problem given 
by Maison 18 [Eq. (2.19), his [y is our iy-1/2]. The deforma
tion problem (1.43) can be transformed into the Belinskii
Zakharov form 12 by reintroducing the variable 1/ into the 
problem using (1.31). Thus defining 

1[1 (z,Z,1/)=U(z,z,H (1/ - !1/-I(Z + if) - i(z - Z) j), 
(1.45) 

we find that 

1[1 _ 21/ 1[1 - - 2(z + Z)CI[I (1 46 ) 
.z (2i1/ _ (z + Z)) ,." - (2i1/ - (z + Z))' . a 

21/ IT, __ 2(z + Z)CI[I 
1[1" + or (1.46b) 

(2i1/ + (z + Z))'''' (2i1/ + (z + Z))' 
which is of the required form. One further point remains to 
be answered; this is the relationship between C and the corre
sponding coefficient in Refs. 12 or 18. The coefficients ap
pearing in these last two papers are defined in terms of the 
components of the Lewis metric tensor (1.1), 

(1.47) 

A calculation shows that corresponding to the deformation 
problem (1.36) for which 

A = - €f-I{(J,. - UXI-I)ZO -g'zZ2}' 

B = - f- I g.zZI' ii = - Ii, 
we have the relationship, when € = + 1, 

C = !(h.zh -I - !x I- 11), 

C= -iGAG- I 

where 

( 
- ix f-IU) - I 0) 

G = p(z'z) I • r.' -I • 
-1, u.o 

Ifwe define A = A + (i/4)x1~ II, 
thenC=-iGAG~1 =!h,zh~l. 

(1.48a) 

(1.48b) 

(1.49a) 

(1.49b) 

(1.50a) 

(1.50b) 

The introduction of A corresponds to rescaling <P in (1.36), 
iP = ((1 - iyI/2)/(1 + iy I/2)) 1/2<p. Equation (1.46) is then 
identical to the Belinskii-Zakharov problem. 12 The appar
ently arbitrary function p appearing in the definition of G ~ I, 
(1.49b) is determined from (1.44) with A replaced by A. In 
fact G - I can be determined for both of the cases € = ± I 
and it is found that Eq. (1.50) is again valid with 

G -- 1 
< 

- f(€-I)). 
- f(€+ I) 

(1.51) 

Maison's coefficient is obtained by introducing 
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(1.52) 

where upon we have the relationship 

h.zh-I= -XI-
2G -~)~p~-XlJ(_~ ~). 

(1.53) 

Then defining 

, _1(I+iyI/2)( 0 I) 
U =(z+i) l-iyl/2 _IOU, (1.54) 

Eqs. (1.43) transform to Maison's deformation problem, 

U:z = ( - x l- 2/2)(1 + iy I/2'J/.tp.z U', (1.55a) 

U:z = (-x l-
2/2)(I- iy-I12'J/.tp.zU'. (1.55b) 

2. THE RELATIONSHIP BETWEEN THE FINITE AND 
INFINITE DIMENSIONAL DEFORMATION PROBLEMS 

In this section we give a geometrical interpretation of 
the mapping between the finite and infinite dimensional real
izations of the prolongation algebra as defined by (1.32). To 
this end we introduce the complex variables z = x I + ix2,z 
into (1.23), whereupon it assumes the form 

2"1 _ [((Z +i) + 2i7J\..4 B] 
y,. - (2i7J - (z + i){11 - (z + i) - 2i7J r + y, 

(2.la) 

y_+ 2"1 =[i((z+i)-2~7J\7+B]Y' 
,z (2i7J + (z + i)(11 (z + i) + 21"1 r 

(2.lb) 

where A = - f-I(/zZo + g,zZ2)' B = - f-lg.zZI' 

B = - f-lg.zZI' (2.1c) 

This is easily obtained from (1.41) upon noting that 

. 1/2 ((z+i) + 2i7J) ly = 
(z +i) - 2i7J 

(2.2a) 

and writing 

y(z,z,7J)=w(z,z,!I ("I - !7J- I(z + i)2) - i(z - i) J), (2.2b) 

where w is the first column vector of 4> in (1.41). 
Consider now the eight-dimensional manifold M with 

local coordinates (mi)=(z,z,f,g'Pz,Pz,Qz,Qz)' where Hz 
= ~(HI - iH2),Hz = ~(Hi + iH2). Then corresponding to 
the exterior system E (M) introduced in Sec. 1 there is an 
exterior system E (M) with generators IOj J =1 aa$b'Yc J on 
M which is equivalent to the original Ernst equation in the 
sense that E (M) is annulled when restricted to a solution 
manifold of the Ernst equation on which dz I\dz"/=O. The 
IOj J are easily calculated from the generators for E (M). 
Thus, for example, 

al = ~d(Pz + Pz) I\(dz + di) + ~d(Pz - Pz)l\(dz - di) 
= dPz I\dz + dPz I\dz. (2.3) 

Corresponding to the finite dimensional and infinite dimen
sional representations of the prolongation structure there 
are prolongations E k (N) and E (P ) of the exterior 
system E (M 1 defined on the manifolds N = M X W, 
P = M X Y XE, withlocalcoordinates(m i,wl,w2),(m i,yl,y2, 
"I), respectively. EdN) is generated by 1 OJ'{})k J, where 
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{})k = dw + (y,V2(pz Z o + QzZ 2) + QzZIlw dz 

+ (- yJ: 112(PzZ o + QzZ 2) + QzZIlw dz (2.4a) 

and 

rk = (z + ik)/(z - ik). (2.4b) 

That is, there is a one parameter family of prolongation 
forms. A solution manifold S of E (M) conveniently parame
trized by (z,i) such that dz 1\ dz"/= 0 annuls E (M). In this case 
we see that when E k (N) is over S that (}) k is completely 
integrable, 

d{})k = Ol\{})k' OeA I(M) (2.5) 

and we have the usual interpretation of {})k as an SL (2,Q 
connection on N which is fiat when over S. 

In the infinite dimensional case things are more compli
cated. For this purpose it is more natural to replaceNby the 
manifold Q = M X W XK with local coordinate 
(mi, WI, w2

, k ) on which is defined the exterior system E (Q) 
generated by 1 OJ ,w J, where 

w = dw I\dk + (r 1/2 (PzZo + QzZo) + QzZdw dz I\dk 
+ (- y-1/2(PzZ O + QzZ2) + QzZdwdzl\dk. (2.6) 

The two form (2.6) pulls back to a two-form t/J on P via the 
bundle map 

h 
Q=MXWXK-.--P=MXWXE 

'TI'q 1 1 'TI'p 
Id 

MXW -·-----Mxw 
which is given in local coordinates by (m i,w l ,w2,7J) __ (m i 

,W
I
,W

2, - (i/2)(z -i) + (118"1)(4"12 - (z +i)2)). A simple 
calculation shows that 

t/J = h ·w=adw 1\ dz + bdw 1\ dz + cdw 1\ d7J 
+ (bC - aD)w dz I\dz + Cwdz I\d7J 
+ cDw dz 1\ d7J, (2.7a) 

where 

a = - (1I47J)(2i7J + (z + i)), b = (1I47J)(2i7J - (z + i)), 
c = (118"12)(4"12 + (z + i)2) 

and 

(2.7b) 

D = - y-1/2(pzZ O + QzZ2) + QzZI' 

If we restrict (2.7) to a solution manifold parametrized by z, 
z dz 1\ dz"/= 0, which is also a solution manifold of E (M), then 
(2.7) gives rise to the deformation problem (2.7). When over S 
we see that t/J satisfies a two-form version of the Frobenius 
complete integrability condition 

dt/J = t/J 1\ 0, OeA '(M). (2.8) 

It is interesting to note that h - I is double valued, 

7J ± = k + (i/2)(z - i) ± !((z + i)2 + (k + i(z - i)f)1 12. 

(2.9) 
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An alternative Hamiltonian formulation is presented for the spatially homogeneous Einstein
Dirac system which in the nondegenerate case enables the number of gravitational degrees of 
freedom to be explicitly reduced to two. 

PACS numbers: 04.20.Fy,98.80.Dr 

1. INTRODUCTION 

Teitelboim and Nelson 1 and Henneaux2 have given a 
Hamiltonian formulation of the coupled Einstein-Dirac sys
tem in which the basic geometrical canonical variable is an 
orthonormal frame or "tetrad." However, an alternative for
mulation exists in which the usual gravitational canonical 
variables are retained and a fixed tetrad depending on those 
variables is introduced only to define the Dirac spin or fields. 
This can be useful when'the symmetry of the class of space
times under consideration is such that a "natural" candidate 
for the tetrad is available. Such a formulation has recently 
been used by Ryan and Obregon3 to study the symmetric 
case Bianchi type IX Einstein-Dirac system. 

For spatially homogeneous spacetimes of all of the 
Bianchi types except I, II, and V, a natural parametrization 
of the spatial metric exists which is closely related to a pre
ferred class of orthonormal frames adapted to the symmetry 
properties of these spacetimes.4.5 These spatially homogen
eous tetrads consist of the unit vector field normal to the 
family of homogeneous hypersurfaces and a triad tangent to 
that family ( a "time gauge" tetrad 1 or "suited tetrad,,2). The 
triad is characterized by the fact that the Lie brackets of its 
elements are in "standard diagonal form,,5 and represent a 
compromise between the desire to maintain the simplicity of 
the group properties of the triad while introducing as little 
rotation of the triad as possible with respect to one parallely 
propagated along the normal congruence, the latter choice 
being favored by Henneaux.6 

For the Bianchi types I, II, and V, there is some freedom 
involved in choosing a parametrization of the spatial metric 
adapted to the symmetry. One may arbitrarily fix this free
dom as is done here and hence single out an associated triad, 
but the resulting discussion is complicated by the symme
tries which have been ignored. In particular, one cannot easi
ly exploit the constants of the motion which arise for these 
special types. Here the approach of Henneaux6 is perhaps 
more suitable. 

The natural parametrization of the metric divides the 
gravitational variables into two sets, the scale variables and 
automorphism variables, the latter being associated with the 
symmetry of the dynamics. In the Einstein-Dirac system the 
automorphism "coordinates" do not explicitly appear due to 

·'Part of this work was done while the author was a NATO postdoctoral 
fellow at the University of Rome and the remainder while a visitor at the 
Max-Planck-Institut fUr Astrophysik, Miinchen, Federal Republic of 
Germany. Partially supported by NSF Grant No. PHY-80-0735I. 

the symmetry of the system,leaving only their velocities (and 
momenta) to influence the remaining variables. This is 
slightly different from the Einstein-perfect fluid and Ein
stein-Maxwell systems, where a change of source variables 
is first required to eliminate the automorphism "coordi
nates".4 In this sense the Einstein-Dirac case is more similar 
to the vacuum case, where the automorphism symmetry is 
not broken. However, due to the supermomentum con
straints it is only in the degenerate Bianchi types I, II, V, and 
VI _ 1/9 that any of the associated constants of the motion are 
allowed to be nonvanishing. Unfortunately, it is precisely in 
the first three cases that the choice of variables is not well 
suited to the exploitation of these constants of the motion. 

The aim of the present paper is to extend the Lagran
gian/Hamiltonian formulation of spatially homogeneous 
dynamics described in Refs. 4 and 5 to the Einstein-Dirac 
case, in which a spatially homogeneous classical Dirac 
spinor field acts as the source of the spatially homogeneous 
gravitational field, the notable new feature here being the 
occurrence of derivative coupling. The derivative coupling 
involves only the automorphism velocities, which are re
sponsible for the rotation of the triad. In the class B case the 
spinor field contributes to the nonpotential force4.5.7 which 
drives the Langrangian/Hamiltonian system for the gravita
tional variables, while its own equation of motion obtained 
from the variational principle differs from the Dirac equa
tion by a single term. The Dirac equation must therefore be 
imposed separately in this case. 

In Sec. 2, the metric parametrization and preferred tet
rad are introduced together with Dirac spinor fields. In Sec. 
3, the Lagrangian/Hamiltonian analysis is carried out and 
its relation to the more conventional approach is described, 
while Sec. 4 studies the allowable special cases of the general 
system of equations. Section 5 discusses the possibility of 
considering "twisted" Dirac spinor fields as sources. The 
notation and results established in Ref. 5 are assumed in the 
present paper, which is intended as a sequel to that earlier 
work. In the nondegenerate case here, as described in Ref. 5 
for a general nonderivatively coupled source, the number of 
gravitational degrees offreedom may also be reduced to two 
by explicitly solving the supermomentum and super-Hamil
tonian constraints. 

Since the spatially homogeneous Dirac field is taken to 
be an ordinary commuting classical field, it does not satisfy 
any of the usual energy conditions required of reasonable 
matter. In particular the energy-momentum tensor vanishes 
identically when the axial current vanishes, leading to 
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"ghost solutions"of the Einstein-Dirac system3.H consisting 
of a vacuum solution of the Einstein equations on which a 
Dirac field with vanishing energy-momentum tensor propa
gates. This is a rather clear sign that the classical Einstein
Dirac system, although very interesting mathematically, 
cannot be taken seriously from the physical point of view. 

2. THE PREFERRED TETRAD 

The metric of a spatially homogeneous spacetime 
(R X G,4g) may be written in the following form: 

4g = _ dt iii) dt + gab{i)a iii) (i)h, (2.1) 

where I {i)a 1 is the basis of left invariant I-forms dual to a 
basis e = lea 1 of the Lie algebra g of left invariant vector 
fields on a 3-dimensional (for simplicity, simply connected) 
Lie group G and the positive-definite matrix g = gabeba de
pends only on the time t. The frame 
lea 1 = I eo = a/at = ao,ea 1 is a comoving ADM frame for 
the spatially homogeneous slicing, which simply means that 
the "reduced frame" e is tangent to the hypersurfaces of 
constant t (the group orbits of the natural left action of G on 
R X G ) and has vanishing Lie brackets with eo, which in this 
case happens to be the unit normal e 1 to those hypersurfaces. 
Let (i) 1 = {i)0 = dt. 

The remaining Lie brackets define the components of 
the structure constant tensor of g in the basis e: 

[ea,eb ] = CCabeC ' (2.2) 

which may be written in the well-known form9 

C e cd + ,,(e ab = Eabd n af Uab' 

af = ~Cbfb nab = c(acd~)ed, afn fa = O. (2.3) 

When the symmetric matrix n = nabeb
a is diagonal, i.e., 

n = diag (n(1),n(2 1,n(31), and af = atPf , the components cabe 
are said to be in standard diagonal form. They are called 
canonical components and e a canonical basis of g when in 
addition they assume the canonical values given in Ref. 5 for 
each Bianchi type Lie group G. The matrix representation 
Aute (g) with respect to the basis e of the automorphism 
group Aut(g) of the Lie algebra g is just that subgroup of 
GL(3,R ) which leaves C a be fixed under the natural action of 
GL(3,R ) on these components. Aute (g) for any canonical ba
sis is called the canonical automorphism matrix group and 
SAute (g) designates its unimodular subgroup. Unless other
wise stated, e is assumed to be a canonical basis. 

As described in Refs. 4 and 5, the special automorphism 
matrix group SAute (g) is the symmetry group of the ordinary 
differential equations satisfied by the metric matrix g when 
no sources are present. For all but the degenerate Bianchi 
types I, II, and Y, the canonical special automorphism ma
trix group G is 3-dimensional and has off-diagonal gener
ators I Ka 1 which permit the following parametrization of 
the metric matrix in terms of diagonal matrix g' = e213 and a 
general element S of G: 
g = ST g'S = HT'H, H = e13S, 

P = diag(,8I,/32 ,/33) =f3 AeA =f3oeo + f3 +e+ + f3 -e _ , 

leo,e+,LI = 11,diag(I,I,-2),diag(v'3,-v'3,O)I. (2.4) 
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This parametrization can be interpreted in terms oftwo suc
cessive transformations of the canonical basis e: 

e~ = S - Ibaeb , {i)'a = sab{i)b, 

e;=(e-l3)bae~ =H-1baeb, {i)"a = (e13 )\{i)'b=Hab{i)b. 

(2.5) 

e' = I e~ 1 is an orthogonal time-dependent canonical basis of 
g which can be completed to a comoving ADM frame 
I eb ,e~ 1 by adjoining a certain not necessarily spatially ho
mogeneous vector field eb = e1 + N,ae~ as described in 
Refs. 4 and S. g' is the metric matrix in the new co moving 
frame while N ,ae~ is the shift vector field for the frame and is 
determined algebraically by the "automorphism velocities" 
I dJu I, which are defined by 

(2.6) 

On the other hand, I eo,e~ 1 is an orthogonal spacetime frame 
which may be normalized to produce the tetrad I e~ 1 
= I eo,e; I· e" = Ie; 1 is a triad with time-dependent struc

ture constant tensor components: 

c"abe = (el3tdCdf8(e-l3)fb(e-I3)8c' (2.7) 

which are still in standard diagonal form since they differ 
from canonical components only by a scaling (hence the 
term "scale variables" for Pl. Since G is a symmetry group, 
the components of all geometrical quantities in the frame 
I e~ 1 do not explicitly involve S, except implicitly through 
the automorphism velocities. In fact, by the introduction of 
the equivalent shift vector field they determine, one can ob
tain the spacetime metric without knowledge of S. 

The components of the metric connection in the tetrad 
I e~ 1 are given in Appendix A. The components r::Ob deter
mine the angular velocity of the triad e" relative to a triad 
parallely transported along e 1 : 

De;/dt = Ve"e; = r;Oae; = - Eabc~ "be;', 

~ "a __ IK" ~bcdJd =~ "a dJd (2.8) - '2 dlbe] - d' 

Clearly, the automorphism velocities are responsible for the 
rotation of the triad. 

Any other spatially homogeneous triad e'" is related to 
e" by some (generally time-dependent) rotation RESO(3,R): 

The angular velocity of the triad then becomes 

~ ma = f7tab(~ lOb + ub), 

R - IR = ka IXUa, ka IX = Ebac e\. 

(2.9) 

(2.10) 

However, unless the spacetime metric has additional sym
metry, the new structure constant tensor components C /lOa be 
will no longer have the simple standard diagonal form and 
will depend explicitly on the matrix R. If there is additional 
symmetry, this form may be preserved but will generally 
increase the angular velocity of the triad, as discussed below. 

For Bianchi types I, II, and Y, SAute (g) has dimension 
8,5, and 5, respectively. For Bianchi type I, SAute (g) 
= SL(3,R ), while in the other two cases, respectively, 

SAute (g) is the semidirect product group (T3)T' X s SL(2b and 
(T3)X s SL(2b, where SL(2b is the SL(2,R) subgroup of 
SL(3,R ) which leaves the third axis of R 3 invariant under its 
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natural action on R 3 while T3 is the 2-dimensional abelian 
subgroup generated by {e3

1,e
3 21. A suitable but nonunique 

candidate G for the parametrization (2.4) is obtained by re
placing the special linear groups SL(3,R ) and SL(2h, respec
tively, by their special orthogonal subgroups SO(3,R ) and 
SO(2h. However, all rotations R belonging to the special 
orthogonal subgroup occurring in the parametrization leave 
the structure constant tensor components in standard diag
onal form and so may be used to decrease the rotation of the 
triad while preserving that form. For example, one may al
ways choose ~ "' a = ° in the type I case and ~ ",3 = ° in the 
others. This freedom leads to the problem that improper 
choice of initial data can introduce "spurious time-depen
dence",4.s masking the fact that fewer independent functions 
of time may be involved in the solution than seem to appear. 

Using the tetrad {e~ 1, Dirac spinor fields are intro
duced in the usual way. Let {Ya 1 be a set of Dirac matrices 
satisfying Yla Y /3) = TJa/3 with 1) = (TJa/3) = diag( - 1,1,1,1) 
and introduce the notation Ya ... /3 = Y[a ... /3 J'Ys = YOl23' Let ¢ 

be the column vector of components with respect to { e~ I of a 
spatially homogeneous Dirac spinor field, i.e., 
e;¢=B;¢ = 0, and let ¢ = ¢tyo be the conjugate spinor. 
The weighted spinor IJI = g1/4¢ = e3/2/3°¢ satisfies simpler 
differential equations and enters the Hamiltonian formalism 
more naturally. The covariant derivatives of ¢ and ¢ are 
defined by 

V~ ¢ = Ve .. ¢ = (a ~ + !r" /3ar y/31¢, 

V~¢ = a ~¢ - !¢yf3rr 'Par' (2.11) 

It is also convenient to introduce the following standard no
tation for derivatives of spinor expressions: 

AVB =A (VB) - (VA )B. 

Recall that the Dirac matrices behave like covariant 
constants. 

(2.12) 

The two equivalent forms for the Dirac equation may be 
evaluated using the expressions for the connection compo
nents given in Appendix A: 

° = gI/4Yo(yav~ - m)¢ = .p + !(~ "aYa °Ys - r "a a yOYs + 2a;'yOc + 2myO)lJI, 

0= g1/4( _ V~ ¢ya _ m¢)yo = - .p + !.p (~"aYa °Ys + r "a a yOYs + 2a;yOc + 2myO). (2.13) 

The current density / and axial current 4..af are defined by 

/"a = iJiyulJI, 4..af"a = iliyaYslJl. (2.14) 

By choosing a particular representation of the Dirac matri
ces, one can show that if ..af"a = ° at any time, the quantities 
..af"o, iJilJl, and iJiYslJlwill also vanish.3 The equations of Ap
pendix B then show that they remain zero for all times. The 
next section shows that such solutions have a vanishing ener
gy-momentum tensor and hence correspond to the "ghost 
solutions" mentioned in the Introduction. 

Define o-a = - !i€abcY'c. The matrices {o-a 1 have the 
same commutation relations as the standard Pauli matrices 
{O"a 1 and { - ~io-a 1 is a basis of the real Lie subalgebra of the 
Dirac algebra which is isomorphic to the Lie algebra of 
SU(2). This basis has the same structure constant tensor 
components as the canonical basis {ka IX I of the Lie algebra 
of SO(3,R ). If the rotation of (2.9) is given by 
:!II = exp 8 aka IX, the components of ¢ transform in the fol
lowing way: 

¢"' = w ¢, W = exp( - ~i8 ao-a). (2.15) 

The matrix W is one of the two matrices (namely wand 
- u2-') which satisfy 

wYaw-I=Yb9?ba. (2.16) 

The parametrization (2.4) has singularities when the 
subgroup GnSO(3,R ) is nontrivial, which occurs for Bianchi 
types I, II, V, Vllo, Vllh , VIII, and IX. For all types but I 
and IX, K3 = k3 IX generates this subgroup and the singular
ity occurs for e2

/3 EJ( T(3)' i.e., (3 - = 0, and 8 is determined 
only up to left mUltiplication by an arbitrary element of the 
subgroup. This presents difficulties only if (3 - remains zero 
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for all time (if (3 - passes through zero, 8 is determined by 
continuity), the case oflocal rotational symmetry when there 
exists an additional spacetime Killing vector field which oc
curs only when g is at least diagonal for all times. Any 
8EGnSO(3,R ) then satisfies 

(2.17) 

The velocity di3 is therefore arbitrary. However, it is logical 
to choose 8 = 1, i.e., di3 = 0, leading to a parallely propagat
ed triad. Any other choice of triad (except those differing by 
a time-independent rotation) will then have nonzero angular 
velocity. For types I and IX, G = SO(3,R ) and singularities 
occur for e2

/3 lying in each of the Taub submanifolds J( Tla) 
[where (3 bc (3 b - (3 c = ° and (a,b,c) is a cyclic permutation 
of (1,2,3)]. When there is additional symmetry, the freedom 
in 8 may again be fixed by choosing 8 = 1. 

For Bianchi type IX, 8 T = 8- 1 and so 

g=exp28- ' p8=HR
T HR, HR =8- 1H. (2.18) 

The triad {e;' = HR - Ibaeb 1 has:!ll = 8- 1 and if = - iJa 
so that 

(2.19) 

Using the expressions for ~",a b given in Appendix A (with 
n = 1), one sees that ~ ",a~"'a <~ "a ~"a' i.e., the angular 
velocity of e"' is less than that of e". However, unless ~",a is 
itself invariant under the rotation S, which is the case when S 
is confined to a I-dimensional subgroup, it will depend ex
plicitly on 8 and therefore 8 appears explicitly in the Ein
stein-Dirac system, preventing its elimination as discussed in 
the next section. Ryan and Obregon have chosen the triad e"' 
for the type IX symmetric case, where 8 is confined to a 1-
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dimensional subgroup, and this problem does not occur. 3 

Note that in the class A case, the structure constant 
tensor enters the Dirac equation only through the rotational
ly invariant expression 2r "a a = g-1/2 Tr 0", which there
fore is independent of the choice of triad. However, unless 
SESAute (g), this value will itself depend explicitly on S as 
well as the scale variables. 

3. LAGRANGIAN/HAMILTONIAN ANALYSIS 

The Lagrangian/Hamiltonian analysis of the dynami
cal Einstein equations given in Ref. 5 using the parametriza 
tion (2.4) is easily extended to the Einstein-Dirac case by 
first evaluating the spinor contribution to the ADM Lagran
gian and then passing to the Hamiltonian formulation. In 
the class B case the Lagrangian and Hamiltonian equations 
must of course be checked against the Einstein-Dirac equa
tions to see what modifications are required to make them 
correct. The Dirac Lagrangian, super-Hamiltonian, super
momentum, and spatial energy-momentum tensor must 
therefore be evaluated. The gravitational constant K defined 
by G a{J = KTa{J is left unspecified, although other treatments 
of the Einstein-Dirac system choose 2K = 1. The choice of 
L ADM = 2KL ~7>~ as the gravitational Lagrangian 10 requires 
that the usual matter Lagrangian be multiplied by the factor 
2K as well. 

The components of the energy-momentum tensor of 
the spinor field are given by 

T~{J = - !i¢Yla Vp)t/!. (3.1) 

The spatial components are found to be 

g1/2T" = _ r" .9/"0 + 2K "C E .9/"d (3.2) ab lab I la b Icd . 

The supermomentum and super-Hamiltonian are evaluated 
using the Dirac equation to trade time derivatives for spatial 
derivatives: 

JiY'1/2 = _ 2Kg1/2Tl = 2K(1{ij/·JJV"IJI+ V"JiY''' C ) 
aU aU 2 rae 1/2 a 

- 2K Tr b;JiY'i/2 , 

JiY'i':2b = E abc .9/;', JiY'i/2 = JiY'[;~2Ib eb a , 

JiY'1/2 = - 2Kg1/2T\ = - iK(ij/yCV;IJI- 2mij/lJI) 

= 2K(imij/lJI- r "aa.9/"O). (3.3) 

The matrix notation used here is explained in Appendix A. 
The components of the supermomentum with respect to the 
triad e' are needed for the discussion of the supermomentum 
constraints: 

JiY'!~2 = - 2K Tr baJiY'i/2 . (3.4) 

The following Dirac Lagrangian is chosen: 

L 1/2 = 2KigI/2¢(~yav;; - m)t/! 

= iKij/yOaolJl + 4K..!' "a.9/; - JiY'1/2 . (3.5) 

By inspection one can see that the Lagrange derivatives of 
L 1/2 with respect to IJI and ij/ produce the Dirac equations 
(2.13) only in the class A case where a;' vanishes. The term 
involving a; is missing from each of the Dirac equations 
because of the choice of!V l!1 the Lagrangian; however, ei
ther of the choices V or - V will lead to at least one wrong 
Dirac equation as well as the wrong expressions for the de-

1140 J. Math. Phys., Vol. 23, No.6, June 1982 

rivatives of L 1/2 with respect to the gravitational variables. 
One is therefore forced to impose the Dirac equations by 
hand in the class B case. 

Let the total Lagrangian, super-Hamiltonian, and su
permomentum be the sum of the gravitational expressions 
given in Ref. 5 and the Dirac expressions given above: 

L = L G + L 1/2 , JiY' =:JrG + JiY'1/2 , 

(3.6) 

The presence of the automorphism velocities in the Dirac 
Lagrangian changes the relationship between the canonical 
automorphism momenta and the velocities; this does riot oc
cur for the scale variables. 

Pa = aL G /aiJa = 2e3{J°[1 ab iJb , 

na =aL/aiJa=Pa +Xa' 

(3.7) 

Using (A9) and (AIO) leads to another useful expression for 

na' 

na = 2 Tr lCa(1r' + KJiY';(2)=2 Tr KaP' . (3.8) 

The noncanonical "coordinates" {S,iJaJ and {S,Pa J 

on the velocity and momentum phase spaces are employed 
here. These may be used to perform calculations by first 
imag~ning a local coordinate system {e iJ on G with veloci
ties e i and mechanical momenta Pi> in terms of which one 
has4 

(3.9) 

where {ea = eiaai J and I iJa = iJaide iJ are a basis and corre
sponding dual basis of the Lie algebra of right invariant vec
tor fields on G determined by the basis I Ka J of the matrix Lie 
algebra: 

'" '" [Ka,Kb ] = C cab Kc , [ea,eb] = - CCabec , 

(3.10) 

Since the ordinary canonical momenta lli have vanishing 
Poisson brackets and Ie i,llj I = 8~, one finds 

Illa,llbJ =ccabllc , {S,llal =KaS, (3.11) 

Furthermore, since only the automorphism velocities iJ a en
ter the Lagrangian, one may introduce the generalized La
grange derivative 

$L/8?Jf = -eia[caL/aei)'-aL/ae i] 
= - caL /aiJa). + aL /ai;cccab iJb 

(3.12) 

By direct calculation one finds 

aL 1/2/ag~a = Kg I/2 T,aa, (no sum on a) 

-IJL 1I2/8iJa = 2Kgl/2 Tr Ka T' + Q !/2, 

(3.13) 

Since the Lagrange derivatives of the gravitational Lagran
gian are given by4 
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_ ~L G 1~f3A = - 2g1/2 TreA 4G' + Q~, 
- ~L G I~fif = - 2g1/2 Tr Ka 4G' + Q:, 

Q • = 15 + Q. Q. = - 2g l/2 Tr K 3G' = ~ 3 Q. 
A A +' a a a 3' 

(3.14) 

the correct dynamical Einstein equations are 

- t5L It5f3A = QA =-Q ~, - 8L 18ija = Qa o==Q: + Q!12 . 

(3.15) 

The momentum canonically conjugate to the Dirac 
spinor field If/ is 

1T op = aL I alP = 2KiW-t . (3.16) 

However, the passage from the Lagrangian to the Hamilton
ian is most clearly accomplished following Nelson and Tei
telboim I and assuming a real representation of the Dirac 
matrices and splitting If/ into its real and imaginary parts: 

VI = r/J + iX, 1T.p = 2KXT, 1Tx = - 2Kr/J T, 

1T.p¢ + 1TxX = Ki w-taolf/, 
1T.p¢ + 1TxX - L 1/2 = 7t"1/2 - (ila - Pa) jja. (3.17) 

The Hamiltonian is then defined in the usual way: 

H = PA pA + ila jja + 1T.p¢ + 1Txi - L 
= (PA pA + Po jja _ L G) + H 1/2 

= 7f"Gif3A ,PA ,Pa) + 7t"1/2 = 7t". (3.18) 

The result is just the total super-Hamiltonian, where the 
gravitational super-Hamiltonian is the same function of the 
mechanical momenta Po as in the vacuum case. However, Pa 
must be interpreted as shorthand for ila - Xa when it ap
pears in the Hamiltonian which is a function on the momen
tum phase space where ila and not Po are generalized ca
nonical coordinates. For example, ! ila , VI I vanishes while 
I Pa ,If/ J does not. Taking into account the nonpotential 
force which drives the Lagrangian equations, the Hamilton
ian equations for the gravitational variables are given by 

[PSA] = {[f3S

A
], 7t"}[~J = {~J, 7t"} + [~~]. 

(3.19) 

The Dirac equations (2.13) follow from 7t" in the class A case 
if the spinor field has the following nonzero Poisson 
brackets: 

2Ki(If/I',If/t,,] =~v, p.,v= 1,2,3,4. (3.20) 

The Einstein-Dirac system is subject to the constraints 
7t" = 0 = 7t"a' . The supermomentum components are easily 
evaluated using the expression for the gravitational 
supermomentum5

: 

(3.21) 

together with (3.4), (3.8), (AW), and (A13): 

7t"a' = - 2 Tr6a p' = - ilb pba - aa P+. (3.22) 

These are the expressions appearing in Ref. 5 except for the 
replacement of the mechanical momenta Pa by the "canoni
cal" momenta ila (once an incorrectly omitted factor of ~ is 
reinserted before ~ there). 
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In the nondegenerate class A case, the supermomentum 
constraints are simply ilo = 0, leaving an effective potential 
behind in the Hamiltonian: 

U eff = !g-1/2 ;§ob Xa XI>' (3.23) 

At this point none of the automorphism variables appear in 
the Hamiltonian and the geometrical degrees of freedom 
have been reduced in number to three, those associated with 
the scale variables which exhibit no derivative coupling (i.e., 
mechanical and canonical momenta coincide). As in Ref. 5, 
one may eliminate another degree offreedom (associated 
with f3 0) by using the super-Hamiltonian constraint, leading 
to an unconstrained Hamiltonian system for the two degrees 
offreedom ff3 ± ], driven of course by the matter variables 
whose equations of motion also follow from the 
Hamiltonian. 

In the nondegenerate class B case, the supermomentum 
constraints are ill = il2 = il3 + ap + = 0, so il3 must be re
tained in the effective potential: 

U eff = !g-'/2(;§ II X
I
2 + y22 X2

2 + ;§33(il3 _ X3)2), 
(3.24) 

until the equations of motion for the scale variables have 
been derived, at which time it may be replaced by - ap+. 
With the energy reduction, one again arrives at an uncon
strained Hamiltonian system for the two geometrical de
grees offreedom (f3 ± I, driven by the remaining component 
Q + of the nonpotential force and the matter variables, whose 
equations of motion do not follow from the Hamiltonian. 

In both cases the supermomentum constraints may be 
used to determine the automorphism velocities in terms of 
the remaining variables. One may either use these to inte
grate (2.6) for S or to define an equivalent shift vector field 
algebraically, thus eliminating the need to integrate (2.6). 
Since the super-Hamiltonian constraint reduction may also 
be viewed as defining an equivalent lapse function,S one sees 
that the solution of the four constraints may be interpreted 
as leading to the introduction of particular lapse and shift 
variables. 

The degenerate Bianchi types I, II, V, and VI _ 1/9 re
quire more detailed discussion similar to that given for the 
perfect fluid case,4 since the degeneracy of the supermomen
tum constraints allows one to eliminate fewer degrees offree
dom while permitting nonzero values for some of the con
stants of the motion associated with the symmetry group 
SAute (g). 

To discuss the constants of the motion it is useful to 
introduce the variables H = ePS with conjugate momenta 
~, which may be evaluated using the expression (A 7) for 
r::Ol>: 

~\ = aL laiI b
a = aL G IJgcdagcdlaiIba 

+ 2K7t";-:f ar ~/aiIba 

= (pH-ltb' 

P = 2,. + K7t"1/2' (3.25) 

The only nonzero Poisson brackets of these canonical varia
bles are 

(3.26) 
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The action of SAute (g) on the metric variables (the spinor 
density 1/1 is invariant), 

g-+B -IT gB- I
, BeSAute(g), (3.27) 

reflecting the change of basis ea-+f!b B - Iba of g induces the 
following canonical transformation of the gravitational var
iables (H,&'): 

(H,&,)-+B· (H,&') = (HB-I,B&'). (3.28) 

If Ae~aute (g), then 

d Idt 10etA
• (H,&') = ({P(A),HJ,{P(A),&'J) (3.29) 

shows that 

PIA) = - Tr AP = - Tr A&'H (3.30) 

is the canonical generator of the I-parameter subgroup of 
canonical transformations corresponding to the action of the 
I-parameter subgroup of SAute (g) generated by A. When 
1/1 = 0 this reduces to the expression (2.9) of Ref. 7. 

For example, using the definition 

SKaS- 1 = Kb R ba (3.31) 

of the adjoint matrix4 R on (; together with (3.8), one has 

P(Ka) = - Tr KaP = - Tr SKaS-IP' = - llbR ba' 

(3.32) 

In the class A case these are constants of the motion. Howev
er, in the nondegenerate case where R = S, the supermo
mentum constraints require that they vanish. For Bianchi 
type II, where R 3 a = tP a (see Ref. 5), the supermomentum 
constraints III = ll2 = 0 lead to P (Ka) = - ll383 a' so that 
only the constants of the motion P (L), P (e.12 + e2

1), and 
P (K3) = - ll3 associated with the subgroup SL(2b C SAute 
(g) are allowed to be nonzero. For Bianchi type I the super
momentum constraints are identically satisfied and eight lin
early independent constants of the motion associated with 
SL(3,R ) exist. This case was completely solved by Hen
neaux6

; the choice of variables made here is not adapted to 
the exploitation of these constants. 

In the class B case, the time derivative of a function F on 
the phase space depending only on the canonical gravitation
al variables is given by 

F= {F,KJ + Qa aF lalla + Q+ aF lap+, (3.33) 

hence the generators P(Ka) satisfy 

P(Ka )'= -Q3a(llbRb3)1all3= -Q383a' (3.34) 

since R 3 a = 83 
a here. Thus P (Kd and P (K2) are constants of 

the motion but since III = ll2 = 0 for all types except 
VL 1/9' one again has P (Ka) = - ll3 83 a' so tHey must van
ish. For Bianchi type VL 1/9 the constraints only require 
III -ll2 =O,sotheconstantofthemotionP(KI + K2) is al
lowed to be nonzero. For Bianchi type V the situation is 
similar to type II with only the canonical generators associ
ated with SL(2h C SAute (g) allowed to be nonzero. However, 
the connection of this subgroup with constants of the motion 
is unclear. 

The conventional Hamiltonian approach of Henneaux 
as applied in the class A spatially homogeneous case6 may be 
obtained from the present approach by introducing the time
dependent orthogonal matrix fYI of(2.9) as an arbitrary 
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gauge variable (involving three degrees offreedom). If ~ is a 
spinor transformation which covers fYI, i.e., satisfies (2.16), 
then the following may be considered as a time-dependent 
transformation of the configuration space variables: 

(3.35) 

Choosing h and X as new configuration space variables, one 
is led to the Hamiltonian approach of Henneaux, who uses 
the notation 

h - h b cr.c lab) _ cr.cmab {} - r m (b)a - a' en 1/2 - eft 1/2 ' lab) - - aOb' 

and the opposite sign for the components of the structure 
constant tensor. The present formulation is simply a particu
lar way of fixing the rotational gauge freedom possessed by 
the triad variables of his approach. The class B case may also 
be handled with the Henneaux approach by expressing the 
non potential force in terms of the new variables. 

4. CLASSIFICATION OF SOLUTIONS BY DEGREE OF 
GENERALITY 

Let J( Sial -:)J( D -:)J( T(a) -:)J( [ be the symmetric case, 
diagonal, Taub, and isotropic submanifolds, respectively, of 
the manifold J( of metric matrices as defined in Ref. 5. [For 
example, gEJI S(3) hasgl3 = g23 = O,gEJI T13) hasgll = g22' 
and gEJI[ has g = at.] One can classify solutions of the 
Einstein-Dirac equations according to which gravitational 
degrees of freedom are nontrivial, i.e., modulo the action of 
constant automorphisms, to which of these submanifolds (or 
others) does a given solution curve gt belong? One is thus led 
to ask which gravitational degrees offreedom may be frozen 
out, or more precisely, what are the invariant submanifolds 
of the phase space on which a Hamiltonian system of fewer 
degrees of freedom is therefore induced? 

Let (a,b,c) be a fixed cyclic permutation of (1,2,3). The 
first possible specializations in the class A case are the sym
metric cases J( Sla) for each value of the in~ex a .character
ized by the conditions Ji1~' = Ji1~' = 0 = CJb = CJe. From 
Appendix B one sees that Ji1 ~' is then constant. Without loss 
of generality one may assume that the metric matrix is con
fined to J( Sla)' In the class B case only the symmetric case 
J( S13) is possible since aj' = a"83

j #,0;Ji1;' is not constant 
for this case, however. Ifin addition one sets the one remain
ing spatial tetrad component of the axial current to zero in 
either the class A or class B case, the spinor energy-momen
tum tensor vanishes identically and the gravitational equa
tions reduce to the vacuum case discussed in Ref. 4. It is 
therefore assumed that the remaining spatial tetrad compo
nent of the axial current does not vanish. However, in the 
nondegenerate case as well as the Bianchi type VI _ 1/9' no 
further specialization is possible except for the type VIo 
Taub-like subcase J( T(3) of the symmetric case J( SI3)' This 
case is characterized by the conditions Ji1;' #,0 but 
P - = p_ = 0 = dJa (for all a), which implies 
r"a

a = 0 = ~ 1133, Since ar"aalap -1.8- =0 #,0 one must 
have Ji1110 = 0, so that p _ remains zero, but the conditions 
Ji1;' = Ji12' = Ji1h' = 0 imply WYs 1/1 = 0 and 
1 WIJII = 14Ji1 i' I, as easily seen by choosing a particular re
presentation of the Dirac matrices. The only nonzero part of 
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the spinor energy-momentum tensor is then 
KI/2 = 2Kim ijI'P, which is a constant. One thus obtains so
lutions of the vacuum type VIo Taub-like case for which the 
gravitational super-Hamiltonian is allowed to be a nonvan
ishing constant, i.e., dust (pressure free perfect fluid) solu
tions with 4-velocity u = eland energy density p = im ijI'P.6 

Unfortunately, this energy density may assume nonpositive 
values. 

For the degenerate Bianchi types I,V, and II, the spe
cializations corresponding to local rotational symmetry and, 
in the first two cases isotropy (of the metric), are possible. 
For Bianchi type II there is only the locally rotationally sym
metric (LRS) case vii T(3) characterized by the conditions 
&,i'#O and/3 - = p_ = 0 = dia. An additional constant of 
the motion in the massless case enabled Henneaux to inte
grate all of the equations explicitly.6 For Bianchi type V one 
has the same LRS case. However, in the general type V case 
thethirdsupermomentumconstraintp+ = 0 =/3 + isasim
pIe holonomic constraint which requires/3 + to be a constant 
which may be set equal to zero by the action of a constant 
automorphism, as in the vacuum case.4 Thus the LRS case 
coincides with the isotropic case. The only nonvanishing 
part of the spinor energy-momentum tensor is the super
Hamiltonian KI/2 = 2Kimijl'P = 2KpgI/2, which is a con
stant since r "a a = 0 but not necessarily a positive constant. 
One thus obtains the open Friedman dust solutions, al
though the energy density p may assume non positive values. 
When the mass m is set equal to zero, one arrives at flat 
spacetime in the hyperboloidal time slicing.8 Bianchi type I 
exhibits the same LRS case vii T(3) [the others are equivalent 
under the action of SAute (g) = SL(3,R)] for which p + is a 
constant of the motion. Setting it to zero yields the isotropic 
case. The general Bianchi type I case has been solved exactly 
by Henneaux.6 

It is worth noting that although the LRS metrics of 
Bianchi types I and VIIo and V and Vllh , respectively, coin
cide, the corresponding spatially homogeneous Dirac spinor 
fields differ in their symmetry properties. Those of types 
VIIo and VIIh undergo a space-dependent rotation relative 
to the spatially homogeneous spin or fields of types I and V. 

5. "TWISTED" DIRAC FIELDS 

Let! ea l now stand for the basis of the Lie algebra 9 of 
right invariant vector fields on G which coincides with the 
basis! ea l of 9 at the identity. Interpreted as fields on R X G, 
the elements of 9 are spacetime Killing vector fields. The 
most general spinor field tP whose energy-momentum tensor 
is spatially homogeneous satisfies II 

(5.1) 

where A.a are real constants which satisfy A.c C cab = 0, since 

(5.2) 

In other words A. = A.cWc is a time-independent exact left 
invariant and, therefore, bi-invariant I-form on G. The clas
sification of possible symmetries for such spinor fields there
fore corresponds exactly to the classification of spatially self
similar spacetimes. 12

,13 All Bianchi types except the semi
simple types VIII and IX admit bi-invariant I-forms. 
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Let tP,w = FtP, where IF 12 = 1, dF = iA.F, and tP is spa
tially homogeneous II and say that tPrw is obtained from tP by 
"twisting", the analog of the conformal scaling of spatially 
homogeneous metrics to obtain spatially self-similar me
tries. 12 The energy-momentum tensor of tP,w and its Dirac 
equation may be rewritten in terms of tP using the relations 

a:: 'Prw = F (iA:: 'P), ijlrw ra:: 'Prw = iA~' ijI r'P , 

(5.3) 
A.:: = A.b H - Iba • 

One must therefore add the terms iA. :: yao 'P and 
- iA.; ijlyao to the r.h.s.'s ofthe Dirac equations (2.13), the 

term - iA.:: t/J(ryao + yaor)'P to the r.h.s. of(Bl) and the 
term g-1/2 /"(a o b1nA.b to the expression (3.1) for the ener
gy-momentum tensor of tPrw' The twisted super-Hamilton
ian and supermomentum become 

KI12 = KI/2 + 2KA" «""a rw a~ , 

(5.4) 

The presence of the constant I-form A. in the Einstein
Dirac system reduces the symmetry group from SAute (g) to 
the subgroup which leaves A.a invariant. However, the space 
ofbi-invariant I-forms is I-dimensional and hence automati
cally invariant under the action ofSAut.(g) for all Bianchi 
types except I,ll, and III = VI _ I' where this space has di
mension 3, 2, and 2, respectively. For type III, only the 1-
dimensional subspace of "exceptional" bi-invariant I-forms 
is not invariant under SAute (g), corresponding to Eardley'S 
exceptional type rIll. 12 

For the Bianchi types other than I, II, VIII, and IX and 
for the nonexceptional type III case, one has 

A.~ =A.bS -Iba =A.a =A.30
3
a, ,1,3#0. (5.5) 

Thus SAut.(G) remains a symmetry group. Only the third 
momentum constraint is changed here, becoming 

(1 - O':)ll3 = - 2KA.3/"0 - ap+. (5.6) 

For the class A types of this class, /"0 is a constant and ll3 
remains a constant of the motion but which is now allowed to 
be nonvanishing. Only the symmetric cases vii S(3) are now 
permitted, requiring &'; = &'~o3a and/; =/~o3a (for 
the class A types, &') is again constant). However, the con
sistency of these conditions with the equations of motion 
(B2) and (B3) requires that 'Pbe an eigenvector of (73 = ir12, 
i.e., a spin eigenstate: 

(73'P = r'P, r = 1, (5.7) 

which implies 

4&,~/ /"0 = _ r, /"3 = - r4&,"0, (5.8) 

results obtained by choosing an explicit representation of the 
Dirac matrices. Excluding Bianchi type V, the one nontrivial 
momentum constraint is 

P3 + ap+ = - 2K(A.3/"0 + U' "33&'~)' (5.9) 

For types VIIo and VIIh , the LRS case vii T(3) requires 
/3 - = 0 = P3, in which case..!' "33 = 1 and (5.9) becomes 

ap+ = - 21</"0(,1,3 - -! r). (5.10) 
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For type VIIo, this is equivalent to 

A3=!r. (5.11) 

If this condition is imposed in the type VIIh case as well, then 
p + also vanishes, automatically implying isotropy as in the 
spatially homogeneous type V case. In fact, (5.11) is exactly 
the condition which undoes the twisting of the spatially ho
mogeneous type VIIo/VIIh spin eigenstate fields relative to 
their spatially homogeneous type IIY counterparts. To see 
this, identify the manifolds of the type VIIo/VIIIh and type 
IIY Lie groups by identifying canonical coordinates ! x a I of 
the second kind with respect to canonical bases of their Lie 
algebras. Using the explicit expressions given in Ref. 5 for 
the canonical left invariant I-forms in these coordinates, one 
finds in an obvious notation 

cu"a (VIIo/VIIh) = [exp( - x3k31X)] a bCU"b(IIY), g E.A" TI3)' 

(5.12) 

Since! - !ia a = -! E abe r be I is the image basis of ! ka IX I in 
the Lie subalgebra of the Dirac algebra, the following rela
tion gives the components of the twisted type Vllo/ Vllh 
spinor fields in terms of the type IIY tetrad: 

IJI(IIY) = [exp( - !ix 3a3)] 1JI",,(Vllo/Vllh) 

=[exp(A3-!a3)ix3]IJI(VlloIYIIh)' (5.13) 

where the choice F = exp iA3x3 has been made. The twisted 
type VlloIYllh spin eigenvector fields satisfying (5.11) coin
cide with the corresponding spatially homogeneous type IIY 
fields. Thus, the LRS twisted type VlloIYllh spin eigenstate 
case satisfying (5.11) is equivalent to the spatially homogen
eous spin eigenstate subcase of Bianchi type IIY. 

On the other hand, if (5.11) is not imposed in the LRS 
type Vllh case, one sees from (5.13) that the spinor field is 
equivalent to a twisted type V field with twisting parameter 
A j = ,1,3 - ! r, i.e., it is sufficient to consider only the LRS 
type V case when IJI is a spin eigenstate. 

For Bianchi type V the momentum constraint is 

p + = - 2KA3)'''0. (5.14) 

The LRS case J( T(3) now imposes no condition on ,1,3 but 
this constraint shows that isotropy is no longer possible for 
nonzero ,1,3' since )'''0 = IJItlJl vanishes only when IJI does. 
The massless LRS case was solved by Michalik and Mel
vin, 14 who mistakenly thought it represented a nontrivial 
type VIIh case, and later by Ray using a different method.8 

For Bianchi type I, Aa are arbitrary but since the spa
tially homogeneous supermomentum vanishes identically, 
the supermomentum constraint requires Aa = O. For Bian
chi type II, ,1,3 = 0 is sufficient for bi-invariance and using 
the freedom in the choice of a canonical basis one may as
sumeAa = A,8'a' which breaks the SL(2b invariance. How
ever, the symmetric caseJ( SIll is still possible provided that 
d; = d;'8! and)'; = ),;'8\. For this case A ~ = Aa and 
d;' andil, = - 2KA,)'''o are constants of the motion 
while il2 = 0 = ily 

6. CONCLUSION 

The conventional Hamiltonian formulation of the Ein
stein-Dirac system was developed for a general spacetime 
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where no class of preferred tetrads exists. Additional gravi
tational variables subject to new constraints must be intro
duced to describe the most general tetrad, I which of course is 
not adapted to a given slicing of the spacetime. However, the 
mathematical machinery is much simpler when the timelike 
member of the tetrad is the unit normal to the chosen slic
ing, '.2 and hence for a spacetime where a natural slicing ex
ists, it is therefore appropriate to use a reduced formulation 
in which only the rotational freedom in the spatial triads 
remains. For a space-time in which a preferred class of spa
tial triads also exists, it is logical to suppress the rotational 
freedom as well, thereby removing completely the additional 
gauge variables required to consider arbitrary tetrads. 

For spatially homogeneous spacetimes (excluding those 
of Bianchi types I, II, and V), the symmetry picks out such a 
preferred class of tetrads, permitting a reduced Hamiltonian 
formulation from which simpler differential equations fol
low and which allows the explicit solution of the remaining 
constraints, thus leading to a system of equations for the 
minimum number of unconstrained variables. Moreover, 
the decomposition of the gravitational variables which ac
complishes this has a direct geometrical interpretation 
which aids in the understanding of the system. For the Bian
chi types I, II, and V, the symmetry allows a certain rotation
al gauge freedom to remain which complicates the discus
sion somewhat but does not prevent a treatment analogous 
to that of the other types. 
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APPENDIX A 

The frame! eu I has structure functions 
C n f3y = cua

( [ef3 ,ey ]) = 8~ C a bc8b f38
c 
y' The metric connec

tion components are given by 

r n
f3 ), =cuU(Vefley ) 

d;( ) + ' C" + C a = ! g' ey g/jf3 + ef3 goy - eo gf3y '2 f3y 113 y)' 
(AI) 

The only nonvanishing components are 

rOab = - K ub , r
a

Ob = - K a
b = r

a
bO , 

rCab = ~ CCah + CIa \1' (A2) 

where Kab = - ~ gab are the components of the extrinsic 
curvature tensor. 

If W is any two index spatial geometric object, let W, 
W', and W" be the matrices of mixed components of Wwith 
respect to the spatial frames e, e', and elf, respectively, i.e., 
W = wa 

b eb 
a' etc. For example, for each a let Ka b c be the 

components of a tensor field with respect to e', so that one 
has 

cy/" I d, 
Jl abc = Ka(bc) = Ka Ie gb)d , (A3) 

or in matrix form 

%' = 1(1( + e - 2131( Te 213 ) 
a 2 a a' 
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(A4) 

The primed extrinsic curvature matrix was evaluated in 
Ref. 5: 

- K' = t3 + %~(ja. (A5) 
Using the formula 

r a CJi3 - H a (rli CJi3H -I. + dH -Ili ) (A6) IJy- liIJ. y y 

for the frame transformation e; = H - IIJ a e IJ of (2.5), one 
finds the connection components in the orthonormal frame 
[ e; I, where Latin indices may be raised and lowered at will: 

r" aOb = - K;[ab ) (jc = - HHH- I - (HH-If]ab , 

r"abO = -r"Oba = -K;b' - K" = t3 +%;(ja, 

r "a lC"C +C"C bc = 2 ab la b) . 

Since r " a IJ y = r " [,/ y I' one introduces the following 
objects: 

~ "a = 1.<' abcr" = _ 1" abcK" /-:,d = ~"a "'-d 2" bOc 2" d [bc J'" -~ dUJ , 

r " 1 r"C d ab = 2Ebcd a' 

r " 1(" 1£ "C) r" 2 "C lab I = 2 n ab - 2U ab n c' [ab ) = E abc a , 
r"a a = - !n"aa = -! g-I/2nabgab 

1( (I) IJ' -- IJ' - IJ ' 12) IJ 2 - IJ' - IJ ' =-2ne +ne 

(A7) 

+ nl3leIJ' -IJ' - IJ'). (A8) 

As in Ref. 5 let ~ ab = Tr %~%;, = Tr %;%;; (with 
inverse ~ab) and letpA = aLGlapA and Pa = aLGla(ja be 
the mechanical momenta. Using the explicit velocity-mo
mentum relation given there, one finds the following expres
sion for the gravitational mechanical momentum matrix: 

'n" = - g1l2(K' - 1 Tr K') 

= n(",ABpAeB + 3poeo) + !~abPa%;' , (A9) 

with the immediate consequence 

P± =2Tre±'n", Pa =2TrlCa 'n". (AlO) 

Introduce also the following matrices: 

ka = Cbac eC
b , 

8a = (C b
ac - Ubaac)eCb' kOa = Ecadndbecb , (All) 

with similar definitions for the primed and double primed 
components. 

The following choice of matrices {lCa I generating {; is 
made: 

CLASS A: lCa = ka + OIIZ 03a k'\ + o'z k,xa , 
(AI2) 

CLASS B: IC I = e3 I , 8 1 = - 3aICI + n(2 )1C
2 

, 

1C2 = e3
2 , 82 = n l l)lC l - 3aIC2 , 

1C3 = kO 3 + OV z k'\ , 83 = (I - OV z )1C3 + ae + . 

{k'X a I are the canonical Bianchi type IX adjoint matrices 
[generating SO(3,R )] while OZ z. is the Bianchi type Kron
ecker delta. Introduce also the notation 

8a = ICb pba + aa e+, [lCa,lCb 1 = CCab ICc . (AI3) 

One fin~s C abe = E bcd nda for all Bianchi types except type I, 
where cabc = cabe(IX), and types II and V, where 
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C abc = C a be (VIIo); the Roman numeral in parentheses indi
cates the canonical components of that Bianchi type. 

The basis {lCa I has been chosen so that ~ ab is diagonal 
and ~ "ba has only one nonvanishing component for each 
value of a. When lCa = kO a' as occurs in the nondegenerate 
class A case for all values of a, for a = 1,2 in the Bianchi type 
II case and for a = 3 in the class B case (except for type V), 
then ~ "a a (no sum on a) is the nonvanishing component and 
the appropriate cyclic permutations of the following formu
las hold, given here for a = 3 

~ "33 = - IC;[ 12) = ~(nll) efl" + n (2) e - P"), 

IC " 1( (I) -13" 121 p" 3112) = - 2 n (1'- - n e - ), (AI4) 
~ 33 = 2[ lCi'[12 d 2

• 

In the class B case (including type V), the remaining compo
nents are given by 

~"21=!efl03, _~"12=!efl", 

(AI5) 
ca 2IJU ca _ 1 2P" 
J II = ! e , J 22 - 2 e . 

The remaining components in Bianchi types I, II, and V are 
given by the appropriate version of(AI4) evaluated at n = 1. 
(Recall that pab = pa - f3'> .) 
APPENDIX B 

An immediate consequence of (2.13) is that if Y is any 
pro<!uct of Dirac matrices, the following equation is obeyed 
by l/Iyl/I: 

(tPyl/l)' = -!tP {l:"a[Y,YayDY51 + r i,aa(YY5 + YsY) 

+ 2a;'[y, yDC] + 2m[y, yDlll/I. (BI) 

Applying this to the basis elements of the Dirac algebra one 
finds the following equations of motion: 

~"O = 2a" c,if"C + !mtPY51/1, 

~"aE l:,"b ,if"C + 20" ..f"0 ak a~W , 

/"0 = 2a;' /"e, 
/"a = Eabel:"b/"C + 2a;/"0 + mtPyDal/l, 

(tPl/I)' = r "a a tPYsl/l, 

(tPYsl/l)' = r"a~ tPl/I + 4m,if"0, 

(tPyaOl/I)' = Eabcl:"btPYOI/I- r "cc tPyaOYsl/l 

+ 2Eabca;;tPYOYsl/l + 2m/"a, 

(tPyaOYsl/l)' = Eabcl:"btPYOYsl/l- r "cc tPyaOl/I 

+ 2Eabca;; tPYOI/I. (B2) 

The addition of the term - 2iA.a fi,(yaOy + yyaO)t/I to the r.h.s. 
of (B I) leads to the addition of the following terms to the 
r.h.s.'s of (B2): 

..:1~"0 = 0 = ..:1)'''0, 

..:1~"a = !EabcA. "b/"c. 

..:1/"a = _ 8EabeA. "b ,if"C, 

..:1 (tPl/I)' = - 2iA. ; tPyaO 1/1, 

..:1 (tPY51/1)' = - 2iA. ;tPyaOY51/1,' 
..:1 (tPyaOl/I)' = - 2iA. "atPl/I, 

..:1 (tPyaOy sl/l)' = - 2iA. ; tPy 51/1· 

Robert T. Jantzen 
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Self-dual Kerr-Schild metrics and null Maxwell fields a) 
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A construction for self-dualsolutions of Einstein's equations with metric in Kerr-Schild form 
from null electromagnetic fields in Minkowski space is described. Two examples are given. 

PACS numbers: 04.20.Jb 

In this paper, I wish to show that any null Maxwell field 
in Minkowski space determines a solution of the self-dual 
Einstein equations for which the metric has Kerr-Schild 
(KS) form. Such Maxwell fields can then be generated by 
twistor methods and depend essentially on two free func
tions of two variables. This situation is contrasted with real 
KS metrics and some examples are given. 

The self-dual Einstein equations have been reduced by 
Plebanski 1 to a single nonlinear equation on a scalar poten
tial e (u, v, X, Y) which can be written 

e,uv - e,xy = - e,vve,xx + (e,vx)2, (1) 

The corresponding metric is then 

ds2 = 2dudu - 2dXdY - 2 

X (e .xxdU2 + 2e,vxdudY + e,vvdy2), (2) 

The KS metrics have the form2 

gab = 17ab + 2HLaLb' (3) 

where 17ab is the Minkowski metric, La is a null vector field 
on Minkowski space subject to certain conditions, and H is 
related to the derivative of La in a way described below, 

The metric (2) takes the KS form (3) if the second part is 
a perfect square, i.e., if 

(4) 

so that, to find self-dual KS metrics, we must set both sides in 
(1) separately equal to zero, obtaining (4) and the Minkowski
space wave equation 

De=:2(e,uv - e,xy) = 0, (5) 

Rather than solving (4) and (5) directly, we shall obtain the 
same equations as determining null Maxwell fields. First, 
choose a constant normalized spinor dyad (0 A' 1 A;O A 1 A = 1) 
on Minkowski space and introduce the coordinates (u, v, X, 
Y) in the conventional way 

X AA ' = uIATA' + YIAO A' +xoATA' + UOAO A'. 

Now define 

OA' = OAVAA , 
so that 

- a - a 
OA' = OA' - - IA'-' ax au 

If ¢ A • 8' is a solution of Maxwell's equations in Minkowski 
space, 

a) Work supported by S. R. C. Post-Doctoral Research Fellowship. 

VAA'¢A'B' = 0, 
then by transvecting with 0 A we find 

OA'¢A'B' = O. 

Therefore, we can find a potential ¢ A' with 

f/JA'B' =OA,f/JB' 

and by the symmetry of f/J A 'B' 

OA 'f/JA , = 0 

so that 

f/JA,=OA,e 

for some scalar potential e. Now 

f/JA '8' = OA ,OB,e (6) 

and the remaining Maxwell equations on ¢A 'B' imply that e 
can be chosen to satisfy the Minkowski space wave equation: 

D8 _2(8,uv - 8,xy) = O. 

Further, if f/J A'8' is null, then 

f/JA'B,f/JA'8' = {)A'{)8,e{)A'{)8'e = 0, 

which is just 

e,m,e.xx - (e.vxf = 0, 
Thus if 8 is a scalar potential for a null Maxwell field, then e 
also satisfies Plebaiiski's equation for a KS metric. However, 
there is a gain in viewing the KS metrics in this way in that it 
is not necessary actually to solve (4) and (5) and find e explic
itly. Rather, if f/JA '8' is any null Maxwell field, then the met
ric 

ds2 = 17abdx"dxb +)'OAOB¢A'B,dxAA'dxBB' (7) 

for arbitrary). automatically satisfies the self-dual Einstein 
equations, 

To generate null Maxwell fields, we recall from Robin
son's theorem3 that if the spinor field 1T A' on Minkowski 
space is geodesic and shear-free (GSF), then a scaling of 1TA' 
can be found such that the spinor f/J A 'B' = 1T A ,1T B' satisfies 
Maxwell's equations. Further, the spinor ¢A '8' = f/J1TA ,1TB' 
will also satisfy Maxwell's equations provided 

(8) 

Finally, GSF spinors 1TA , can be generated in Minkowski 
space via the Kerr theorem4 by choosing an arbitrary homo
geneous twistor functionf(Za) and solving the equation 

/(iXAA '1TA' ,1TA,) = 0 (9) 

for 1T A' as a function of XAA 
'. 
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(Null Maxwell fields may also be obtained directly by 
means of twistor integrals.4 The functional freedom is the 
same.) 

The general self-dual KS metric is therefore defined by 
an arbitrary twistor function/and a solution </J of(8). This 
corresponds to two free functions of two variables. 

From the work of Pie ban ski, 1 the Weyl spinor of the 
metric (7) is just 

tfA'B'C'D' = DA,DB,</JC'D' = DA,DB,DC'DD,e (10) 

suitably interpreted. (Basically, 0 A is now thought of as a 
constant spinor in the self-dual space with V AA' in the defini
tion of D A' being the self-dual connection). 

If </JA 'B' = 1TA ,1TB" then (6) implies 

DA,1TB, =f!J3A,1TB, + 21TA,PB') 

for some P A' and then (10) is just 

tfA 'B'C'D' = 1TW1TB,PC,PD') + 1TW 1TB,Dc ,PD')' 

As anticipated, the Weyl spinor is algebraically special and 
can be of any type. However, a function-counting argument 
indicates that not every algebraically special metric can be 
put into KS form. 

This situation may be contrasted with real KS metrics 
which are defined by special GSF spinors and have no free
dom in the scaling. The GSF spinors arise from a specialized 
version of (9): 

(11) 

where t AA ' is a constant vector on Minkowski space and 
g(1T A ' ) is homogeneous of degree 2 in 1T A ' . The real KS metric 
is then defined by 

ds2 = llabdxadxb + 2H1TA'1TB,iTAiTBd~A'dxBB', (12) 

where 

1148 

H=m(K +K), 
K t-B'=A A'C- V DD'--4 =" 1T t 1Tc AA,1TB,)(t 1TD1TD,) . 

J. Math. Phys., Vol. 23, No.6, June 1982 

[Observe that, although (11) does not fix the scale of 1T A" (12) 
is independent of this scale. Equations (11) and (12) are ob
tained from (S,66) and (S.70) in Ref. 2.] 

The real KS metrics have a Killing vector given by t a 

and can only be type (2,1,1) or D [not (3,1) or N]. The self
dual KS metric need not have Killing vectors, although they 
will have the same Killing vector t a if based on a special GSF 
spinor given by (11). Unfortunately, there seems to be no 
natural way of associating a self-dual KS metric with a given 
real one. Instead a whole family can be built around the same 
GSF spinor. 

We finish with a couple of examples: 

(a)</JA'B' = OA~A,OBXBB./(Xaxa)3, 

which leads to 

ds2 = 2 dudv - 2 dXdY + A (Y du - u dy)2/(UV - XYf; 

(b)</JA'B' = lAxAA,lBxBB,/(xaxa)3, 

which leads to 

ds2 = 2 dudv - 2 dXdY + A (v du - X dy)2/(UV - XYf. 

These two metrics, respectively type Nand 0, are two 
of the JY-spaces found in Ref. S. In fact, the second of them 
is the Eguchi-Hanson metric in unfamiliar coordinates. 6 

'J. F. Plebanski, J. Math. Phys. 16, 23951\975). 
2G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10,1842 (1969). 
'I. Robinson, J. Math. Phys. 2, 290 (1960). 
4R. Penrose and M. A. H. MacCallum, Phys. Rep. C 6,241 (1973). 
~G. A. J. Sparling and K. P. Too, "An example of an 7t'space"J. Math. 
Phys. 22,331 (1981). 

"G. Burnett-Stuart, in Twistor Newsletter 9 (Mathematical Institute, Ox
ford, 1979). 
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Spacetimes admitting a vector field whose inner product with the Riemann 
tensor is zero 

C.B.G. Mcintosh and E. H. van Leeuwen 
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The equation vf'R f'vaP = 0 arises in various places in general relativity, in particular as the 
integrability conditions of the equations 2" v g = 21,6g, where 1,6 is a constant. These are the 
equations of a homothetic vector field v, with a zero homothetic bivector (dv = 0) in some space
time with metric g, and R f'vaP are the components of the Riemann tensor of that metric in some 
frame. In this paper the equation vf'R I' yap = 0 is examined and the components of the Riemann 
tensor for the spacetimes which admit nonzero solutions vI' of this equation are given. The 
Petrov types of the Weyl tensors of these spacetimes are listed and, as a result, a correction is 
then made to a theorem in a paper by Collinson and Fugere about the Petrov types of spacetimes, 
which admit the type of separation that they require of the Hamilton-Jacobi equation for these 
spacetimes. 

PACS numbers: 04.20.Jb, 02.40.Ky 

1. INTRODUCTION 

In various places in general relativity the condition 
arises that, for a given metric tensor g, there is a vector field v 
which satisfies 

(1.1) 

where the R I' yap are the components of the Riemann tensor 
of g in some frame. For example, this equation arises as the 
integrability conditions of the equations 

vf';y = I,6gI'Y' 1,6 constant. (1.2) 

These are the equations satisfied by the homothetic vector 
field v with zero homothetic bivector (HBV) (v[I';V 1 = 0) or, 
when 1,6 = 0, by a Killing vector field with zero bivector. 
McIntosh I has shown, by using results of Ehlers and Kunde 
and Oebney, 3 that if a vacuum spacetime admits a vector 
field v with zero HBV, as in (1.2), then v is a null Killing 
vector field and the spacetime metric is the type N,pp wave 
metric. 

In this paper, Eq. (1.1) is discussed in a general situation 
and the equation is examined to see what restrictions are 
placed on the Petrov types of the spacetimes in which there is 
a vector v which satisfies (1.1). The following result is 
obtained: 

Theorem 1.1: If a spacetime g admits a vector field v 
which satisfies (1.1), then the Weyl tensor of g is 

(i) algebraically special if v is null, 
(ii) of Petrov type I or D if v is timelike, 
(iii) of any Petrov type ifv is spacelike. 
Part of the motivation for studying (1.1) is to correct a 

claim by Collinson and Fugere,4 who discuss the separability 
of the Hamilton-Jacobi equations for geodesics in n-dimen
sional Riemannian or pseudo-Riemannian manifolds. They 
state that in spacetime the Hamilton-Jacobi equation can 
only separate, in the way they require, when the Weyl tensor 
of these spacetimes is of Petrov type I, D or, provided the 
separable coordinate is spacelike, type II. It is shown here 
that it follows from Theorem 1.1 that their statement is not 
correct. There is, in fact, no restriction on the Petrov type if 

the separable coordinate is spacelike, since the existence of a 
spacelike separable coordinate is equivalent to the existence 
of a spacelike vector v which satisfies (1.1) and theorem 1.1 
holds. 

2_ FORMALISM AND BASIC EQUATIONS 

It is easiest to examine Eq. (1.1) by using differential 
forms and the language of Newman and Penrose (NP).s The 
conventions of Oebever, McLenaghan, and Tariq6 are fol
lowed. The spacetime manifold is spanned by four null vec
tors I, n, m, and Ri, where 1 and n are real and m is complex, 
and the metric takes the form 

ds2 = l®n - m®m =gabeaeb, 
where 

e 1= n, e 2 = I, 
e 3 = - m, e 4 = 7)3 = - m. 

The curvature two-forms are defined by 

(2.1) 

(2.2) 

8~ =!R abcd ()< "e d
. (2.3) 

Then, in the language of NP, where tJi A (A = 0-4) and tP AB 

(A = 0--2) are the tetrad components of the Weyl tensor and 
trace-free Ricci tensor, respectively, and A is proportional to 
the trace of the Ricci tensor, the independent curvature two
forms are 

8 41 = 8 23 = tJioZ 1+ tJilZ 2 + (tJi2 + 2A )Z3 
- -2 -3 + tPooZ I + tPOIZ + tP02Z , (2.4a) 

8 22 = - 8 II = (tJil + tPOI)Z I + (tJi2 - A + tPll)Z 2 
+ (tJi3 + tP21 )Z3 + (iPl + tPlO)Z I (2.4b) 

- -2 - -3 + (tJi2 - A + tP11)Z + (tJi3 + tPn/Z , 

8\ = - 8 3
3 = (tJil - tPOI)Z I + (tJi2 - A - tP lI )Z2 

3 - -I - -2 + (tJi3 - tP21 )Z - (tJil - tPlO)Z - (tJi2 -A - tPlI)Z 
- (iP3 - tPdZ3, (2.4c) 

8 14 = 8 3
2 = - (tJi2 + 2A )Z I - tJi

3
Z 2 _ tJi4Z 3 

-I -2 -3 
- tP20Z - tP21Z - tP22Z, (2.4d) 
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The other nonzero e a b can be found from these equations 
by taking the complex conjugates of (2.4a) and (2.4d) 

Equation (1.1) can now be written in tetrad form as 

(2.5) 

and it is in this form that the equation can be investigated to 
see what relationships are imposed on the I/IA' (/>AB' and A by 
taking various forms ofthe nonzero Va for the cases where v 
is null, timelike, and spacelike. 

3. SOLUTIONS OF (1.1) 

(a) v null: When v is a null vector field, the () a can be 
chosen so that, for 

v=Va()a, 

() 2 and v are aligned. Then 

v = V2 () 2, VI = V3 = V4 = O. 

In this case (2.5) gives 

e 2 I = e 23 = e 24 = O. 

Then (2.4) gives 

0= 1/10 = 1/11 = (/>00 = (/>01 = (/>02' 

1/12 = - 2A, (/>11 = 3A, 1/13 = - (/>21' 

1/14 and (/>22 arbitrary. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Thus, only spacetimes whose Riemann tetrad components 
satisfy these relationships can admit a null vector v which 
satisfies (2.5). In vacuum, as mentioned in the Introduction, 
this means that the spacetime must have a Weyl tensor of 
Petrov type N. In all cases the Weyl tensor is algebraically 
special and I is a repeated principal null congruence. 

(b ) v timelike: When v is timelike, the () a can be chosen 
so that 

v = v(() I + () 2), V'V = 2V2> O. (3.5) 

Then (2.4) and (2.5) give the requirement that the nonzero 
NP quantities satisfy 

1/10 = iii4 = (/>02' 1/11 = - iii3 = (/>12 = - (/>01' 

1/12 = A - (/>11' 1/12 + 2A = (/>00 = (/>22 = 3A - (/>11' (3.6) 

It is shown in the Appendix that these restrictions mean that 
the Weyl tensor has Petrov type I or D. There is no vacuum 
solution which satisfies these restrictions. 

(e) v spaee/ike: Similarly with v spacelike, the tetrad can 
be chosen so that 

v = V(() 2 - () I), v.v = - 2v2 < 0 (3.7) 

and (2.4) and (2.5) now give 

1/10 = iii4 = - (/>02' 1/11 = 1/13 = - (/>12 = - (/>01' 

1/12 = A - (/>11' 1/12 + 2A = - (/>00 = - (/>22 

= 3A - (/>11' (3.8) 

The Weyl tensor can now be of any Petrov type (see Appen
dix). Again there is no vacuum solution which satisfies these 
restrictions. 

There is another very simple possibility for v in the case 
where it is spacelike, and this is 

v = v(() 3 + 83
). (3.9) 
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This would have led to 

1/10 = - (/>00' 1/14 = - (/>22' 

1/11 = - iiil = (/>01' 1/13 = - 1/13 = (/>21' 

(3.11) 

tf2 = A + (/>11' 

tf2 + 2A = - (/>02 = 3A + (/>11' 

rather than (3.8), but a tetrad rotation can be found whicl 
maps (3.9) and (3.10) into (3.7) and (3.8). 

From these results the statement of Theorem 1.1 in tIe 
Introduction now follows immediately. 

4. CLASSIFICATION OF THE RIEMANN TENSORS 

McIntosh and Halford7 discuss the equation 

(4.) 

in general relativity; in particular in relationship with curv,
ture collineations and with those spacetimes whose Riemam 
tensors have solutions for x1"V in (4.1) which are not propo
tional to the metric tensor components g"v' 

Hall and McIntosh8 have shown that almost all nontl
vial solutions of (4.1) are of the form 

x"v = ifJg"v + av"v,., (4.~) 

where ifJ and a are aribtrary scalar fields and where v" satis¥ 

(4.i) 

Indeed Collinson9 showed that in vacuum the only nontri 
vial solutions of (4.1) were of this form where a is not zerc 
the metric has its Weyl tensor of Petro v type N, and I is tal
gent to the four-fold repeated principal null direction of tb 
Weyl tensor of such a metric. Examples can easily be founi 
of spacetimes where (4.1) does have nontrivial solutions 
which are not of the form (4.2) and (4.3), but this paper inc
dentally examines the spacetimes which do have solutions« 
the form (4.2) and (4.3). Indeed, every spacetime in which 
there exists a vector v which satisfies (4.3) automatically hs 
nontrivial solutions of (4.1) of the form (4.2). 

There is in McIntosh and Halford7 a list of the classi1-
cation of all nontrivial solutionsx"v of(4.1), where the class
fication is in various Plebanski classes as outlined by Ple
ban ski 10 and as given in NP canonical form by McIntosh, 
Foyster, and Lun. II 

With v null, the restrictions (3.4) on the Riemann tenslf 
components are the same as those whenx"v in (4.1)-(4.3) hs 
type [4N]2 in Plebanski's classification. When v is timelik~ 
the main type is [T -3Sh and when v is spacelike, the main 
type is [3S-T]2' Again there are degenerate cases in all thee 
forms of nonzero components of the Riemann tensor tetrd 
components and corresponding higher types of the x"v· 

5. HAMILTON-JACOBI SEPARABILITY 

Collinson and Fugere4 discuss the Hamilton-Jacobi 
equation for geodesics, namely 

g "VS S - m2 = 0, tIL .v 
(51) 

and look for solutions S of this equation which separate wih 
respect to the coordinate Xl such that S can be written 

C. B. G. Mcintosh and E. H. van Leeuwen 100 



                                                                                                                                    

(5.2) 

Their definitions lead them to study a metric g which is con
formal to g and which admits a non-null hypersurface or
thogonal Killing vector v. This Killing vector then has to 
satisfy 

vp;v = 0 (5.3) 

and therefore the integrability conditions 

vpR p vap = O. (5.4) 

They claim that in this case v can be written as 

v = tP(()2 + E() 1), E = ± 1, (5.5) 

where tP is an arbitrary scalar field and () 2 is a principal null 
vector of the Weyl tensor in the spacetime under discussion. 
They then discuss the Weyl tensor of this spacetime and list 
the results which are mentioned in the Introduction of this 
paper. Their results would be true ifit were always possible 
to choose v to satisfy (5.5) with () 2 a principal null vector. 
However, it is not possible in general to satisfy both of these 
requirements simultaneously. If v is chosen to satisfy (5.5) 
then, since (5.4) still holds, the results of Sec. 3(b) and 3 (c) 
hold and the restrictions on the Weyl tensor as listed in 
Theorem 1.1 hold. 

These changes mean that the theorem listed in their 
paper as Theorem 1.1 should thus read: 

Theorem 5.1: The Hamilton-Jacobi equation can only 
separate in space-times of Petro v type I or D ifthe separable 
coordinate is timelike, or of any Petrov type if the separable 
coordinate is spacelike. 

6. DISCUSSION 

One spacetime in particular can be shown to always 
possess a vector v which satisfies (1.1) and this is the one 
which satisfies the conditions of the following theorem. 

Theorem 6.1: A spacetime which possesses a hypersur
face orthogonal homothetic vector field v which is of nonze
ro constant length is such that the vector field is covariantly 
constant and thus the homothetic vector field is a Killing 
vector field. 

The prooffollows the working of the first part of Sec. 3 
of Collinson and Fugere,4 except that v satisfies'? • g = 2t/Jg 
to begin with rather than just.? • g = O. Here tP is a constant. 
The equations from the assumptions soon give tP = 0 and 

vp;v = 0 (6.1) 

and hence the theorem is proved and (1.1) is satisfied by v. 
The following, related, result is worth noting. 
Theorem 6.2: If a spacetime admits a homothetic vector 

field v with zero homothetic bivector, and if v has constant 
length, then v is a Killing vector field. 

The proof just uses ifvp = const, which implies 
ifvp;v = 0 and (1.2). These equations give ¢ = 0 and the 
theorem is proved. Equation (1.1) is automatically satisfied. 
Notice that this holds for null vectors v as well as for other 
constant length, non-null vectors v. 

This result was used in the proof of Theorem 3.2 in 
McIntosh. 1 This is the result discussed in the Introduction. 
However, that theorem was only concerned with vacuum 
spacetimes. 
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Equation (1.1) arises in other spacetimes. It is the gener
al case which is discussed in this paper. The main result 
perhaps is that there are very few spacetimes which admit a 
vector field v which satisfies (1.1). The tetrad components of 
the Riemann tensors of these spacetimes satisfy the strong 
restrictions (3.4), (3.6), and (3.S) for v null, spacelike and 
timelike. Some spacetimes which satisfy these conditions (or 
at least subcases of these conditions) are discussed by McIn
tosh and Halford7 in their discussion of (4.1). One of the 
results of the restriction in (3.4), (3.6), and (3.S) is that the 
Weyl tensor in these spacetimes satisfy the restrictions im
posed by Theorem 1.1. This result leads to a change of a 
result by Collinson and Fugere.4 

APPENDIX 

When a spacetime metric admits a timelike vector v 

which satisfies vpR p vap = 0, it is stated in Sec. 3(b) that a 
null tetrad 1,0, m, and iil can be chosen such that the possible 
nonzero NP components of the Weyl tensor are 

'/10 = W4, '/II = - W3, '/12 = W2. (AI) 

It will be shown that these restrictions mean that the Weyl 
tensor has Petrov type I or D. 

Consider the null rotation which leaves 1 fixed: 

l' = 1, m' = m + aI, (A2) 
0' = 0 + am + am + aa 1, 

where a is an arbitrary complex scalar. Then I' is a repeated 
principal null vector if a can be found such that both '/1 4 and 
'/I; are zero, i.e., 

'/1 4 = 0 = '/14 + 4Q'/I3 + 6a""'Z'/I2 - 4Q3W3 + zrw4, 
'/I; = 0 = '/13 + 3a'/l2 - 3Q2W3 + a3W4. (A3) 

It follows after some straightforward algebra that the '/IA in 
this case must satisfy 

(1 - aii) '/14 + 2a'/l3 = 0, 
6a""'Z'/I2 - (1 - 4aa + a2(2)1ft4 = 0, (A4) 

from which it follows that 

a2'/14=jflp4' '/I4W~=ij/4'/1~. (AS) 

Now consider the similar null rotation which leaves 0' fixed: 

Oil = 0', m" = m' + bo', 
I" = l' + bm' + bm' + bbo', (A6) 

where b is an arbitrary complex scalar. Then '/I'{ = '/I; = O. 
With a satisfying (A4) and with 

b = - a/(l + aii), (A7) 

it follows that '/I ~ = '/I;' = 0 and thus the only zero '/I ~ is 
1ft ~. In this case the Petrov type is D. If no such a exists the 
type is I. 

Another way of obtaining this result is to start with the 
'/I A in canonical form, one Petrov type at a time, and show 
that there are no rotations (A2) and (A6) such that the IJ! ~ 
end up satisfying the double prime version of (A.l), except 
for the Petrov types D and, of course, I. 

This last argument can be used in Sec. 3(c) when v is 
spacelike and 

(AS) 
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In this case the canonical forms of all the Petrov types can be 
taken one at a time and the lJI A put into this form by means of 
the null rotations (A2) and (A6). Thus the Weyl tensor of 
such a spacetime can be of any single Petrov type. 

IC. B. G. McIntosh, Gen. ReI. Grav. 7,199 (1976). 
2J. Ehlers and W. Kundt, Gravitation: An Introduction to Current Re
search, edited by L. Witten (Wiley, New York, 1962), Chap. 2. 
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The metric dependence of four-dimensional formulations of 
electromagnetism 
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Three-dimensional and four-dimensional formulations of electromagnetism are compared with 
particular regard to whether it is necessary to postulate a metric locally (i.e., to define an inner 
product in the tangent space). In three dimensions, a metric-independent formulation is possible 
but in four dimensions the required set offundamental differential forms can not be defined by 
experiment on a differential manifold without a metric. 

PACS numbers: 04.40. + c 

A recent pair of papers 1,2 in this journal contained a 
description of, and comments upon, an interpretation of 
flux, charge and angular momentum quantization in terms 
of a set of naturally independent concepts relating to the 
periods of one-, two- and three-dimensional cyclic integrals 
in space-time. In making 1 these suggestions, Kiehn ac
knowledged the importance of prior work by pose.4 (relating 
flux and charge quanta to one- and two-dimensional periods) 
and studied the topology offields built on a four-dimensional 
space-time in terms of a set of fundamental differential 
forms which are assumed to exist for all physical systems 
that are usually described in terms of a field theory. 

An important feature of this work is the metric invari
anceM and the (much stronger) topological invariance2 of 
the periods of these integrals. Correspondingly, the space
time manifold itself is neither equipped4 with a particular 
topology nor, indeed, endowed4 with a metric (which would, 
of course, automatically induce a topology). However, the 
purpose of the present paper is to question whether the re
quired set of fundamental differential forms can, in fact, be 
defined on a differentiable manifold without a metric, when 
the physical theory is the four-dimensional formulation of 
electromagnetism. 

The pair two-form F involving the fields E and B is 
expressed by PostS in a form equivalent to 

F=F;.;.dqIA'dt'] (A I .A.2=O,1,2,3), (1) 
, , 1 2 

where the index under the symbol d indicates a restriction, 

namely that d t" for example, must correspond to an incre-
1 

ment along the qAl coordinate line. More generally, howev-
er, no such restriction obtains, since an exterior differential 
p-form can be defined6 either as (a) an element of order p of 
the exterior algebra T~A (pI constructed on the vector space 
ofPfaffian forms (i.e., the space T~ of linear functionals on 
the tangent space Tn) or, equivalently, as (b) an element of 
(T ~ (PI)., that is a linear functional defined on the space of 
order p ofthe exterior algebra T ~ (pI constructed on Tn . Al
ternative (b) leads to an (unrestricted) form such as 

F = F du[A'dif'] A.IA.]: , (2) 

where du and dv are independent vectors in the tangent space 
T4 , and whether Eq. (1) or (2) is considered to be the more 
appropriate depends upon an examination of the experimen-

tal procedures used in making field measurements. 
The restricted form (I) corresponds to a belief that a 

field measurement is in actual fact a measurement of an inte
gral of a field in such a way that the field in the domain of 
integration may be assumed to be constant. On this view, any 
specification of the experimental arrangement is irrelevant 
to the specification of Fin (1) but defines, instead, the domain 
over which the integration of Fmust be evaluated. An unres
tricted form such as (2) corresponds to the beliefthat the 
experimental process of measurement defines 7 the corre
sponding differential form directly, notwithstanding the fact 
that the experimental procedures involve dimensions that 
are not truly infinitesimal but only small enough to allow 
spatial variations of fields to be ignored. At this point, how
ever, it is important to make a clear distinction between the 
three- and four-dimensional cases. 

In three dimensions, experiment defines unambiguous
ly multilinear antisymmetrical maps 7 

(7' : Tr--+R, which in 
turn define the linear maps 7 : T~ (pl-R that constitute dif
ferentialforms of type (2), suchas€ = 71(du) = El'l dUl'l and 
(/J = 72(dv A dw) = BI'II', dvll"dul"'] , whereli-l,1i-2 = 1,2,3 and 
the generalized fields E 1'1 and B 1'11'2 correspond to a particu
lar choice of basis el'1 for T3• Such maps can be established 
experimentally not only before any coordinates are intro
duced but also without any need to postulate a metric, even 
locally (i.e., it is not necessary to define an inner product in 
the tangent space). In three dimensions, therefore, a metric
independent formulation such as that involving the FofEq. 
(2) is entirely appropriate and the same conclusion may be 
drawn about the differential form (G ) involving the other two 
fields (H and D), except that, as correctly emphasized by 
Post,S G is (unlike F) an impair two-form. In four dimen
sions, however, the situation is different. 

Two inertial observers, 0 and i5, in relative motion can 
both perform experimentation to determine maps of the 
form 7 but, clearly, these maps must alter in character on 
passing from 0 to i5, because they reflect how a particular 
observer partitions the electromagnetic field into electrical 
and magnetic parts. What remains invariant, however, is the 
composite map ifJ : T4-R with values 

ifJ = 7.(dUI"el', )dVO 
- 7.(dVI"el',ldUo 

+ 72(dUI"el',AdVI"el',l 
= E dUl"dVo - E dVI"dUo 

III III 

+ B dUII"dVI',] (3) 
IltJLz ' 
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where dU and dV correspond to events, i.e., dUAl, dVA2ET4 , 

withA(.A2 = 0,1,2,3. This is the required differential two
form (i.e., F) and the reason that Eq. (3) is written in a differ
ent form from Eq. (2) is to emphasize that the experimental 
definition of tP involves two different sets of vectors, namely 
those involved in the definition of the generalized fields and 
those involved in the specification of two arbitrary events. 
That these two can not coincide can be readily seen by con
sidering measurements of magnetic flux: a selection by 0 of 
fixed vectors du and dv in his reference frame allows him to 
~eas~e <P = B fl.fl, du [fl'dif,J but the corresponding quantity 
<P = Bfl.JL,dii[fl·diJ',J, obtained from the first by a Lor~tz 
transformation involves vectors that are not fixed in 0 's 
frame and (despite the algebraic similarity) it does not, there
fore, correspond to a measurement of flux in D's reference 
frame. 

In fact, tP is a composite mapping the invariance of 
which rests on two sets of experimental input: first, measure
ments of 7( and 72 performed by individual inertial observers 
and, secondly, the coordination by these observers of events 
that must be chosen arbitrarily to justify the existence of a 
linear functional defined on the space of order 2 of the exteri
or algebra Tt (2) constructed on T4 • Although the former 
procedure does not require that a metric be defined, the lat
ter cannot be carried out without a metric, because the coor
dinatization of events involves not the raw data received by 

1154 J. Math. Phys., Vol. 23, No.6, June 1982 

an observer but his logging of events after allowing for the 
time taken for signals to reach him. It may therefore be con
cluded that the required set of fundamental differential 
forms (e.g., F and G) can not be defined by experiment on a 
differential manifold without a metric. The corollary that 
space-time must be regarded from the outset as being en
dowed with a semidefinite metric makes it easier to accom
modate the fact that all known residues of G appear to relate 
to two-dimensional cyclic domains of a purely spatial na
ture, because, as pointed out by Post,8 the semidefinite na
ture of the space-time metric retains a distinction between 
space and time through Sylvester's theorem of inertia. 

'R. M. Kiehn, J. Math. Phys. 18,614 (1977). 
2E.1. Post, J. Math. Phys. 18, 2084 (1977). 
'E. J. Post, "Current Status of Geometrodynamics," McGill University 
Progress Report to the "Foundations and Philosophy of Science Unit," 
1972. 

4E. J. Post, Phys. Rev. D 9,3379 (1974). 
'E. J. Post, Found. Phys. 7, 255 (1977). 
"A. Lichnerowicz, Linear Algebra and Analysis (Holden-Day, San Francis
co, 1967). 

7R. R. Birss, Phys. Lett. A 78, 223 (1980). 
"E. J. Post, Found. Phys. 9, 831 (1979). 
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In this paper we study under which circumstances there exists a general change of gross 
variables that transforms any Fokker-Planck equation into another of the Ornstein-Uhlenbeck 
class that, therefore, has an exact solution. We find that any Fokker-Planck equation will be 
exactly solvable by means of a change of gross variables if and only if the curvature tensor and 
the torsion tensor associated with the diffusion is zero and the transformed drift is linear. We 
apply our criteria to the Kubo and Gompertz models. 

P ACS numbers: 05.30. - d 

I. INTRODUCTION 

The Fokker-Planck equation (FPE) describes a gener
alized diffusion process for the probability density P (q, t ) 
= P (ql, ... qn; t) in an n-dimensional physical space spanned 

by then gross variables Iq", v = 1, ... , n}. IfD/L"(q) and! "(q) 
are the diffusion matrix and the drift, the FPE reads 

P(q,t)= -a"[J"(q)-~a,,D""(q)]P(q,t) (1.1) 

when a!, means a/aqi'. 
It has been possible to find an exact solution to the FPE 

when the diffusion is constant and when the drift is linear. I 
There exists also a class of FPE's that have exact solution 
and whose model is an FPE with linear drift and diffusion 
8 !,". 2 Any FPE of this class can be reduced to its model by 
means of a change in the gross variables. We may ask our
selves immediately the following question: Under which 
conditions does there exist a change of gross variables that 
transforms any FPE into another FPE with linear drift and 
diffusion 8 "V, i.e., that has an exact solution? This last ques
tion has a complete answer and constitutes the central result 
of this paper, in which we intend to give the necessary and 
sufficient conditions to determine if any FPE has an exact 
solution related with the exact solution of the Ornstein-Vh
lenbeck process by means of a general change of gross 
variables. 

In Sec. II we show how any FPE can be transformed 
into another one with exact solution. We use here the covar
iant formulation of FPE3

•
4 by means of which we obtain a 

clear and rigorous method for such a transformation. In Sec. 
III we give the necessary and sufficient conditions to be satis
fied by our original FPE so that such a transformation of 
gross variables exists: the curvature and torsion tensors have 
to be zero. These criteria characterized with precision a class 
ofFPE's that have exact solutions. 2 In Sec. IV we study some 
subclasses of FPE that have physical importance, among 
which we find the Kubos and Gompertz6 models. 

In this paper we suppose the sum over repeated indices 
except those that are within a parenthesis. 

II. TRANSFORMATION OF AN FPE INTO ANOTHER ONE 
WHOSE DIFFUSION IS tf'v 

Let M be the manifold formed by the physical states of 
the system. 7 This manifold is characterized by two sets of 
gross variables, ! qI' land! q'" l, related among themselves by 

means of continuous and differentiable functions and which 
conserve the number of gross variables. The diffusion tensor 
D""(q) is the metric tensor of the manifold. 

In this section we are going to transform a general diffu
sion process (1.1) into an FPE whose diffusion matrix is 8"". 
This last equation has exact solution if the transformed drift 
is linear (Ornstein-Uhlenbeck process). We write Eq. (1.1) 
covariantly by4 

S(q,t)= -V"(h!'S-~"VV,,S) 

- ~crrv "DT,,(h "S - ~/LVV"S), (2.1) 

where V" is the covariant derivative of the Riemann connec
tion of D/L" 8 

V"h" = a"h" + r;!'h P (2.2) 

where r;" are the Christoffel symbols 

r;" =!D""(a/LD"p +apD"" -a"Dp,,)' (2.3) 

The function S (q, t) is the scalar probability density 

S(q,t)=P(q,t)D1/2 (D=detD!'''); (2.4) 

the vector h (q) is the covariant drift4 

h "(q) =r(q) - ~ I12a!,(D!'''/D 112), (2.5) 

D"" = (D -I)"". (2.6) 

Let! q'''j be the new "gross variables" related to the old ones 
by means of 

)" _ aq'" ) _ Ip = art' 
p - art" " aq'" ' 

(2.7) 

which obviously satisfies 

a"r" = aJ~. (2.8) 

Let us suppose that the new variables { q'" j are such that 

D '"V = 8!'v. (2.9) 

The corresponding FPE is 

P'(q',t)= -a~[(f'!'(q')-!a~]p'(q',t) (2.10) 

since for the Euclidean metric 8 "" the Christoffel symbols 
are zero and besides 

S '(q', t) = P '(q', t )=P (q(q'), t ), 
(2.11) 

h '''(q') = !'''(q') f "(q(q')). 

Remembering that!,!' = h '" = ),,"h ", the transformed drift 
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is 

(2.12) 

The transformed FPE (2.10) is exactly solvable if it repre
sents an Omstein-Uhlenbeck process. The solution of (2.1 0) 
with the initial condition 

P '(q', 0) = 8"(q' - qo) (2.13) 

P'(q',t) = [n"detuJlv (t)]-1/2 

Xexp{ - uJl-:" l(t)[q'Jl_ q'Jl(t)) [q'V - q'V(t)J J 
(2.14) 

if from the transformed linear drift 

j'Jl(q') = A Jl vq'V + B Jl (2.15) 

we define 

q,Jl(t )=Y;(t )[qg +A z- IpBz] -A P- IJlBP, (2.16) 

where Y;(t) is defined by 

Y;(t) = A ~ y;;(t ), (2.17) 

Y;(0)=8~, (2.18) 

and 

UJlV(t) = 1~(O)r~(O)-~(t)r~(t)JnpT (2.19) 

A:nva +naJlA~ = -28 v
Jl (2.20) 

Therefore, if there exists a system of "gross variables" I q,vJ 
that satisfies Eqs. (2.9) and (2.15), the solution of the original 
FPE is (2.14) when we substitute, for q', q'(q) and, for 
P(q'(q),t ),P(q,t)D 1/2.Inthiscasetheintegrationso/theFPEis 
simply reduced to the integration o/the change o/variables 
(2.7). 

III. NECESSARY AND SUFFICIENT CONDITIONS TO 
SOLVE EXACTLY AN FPE BY MEANS OF A CHANGE OF 
VARIABLES 

There will not always exist a change of variables 
q = q(q') such that D 'JlV = 8 JlV. In the Appendix we show 
that the necessary and sufficient conditions, in order that 
D 'JlV = 8 JlV, are that the curvature tensor RJlvaf3 and torsion 
tensor T~a 8 associated with the diffusion matrix be zero. 

Therefore the conditions 

RJlva/J = ~(a ~aDJlf3 + a !pDva - a ~f3DJla - a !aDvp) 

+ D"p(r~ar'/.p - r~pr~a) = 0, (3.1) 

Tv"Jl = r':.a - r~v = ° (3.2) 

guarantee the existence of a change of variables determined 
by the matrix J). Jl such that in the new variables the diffusion 
matrix D 'JlV becomes 8 JlV. If we work with Riemann's con
nection D JlV, the Christoffel symbols are given by Eq. (2.3), 
and condition (3.2) is satisfied identically. 

In the same appendix (Eq. (A3)l we show that the ma
trix J).Jl for the variables transformations must satisfy the 
relation 

aJlJV). = r:vJa ).. 

For this equation the/ormal solution is 

Jv).(q) = sav(q, qo)Jo ).(qo), 
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(3.3) 

(3.4) 

where 

sav(q, qo)=exp[[ r:v(q") dq"Jl]. (3.5) 

On this formal solution we should impose "initial condi
tions" that are not given here. 

The diffusion matrix in the variables I q,vJ becomes a 
constant matrix; therefore, the general solution of (3.4) 
should satisfy: 

J Jl-1"J v-lpDJlV(q) =A "P 

or, equivalently, 

J;J~A"p = DJlv(q), 

(3.6) 

(3.7) 

whereA"p is a constant matrix. Concretely, we could take 
A"p = 8"p; in this case the transformation matrix satisfies 

DJlAq) =J;J~8"p. (3.8) 

Relation (3.8) is used in Ref. 2 to characterize a whole 
class of FPE that have exact solutions. 

In order that the transformed FPE represent an Om
stein-Uhlenbeck process, which has an exact solution, it is 
also necessary that the transformed driftj'Jl(q') be linear, i.e., 

a~). j'Jl(q') = O. (3.9) 

In the coordinates q' the covariant derivation V' coincides 
with the ordinary derivatives and besides the driftj'Jl is the 
covariant drift h 'Jl. Therefore, the covariant expression for 
(3.9) is 

V~ V~h 'Jl = 0, (3.10) 

which if written in the original variables becomes 

VyV).hJl=O. (3.11) 

Let us observe that the condition (3.11) does not require a 
knowledge of the change of gross variables: it is sufficient to 
know the Christoffel symbols r':.a that can be evaluated dif
ferentiating the diffusion D JlV. 

From what has been said above, we can check whether 
or not any FPE (1.1) represents, in a certain set of gross 
variables, an Omstein-Uhlenbeck process that has an exact 
solution. We could test if the diffusion matrix DJlV satisfies 
the condition (3.1) and if the drift satisfies the condition 
(3.11). If the answer is affirmative, we can integrate the 
change of variables by means of a matrix J; of the type (3.7). 
The solution of the FPE is the one transformed from Eq. 
(2.14). 

IV. APPLICATIONS 

An important case are those processes whose diffusion 
is diagonal: 

(4.1) 

The only elements of curvature tensor that are not zero are 
R and R . As it is easy to check a diffusion matrix of IJ.V/-lP J-LVJ.lV 

the form 

D JlV(q) = tp{Jl) (qJl)8 JlV (4.2) 

with tp{Jl) (qJl) > 0 satisfies simultaneously the conditions 

RJlvJlP = 0, (4.3) 
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Rl'vl'v = O. (4.4) 

The corresponding matrix of the change of gross variables is 
any solution of the equations 

al'J~ = 0 (,u#v), 

aJ~ = !a)ntp(V)J~. 

The general solution of (4.S) and (4.6) is 

J~ =M~(tp(P)(qp))1/2<5Pv' 

where M ~ is a nonsingular constant matrix. 

(4.S) 

(4.6) 

(4.7) 

With the metric (4.2) the covariant drift in its original 
variables is 

hI' = J I' + ! tp (;) lal'tpl/.Li' (4.8) 

and the condition that the original driftJ I'(q) should satisfy 
in order that the transformed driftf'V(q') be linear is 

V,\ V y(f I' + ! tp (;) 2al'tpl/.L)) = O. (4.9) 

To the subclass of models represented by Eq. (4.2) be
long the Kubo and Gompertz models. Let the function 
tpl/.L) (ql') be of the form 

(4.10) 

if the transformed drift is constant, we have n monodimen
sional Kubo models. 

Similarly, if we have 

tpl/.L) (ql') = a~)q~) Ilog(bl/.Ldql!') 12 (4.11) 

when the transform drift is constant, we obtain n monodi
mensional Gompertz models.2

•
6 

Another example is the case when the diffusion matrix 
is conJormally flat: 

(4.12) 

with D (q) > O. In such a case there will exist a change of 
variables such that D 'I'V = <51''' if the function D (q) satisfies 
the equations 

3D -lavDapD - 2a~"D = 0 (p#v), 

D -I [(al/.L)D f + (a(v)D)2 - ~ L (auD )2] 
U#I'.v 

- (a~)I/.L)D + a(v)(v)D) = 0 (,u#v). 

A solution of these equations is 

D(q) =A exp[B(ql' + qv) + c] 
with an associated transformation matrix 

J/ =A 1/2exp!~(ql' + qv) + cIM~. 

V. CONCLUSIONS 

(4.13) 

(4.14) 

(4.1S) 

(4.16) 

Using the powerful methods of the differential geome
try we have found a class ofFPE that are exactly solvable by 
means of change of variables. 

Choosing as the metric tensor of the physical space the 
diffusion matrix, the corresponding FPE will be exactly 
solvable by means of a change of gross variables if and only if 
the curvature tensor and the torsion tensor associated with 
the diffusion is zero, and the transformed drift is linear. 

To write the solution of the FPE in the original varia
bles, we have to know the functions q' = q'(q) of the change 
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of variables and substitute them in the solution (2.14). There
fore, with the method presented in this paper the solution of 
an FPE is reduced to integrating a change of gross variables. 
Anyway, with the method presented above we can test any 
FPE to see whether or not it has an exact solution by means 
of a change of coordinates: The diffusion should satisfy Eqs. 
(3.1) and (3.2) and the drift equation (3.11). 

And so to write the solution of the FPE in the original 
variables, we should know the functions of such a change of 
variables q' = q'(q) and enter into the solution (2.14). There
fore, the integration of an FPE equation is reduced with the 
method presented here to the integration of a change of 
variables. 
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APPENDIX 

Weare going to show that the necessary and sufficient 
conditions which makes that the metric DI'V(q) (diffusion 
matrix) become Euclidean in some coordinate system are 
that the associated curvature tensors and the torsion be zero. 

Indeed, let us suppose that there exists a coordinate 
system q,a = q,a(q) such that D 'I'''(q') = <51'''; in this case the 
Christoffel symbols of the metric D' are zero: 

r/:,,(q') = O. 

Since the relation beween the Christoffel symbol for dif
ferent coordinates system is given by8 

r a ( ) _ r''\ ( ') aqa aq'p aq'U 
1''' q - pu q aq''\ aql' aq" 

we will have 

a2q''\ aqa 
+-----, 

aql'aqV aq''\ 

aq''\ a a2q''\ 
aqa r I'v(q) = aql'aqV . 

(AI) 

(A2) 

By means ofEq. (2.7), the relation (A2) may be written 
as 

(A3) 

If there exists a system of coordinates ! q'" I such that 
D 'I'''(q') = 011-", or, equivalently, such that r /:,,(q') = 0, there 
will exist a transformation matrix solution ofEq. (A3). 
Therefore, (A3) should satisfy the integrability equations 

a ~I'J; - a ~pJ~ = O. (A4) 

Deriving (A3) and entering in (A4), we conclude that J 
exists if 

J~ [apr;,,(q) - al'r;v(q)] 

+ n [r~a(q)F;,,(q) - r~,,(q)r;v(q)] = 0; 

this condition is satisfied if 

R pl'"p=apr~v - al'r~" + r~ar;v - r~ar;" = 0, 
(AS) 

where R PI'"p is the curvature tensor of the manifold.s And, 
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since 

Ra~vp==DafJR fJ~vp = 0, (A6) 

the matrix Ja,t exists if all components of the curvature ten
sor are zero. But we could ask ourselves whether or not this 
matrix corresponds to a continuous and differentiable 
change of gross variables, i.e., if we can write Ja,t = aaq',t. 
The well-known condition 

a,J~ = aaJ~ (A7) 

should then be satisfied, which is equivalent to 

J,/ (rr:.a - r~) = 0, (AS) 

as can be seen making use of (A3). This implies that the tor
sion tensor is zero 
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On boson condensation into an infinite number of low-lying levels 
M. van den Berg 
Institute/or Theoretical Physics, State University o/Groningen, P. O. Box BOO, Groningen, The Netherlands 
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The complicated structure of the condensate of a free boson gas in two dimensions with mixed 
boundary conditions is examined. 

PACS numbers: 05.30.Jp 

I. INTRODUCTION AND THEOREM 

It has been shown in recent papers l
•
2 that there exist 

three types of condensation in the free boson gas: 
(I) Macroscopic occupation of a finite number of 

single-particle levels. 
(II) Macroscopic occupation of an infinite num

ber of single-particle levels. 
(III) Nonextensive condensation (no levels ma-

croscopically occupied). 
In this paper we will present an example of type II. Let B L be 
a finite region in R d with volume L d and let E I < E f <E t· .. 
be the spectrum of the single-particle Hamiltonian H L; then 
[if we assume that exp( - (3H L ) is trace-class] the mean num
ber (n k ) L of particles per volume in the k th state for a free 
boson gas is given by (in the grand canonical ensemble3

) 

(nk)L =_1_ /(L) , 
L d e71k - t(L) 

( 1) 

where 1Jf = E t - E t and t (L ) is the positive solution of 

(2) 

P is the mean number of particles per unit volume. The ther
modynamic limit is the limit in which L __ 00 and the number 
density P is kept fixed. If the spectrum of HL is such that the 
critical density Pc, defined by 

Pc = lim lim ~ L (e71f - t ) - I, 
,11 L~oo L k 

(3) 

is finite, then condensation of type I, II, or III takes place if 
P > Pc' In the case when HL = - ~ /2 (with Dirichlet or 
Neuman conditions on the boundary aB L of B L) the critical 
density Pc is finite only for d> 2. However, if we impose 
attractive boundary on the eigenfunctions, then Pc is finite 
for all dimensions d = 1,2, .. · . This was noticed by Robin
son4 and discussed in detail by Landau and Wilde.s The rea
son that Pc is finite in this case is that the attractive boundary 
conditions cause a gap in the single-particle spectrum: 

Ef - Et >g, for somej> 1 and all L >Lo. (4) 

It was noticed before by Bijl, De Boer, and Michels6 that a 
gap in the spectrum will change the thermodynamical 
properties. 

In this paper we will take HL = - ~ /2 and impose 
position-dependent boundary conditions. We will see that 
they lead to condensation of type II for d = 2 and of type I 
for d = 1, d = 3, .... If the boundary conditions are position
independent, then there is condensation for P > Pc of type I 

only (as in Ref. 4). Let us take for BL the cuboid 

BL = IXE R d:O <XI <L, ... , 0 <Xd <L l 
and let the boundary conditions be 

a¢ 
- = - 0' ¢ for XI = L,O <x2 <L, ... ,O <Xd <L, 
aXI 

¢ = 0 for any other point ofthe boundary. 

(5) 

(6) 

The boundary conditions are said to be attractive if 0' < O. We 
have expressed all lengths in units (/3~/m)1/2, where/3is the 
inverse of the temperature times Boltzmann's constant. Let 
I <P t I be the eigenfunction of the Laplacian in B L with 
boundary conditions (6) so that 

-~~<Pt=Et<Pt· 

Then 

<P L = (~)d 12 (1 _ sin2L (2Ek, )1/2) - 112 
k L 2L (2Ed1/2 

d 1Tk X· 
xsinx l(2Ek,)1/2 II sin--'-I , 

j~2 L 
d rr k 2 

Ef: = Ek, + L --2-
1 

j~2 2L 

k = (ki" .. ,kd)' 

k j = 1,2,3, .. · (i = 1, ... ,d), 

and I Ek , l are the positive solutions for E of 

tanL (2E)1/2 = - (2E)1/2/0', 

(7) 

(8) 

(9) 

ordered so thatE, <E2 <E3 .•.. ForO'< - IlL andL>I, the 
spectrum is approximately given by 

Ek , -(rr/2L 2) (k, - W, kl = 2,3,· .. , (10) 

while there is a bound state with energy 
EI - -~/2. 

Our main result is the following: 

(11) 

Theorem: For P <Pc, t (L ) tends to the positive solution 
of 

00 t n 

P= ~ e- nif12. 
n~1 (217'n)d 12 

For P > Pc, t (L ) tends to 1 as follows: 

t (L ) - 1 - 1/ AL 2, d = 2, 

tIL )-1 - 1/(p - Pc)L d, d = 1,3, .. ·, 
00 e - nif/2 

Pc = L (2 )dI2' 
n~1 17'n 

(12) 

(13) 

1159 J. Math. Phys. 23(6), June 1982 0022·2488/82/061159·03$02.50 @ 1982 American Institute of Physics 1159 



                                                                                                                                    

and A is the unique solution of 

I (r (k~ -1)+~)-1 =P-PC' 
k,=1 2 A 
We see that due to (13) and (1) 

I, <) {[(r/2)(k~-I)+1/A]-1 
1m nk L= 

1,--.00 0, 

kl = 1, k2 = 1,2,3,... } 
d=2, 

kl = 2,3,···, k2 = 1,2,.·· 

I. <) {p-Pc, 
1m nk L = 

1,--..., 0, 
k = (1, ... ,1)} 

d #2. 
k #(1, ... ,1) 

(14) 

(15) 

It follows that in two dimensions there is macroscopic occu
pation of an infinite set of low-lying single-particle states 
(condensation of type II) whereas in 1,3,4,.·· dimensions only 
the ground state is macroscopically occupied (type I). 

This can also be seen by looking at the scaled spatial 
particle density v L defined by 

vdu) = L /(L) [cPt (Lu)]2. 
k e'lk-;(L) 

(16) 

One finds that 

lim vdu) 
1,--..., 

d=2, P>Pc' 

= d 
(17) 

(p-Pc)D(1-utl II 2sin2
1TUm +Pc, d>3, P>Pc' 

m=2 

p, d>l,p<pc' 

where UE B I and /j (1 - U I) is the Dirac delta function sup
ported on the hyperplane U 1 = 1. We see that the expressions 
[apart from (12) and (13)] are identical to the corresponding 
expressions for the free boson gas in the presence of an exter
nal field of power form in one direction (see Ref. 1). This is 
for the following reason: The attractive boundary condition 
causes a gap in the spectrum and forces the wavefunction to 
have a maximum near the attractive boundary. The same is 
true for one-particle Hamiltonian with an external potential 
with an absolute minimum at the boundary (and Dirichlet 
boundary conditions). We will give a sketch of the proof 
using the ideas of Lewis and Pule.7 

II. SKETCH OF THE PROOF 

Let/L (z) be defined by 

I" ( ) _ 1 ~ n '" - n'lf JLZ--£.,Z £., e . 
Ldn=1 {k,k,=I} 

The first step is to show that for zE[O,I] we have 

(18) 

• 00 zn 
hm/L(z)= L e- ncr12. (19) 
L~oo n = I (21Tn)d12 

This can be done using the asymptotic behavior of the E t for 
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large L given by (8) .... ,( II). Since it follows from (1) and (2) 
that for each L > 0 and P > 0 there is always a unique 
; (L lE[O, 1 )wefind that if ; (L ) tends to;E[O, 1) for L-+ 00, then 

00 rn 
P= L ~ e- ncr/2 

n = I (21Tn)d 12 

+ lim ~ I;n L e-n'lf. 
L~oo L n= I {k,k, = I} 

Since 

lim ~ I;n [ I exp -n~ (k 2_1)]d-1 
L~oo L n = I k = I 2L 

<lim_l_~;n(l+ L )d-I=O, 
L~oo L d n~1 (21Tn)1/2 

We arrive at Eq. (12). Suppose now that ;(L )-+1; then 

(20)' 

Ll d n~1 [;(L )]n {d~~" I} e - n'lt -P - Pc' (21) 

Equation (21) implies that for d = 1 we have macroscopic 
occupation of the ground state. So for d = 2 we have 

1 00 ;(L) 
J:i k~1 e,rlk' - 1)/2 _; (L) -+P - Pc, (22) 

from which it follows that; (L )-1 - 1/AL 2, where A is the 
solution of (14), For d>3 we have the following estimate: 

_I '" ;(L) 
L d £., L 

{H, = I} e'l> - ; (L ) 

;(L) 

1-;(L) 

=-d L 'I/(L) 
L (H, = I l e k - ;(L) 

k #(1. .... 1) 

1 
<-d L L 

L I H, = I l e'lk - 1 
k #11 ..... 1) 

d 00 00 (nr ) <-d L L exp --2 (k 2 - 1) 
L n=lk=2 2L 

[ "" (nr )]d - 2 X L exp --2 (k 2 _1) 
k= I 2L 

< d ~ -n,rIL' L (1 L )d-2 
J:i n~1 e (21Tn) I 12 + (21Tn)l/2 

d2
d 

L"" -n,rIL' L (1 L
d

-
2

) <-- e +----Ld n=1 (21Tn) I 12 (21Tn)ld-2)/2 ' 

which goes to zero as L-+oo. So for P >Pc 

1 ;(L) 
J:i 1- ;(L) -p -Pc' 

(23) 

(24) 

and we have macroscopic occupation of the ground state 
only (condensation of type I). 
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We consider an integer lattice in one dimension whose site variables take on the values 
v = 0, 1, ... ,D with a fixed nearest neighbor interaction but an arbitrary site-dependent external 
potential. By first eliminating the external potential in favor of the site probability density, an 
expression is found in principle for the potential as a functional of the density. This relation is 
worked out in detail for basic spin! model, Z3 lattice, random walk ensemble, and a special 
continuous spin model. The direct correlation function in all cases has only nearest neighbor 
support, and the thermodynamic potential as a functional of the density couples only nearest 
neighbor sites. 

PACS numbers: 05.50. + q 

1. INTRODUCTION 

One-dimensional systems, despite their restricted phys
ical applicability, nonetheless illustrate a number of the phe
nomena associated with the three-dimensional world. They 
have the great advantage of being explicitly solvable in a 
number of different contexts, allowing them to serve as 
benchmarks against which to assess approximations that are 
required in the more physical domains. And of course, in 
some situations, such as flow in very narrow channels, they 
may be very good models of reality. Perhaps the simplest 
context worth investigating is that of classical thermal equi
librium, where such models have been used both to check 
quite general physical assertions-such as the signature of 
lattice vertex functions I-as well as to generate effective ap
proximate models of real fluids. 2 The key to using such cor
respondences is that of having maximum control over the 
models, which has generally turned out to imply solving 
them in the presence of an arbitrary external field, such as 
that which mimics inertial forces in dynamical 
considerations. 

In this paper, we shall continue previous investigations 
in this vein, and solve the equilibrium statistical mechanics 
of an Ising lattice with arbitrary external field, in which the 
"spin" at a given site is not a dichotomic variable but can 
assume D + 1 values, say v = O,l, ... ,D. We shall consider 
only the case of position-independent nearest neighbor inter
action cP (v x' V x _ I ) between integer sites x and x-I; these 
functions, assumed symmetric, occupy a linear space of di
mension ~(D + l)(D + 2), D + 1 dimensions of which can be 
incorporated into an external potential. The applied external 
potential w x (v x) at site x is a member of a linear space of 
dimension D + 1, one dimension of which sets the local ref
erence potential and does not, e.g., affect distribution func
tions. Indeed, the primary information we seek will be the 
dependence of the single-site distribution nx(v)-the prob
ability that v x = v-on the applied field! Wx (v)}. All distri-

·'Supported in part by NSF Grant CHE-80011285, DOE Contract DE
AC02-76ER03077, and CNPq 40.0438/79 (Brazil). 

blPermanent address. 

butions can, of course, be generated by differentiation of this 
relation. We will find, as in the previously solved spin! case, 
that whereas the problem expressed in this form does not 
lead to a simple closed form solution, the inverse problem
the dependence of w x (v) on ! n x (v) }-does. We will solve this 
problem in several special cases, including infinite spin and 
continuous spin limits, and discuss some consequences of the 
solutions. 

2. BASIC SOLUTIONS 

Our system is represented by the partition function 

B= Ie-/nxwxivxie-/nx¢ivx,vx ,). (2.1) 
I vxl 

In order to take the domain of the integer index x as - 00 to 
00 we may, for example, distinguish one state v = 0 (say, the 
empty state) and assume that exp[ - f3wx (v)]-ov,o as 
Ix 1--... 00. We then take advantage of the one-dimensional 
nearest neighbor character of the system by considering 
instead 

{ 

L - I } 
BL(v)=Iexp -f3 I Wx(Vx ) exp{-f3wL(v)} 

IVxl - 00 

X exp { - f3 Lf:,~ cP (VX'Vx _ tl }exp{ - f3cP (V'VL - I)}' 

(2.2) 

EL(v)= I exp{ - f3 f Wx(vx)}exp{ - f3wL(v)} 
IVxl L+ I 

xexp{ - f3 f cP (Vx,Vx_ 1 )}exp{ - f3cP (VL+ I ,v)}, 
L+2 

(2.3) 

the left and right truncations of B at site L, spin v. It is clear 
that the probability of spin v at site L is given by 

nL(v)=Pr(vL = v) = exp!f3wL(v)}BL (v)EL (v)/B . (2.4) 

It is also clear that the recursion relations 

BL(V) = exp! - f3WL(V)j I exp! - f3cP (v,v')jBL _ dv') , 
v' 
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Edv) = exp! -PWL(v)} L exp! -P<p(v',v)}EL+ dv') 
v' 

(2.5) 
are satisfied. 

For notational convenience, let us define the vector and 
matrices 

Wx(v)=exp{ -pwx(v)) , e(v,v')=exp{ -P<p(v,v')) , 
(2.6) 

W...(v,v')= Wx (v)8y ,y' , 

so that (2,5) and (2.4) become 
_ _ C; C; 

'::'L = WLe.::. L _ I , '::'L = WLe.::. L+ I , (2.7) 

WL(v) = EL (VJEL (v)lnL (v)E . (2.8) 

Our strategy now calls for the elimination of WL (v) between 
(2.8) and each of(2.7), resulting in 

(2.9) 

which may also be written as 

- - -1 ~ :::. - -l( 1- ) '::'LI.::.=e {nL+ I I'::'L + I) , '::'LI.::.=e nL _ 1 '::'L-I ' 
(2.10) 

Thus E and E are determined in principle as functionals of 
{nx ). 

There are at least three convenient forms in which (2.9) 
and (2.1O) can be recast. First, we eliminate E L from the 
second of (2. 9) and the first of (2.1O) to read (after L-L - I) 

~. e(v,v')e-'(v,v")ndv")(Edv')lEdv"lJ = nL _ I (v) . 
v.v 

(2.11) 

These are D + I ~nline~ relations for any D independent 
ratios of the form E L (v')l E L (v"), but one relation is superflu
ous since summing (2.11) over yields the identity 
I = ~vnL _ I (v). In the same fashion, the first of (2.9) and 
second of (2.10) combine to 

~. e(v,v')e-l(v,v")nL(v")(EL(v')/E'L(V")) = nL+ I (v), (2.12) 
V,v 

to be solved for the EL (v')lEL (v"), The solution to the in
verse problem is then given, following (2.8), by 

WL(v') E'L(V') EL(v') ndv") 
= --..."...----- , 

WL(v") E'L(V") E'L(V") ndv') 
(2.13) 

If a local reference-say WL (O)-is specified, the WL (v) are 
thereby determined as functionals of {nx (v)). A 

A second formulation is obtained by elim~ating E be
tween the two equations of(2.9): nL E = E'L eEL +A1 

= E L e(n L + I E' leE L)' and similarly eliminating E. Thus, 
appending (2.8), we have 

_ (nL + I (V)) ::; (nL _ I (V)) nL(v) = '::'L(v)e _ ,ndv) = '::'L(v)e!! , 
e.::.L(v) e.::.dv) 

(2.14a) 

(2.14b) 

Here, at given L, E'L (v) and EL (v) are each determined only 
to within a multiplicative constant, and E'is likewise unde
termined, but the required ratio in (2.14b) is again fixed by 
inspection of a local reference such as WL (0). 
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If e- 1
, rather than e, has an especially simple form, the 

same procedure can be applied to the two equations of (2.1 0). 
For this purpose, let us first define 

A A 

Ydv)=nL(v)/EL(v) , YL(v)=nL(v)lEdv) , (2.15) 

so that (2.10) becomes 

nL(v)lE'= YL(v)e-lyL+ I (v), nL(v)/E'= YL(v)e-IYL _ 1 (v). 

(2.16) 

The analog of Eqs. (2.14) is seen to be 

(2, 17a) 

(2.17b) 

and similar comments as to normalization are appropriate: 
the unknown constant in EYL (v) YL (vJ is fixed by imposing a 
local reference for WL (v). 

3. THE SPIN 1 ISING MODEL 

To make contact with previous work, let us consider the 
case D = I, i.e., dichotomic spin variable, but use the lattice 
gas notation v = 0, I. Without loss of generality we can 
choose <p (v,v') = Jvv', wx(v) = vUx [so that WL (0) = 1], 
and then 

(3.1) 

The formulation (2.11 )-(2.13) is convenient, We first define 
F(v',v"; n,n') as that solution, in the form 

F(v',v",n,n') = G(v';n,n')IG(v";n,n') , (3.2) 

of 

2:e(v,v')e-'(v,v")n(v")F(v',v";n,n') = n'(v). (3.3) 
V,v 

Then (2.13) reads 

WL(v') , " 
_::....:......:...-=F(v,v;nL,nL_ I ) 
WL(v") 

F( , " )nL(v") 
X v ,v ;n L ,n L + I --

nL(v') 

or, for that matter, 

WL(v) = aL G (v;nL,nL _ I)G (v;nL,nL + I )lnL(v) 

with undetermined a L • 

(3.4) 

(3.5) 

In the present case, we need only the single ratio 
F(n,n') = F(l,O;n,n') and the single equation corresponding 
to v = O. According to (3.3), then, 

e(O,O)e- I(O,O)n(O) + e(O,O)e- 1(0,1 )n( 1)1 F (n,n') 

+ e(O,I)e-'(O,O)n(O)F(n,n') 

+ e(O, I )e-I(O, I )n( I) = n'(O) 

J. K. Percus 

(3.6) 
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or, in terms of (3.1), 

2F(n,n') = _ (1 _l n'(O) _..!.. n(I)) 
e n(O) e n(O) 

+ [(1 _l n'(O) _..!.. n(l) )2 
e n(O) e n(O) 

4 n( 1) ] 112 
+-; n(O) , 

(3.7) 

where e=e - {:JJ,J =e - {:JJ - 1, the sign of the square root 
being set by the positivity of F. Equation (3.4) now becomes 

-(3u nx (1) 
e '=F(nx,nx_I)F(nx,nx+I)--' (3.8) 

nx(O) 

and the pair (3.7) and (3.8), with nx(1) =p(x) = 1 - nx(O), is 
identical with the solution given in Ref. 1. 

4. A HIGHER SPIN MODEL 

The technical job ofsolving Eqs. (3.2) and (3.3) depends 
very much on the nature ofthe interaction given by e(v,v'). 
Even the next simplest case of spin 1 can lead to substantial 
complications. Let us consider one model which is quite 
readily solved, the spin 1 or Z3lattice, with v = 0,1,2. Here v 
is associated with the two-dimensional vector 
a(v) = expl2rrivl3 J, and the interaction is given by 
¢l (v,v') = - Ja(v)·a(v'), i.e., 

(¢l(v,v')) = -J(~! ~ ~ 
- ~ - ~ 

-~) 
-~ . 
1 

(4.1) 

Hence 

(e(v,v')) = (l~e 
lie lie 

and 

lie) lie , 

e2 

(4.2) 

_ 1 e -1) 
e3 + 1 (e3 

- l)(e3 + 2) . 

(4.3) 

This in fact is a member of the general class of interactions 

e(v,v') = a81',1" - b, 

e-I(v,v') = "!"(81'1', + b ) 
a ' a - (D+ l)b 

(4.4) 

for arbitrary dimension D + L The whole class is readily 
solved because its limitation to two distinct eigenvalues ren
ders it only slightly more difficult than the spin ~ prototype. 

We assume the "ferromagnetic" case a > (D + l)b. For 
the class (4.4), the pair (3,2), (3.3) becomes simply 

no(v) -.!?... no(v) I G(v') + b G(v) I no(v') 
a G(v) a - (D + l)b G(v') 

b
2 

"'G(v,)",no(v")_ ' 
a(a-(D+ lIb) L L G(v") -n (v), 

so that 

G(v) 
--= 
~G(v') 

- (no(v) - n'(v) - (bla)H) + [(no(v) - n'(v) - (bla)H)2 + 4(bla)no(v)H] 1/2 

2H 
(4.5) 

where 

H - b '" G ( ') '" no(v") 
- a - (D + l)b L v L G(v") , 

the sign of the square root occasioned again by the positivity 
of G (v). Summing (4.5) over v and using the fact that 
~no(v) = ~n'(v) = 1, we have the algebraic equation for H, 

2a-(D+ l)b H 
a 

= ~[(no(v) - n'(v) - ! H Y + 4 ! no(v)H ]112, 

(4.6) 
In other words, we conclude from (3.5) on redefining a Land 
setting K = (b la)H, that 

e - (3wLi1') = a L G (v;nL ,nL + I)G (v;nL ,nL _ I )/nL (v) , 

where 

G(v;n,n') 
= - [n(v)-n'(v)-K(n,n')] + [(n(v)-n'(v) 

_ K(n,n')f + 4n(v)K(n,n')] 1/2 (4,7) 
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and 

2a - (D + l)b K(n,n') = I [(n(v) - n'(v) - K(n,n'W 
b v 

+ 4n(v)K(n,n')] 1/2, 

It goes without saying that higher spin can also be used 
to simulate more complicated spin ~ Ising models, such as 
those with non-nearest neighbor interaction, or with a finite 
number of interacting rows, In these cases, it is convenient to 
employ a nonsymmetric e(v,v'), a generalization that is triv
ially made, starting with (2.7) modified to read 

'" A 

EL = WLeEL _ I , EL = WLeTEL+ I . (4,8) 

5. INFINITE SPIN MODELS 

The state specifying parameter v can denote spatial 10-
cation, in which case the one-dimensional order can loosely 
be regarded as temporal. This interpretation must be used 
with caution, however, since the weight of a chain chosen by 
the partition function depends upon the full history and need 
not correspond to a reasonable dynamical process. Indeed, 
the most direct realization is in terms of an ensemble of poly
mers, sequences of links between lattice points. Let us con
sider the simplest model of this type, in which v denotes 

J. K. Percus 1164 



                                                                                                                                    

location on a one-dimensional integer lattice. The elemen
tary interaction will be a step to the left or to the right, so that 

e(v,v') = {I, v:=v±l. (5.1) 
0, v #v± I 

The formulation (2.14) is now appropriate: if 
A 

nL-n, nL+I-n', EL, EL-z, then we have 

n/(v + 1) n/(v - 1) 
n(v) = z(v) + z(v) (5.2) 

z(v) + z(v + 2) z(v) + z(v - 2) 
Rewriting (5.2) as n(v) - n/(v + 1) = n/(v - I)z(v)1 

[z(v) + (z - 2)] - n/(v + I)z(v + 2)1 [z(v + 2) - z(v)J, it is 
solved at once as n/(v + 1)z(v + 2)1[z(v + 2) - z(v)] 

n
L 

(v)e - tlwd v ) 

= 1:0" [n'(v + 1 - 2p) - n(v - 2p)J. or 

z(v + 2)lz(v) = ! en/Iv + 1 - 2p) - n(v - 2p)lI 
o 

! [n'(v - 1 - 2p) - n(v - 2p)]. (5.3) 
o 

Hence 

z(v) = a IT ! [n'(v + 1 - 2p - 2q) - n(v - 2p - 2q)]1 
1 0 

! en/Iv - 1 - 2p) - n(v - 2p - 2q)] , (5.4) 
o 

on substituting in (2.14), 

= a
L 

IT 1:;~o [nL+ 1 (v + I - 2p - 2q) - nL(v - 2p - 2q)]1:;~o [nL _ 1 (v + 1 - 2p - 2q) - nL(v - 2p - 2q)] . 

q~ 1 1:;~o [nL+ 1 (v - 1 - 2p - 2q) - nL(v - 2p - 2q)]1:;~o [nL_ 1 (v - 1 - 2p - 2q) - nL(v - 2p - 2q)] 

The alternating structure of(5.5) is not an accident, but 
rather a consequence of the fact that (5.1) connects odd v 
only to even v and vice versa. Indeed, generalization to poly
mer ensembles on higher dimensional v-space lattices is 
quite direct. We again work in the formulation (2.14), and 
suppose a division of v space into sublattices Aa such that 
two jumps always return the chain to the same sublattice: 

if e(v,v")e(v",v') #0 and veAa 
(5.6) 

then v'eA a . 

Under these circumstances (2.14), simplified as in (5.2), now 
reads 

" n~(v") 
nary) = Za(V) 4 e(v,v ) 1: (" ')z ( ') , (5.7) 

r.v v,e v ,v a V 

where the relevant sublattice is given as index. Thus the 
equation decomposes into sublattice equations for the Za (v). 

6. CONTINUOUS SPIN MODELS 

As a final example, we let v represent a continuous am
plitude at the site iIi question. The developments of Sec. 2 go 
through with minor obvious modifications. The one-dimen
sional nearest neighbor interaction (not Coulomb since only 
nearest neighbor) 

¢(v,v') =Jlv- v'l (6.1) 

is one that occurs in several applications, e.g., self-sorting of 
biological cells,3 solid-on-solid model,4 .... Now 

e(v,v') = e-tlJ1v-v'I, 

-I 1 ( 1 d
2 

) 
e = "2 - /3J dv + /3J , 

and so the form (2.15), ~.17) is suggested. Then with 
nL -a, nL ± 1 -b, YL, YL -y, we have 
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(6.2) 

(6.3) 

I 
which simplifies, via the substitution 

to 

Z = yei1"v, x = e2i1Jv , 

A = ae - 2t1Jv , B = be - 2i1Jv , 

d 2 B(x) 
A(x)=z(x)-2-' 

dx z"(x) 

(5.5) 

(6.4) 

(6.5) 

Equation (6.5) can be reduced in differential order by 
rewriting it as 

A (x) = !!:.. B (x)z(x) _ 2.!.£ B (x)z'(x) + B (x), (6.6) 
dx2 z"(x) dx z"(x) 

so that 

.!.£ B (x)z(x) _ 2 B (x)z'(x) = f [A (x) - B (x)]dx , 
dx z"(x) z"(x) 

and further reduced by writing 

t (x) = z'(x)lz(x) , 

yielding 

(6.7) 

(6.8) 

.!.£ B(x) _ 2 B(x)t(x) = f [A (x) - B(x)]dx. 
dx t '(x) + t (X)2 t '(x) + t (X)2 

(6.9) 

While the general properties ofthe second order differ
ential equation (6.9) can be assessed, explicit solutions are 
not easy to come by. It is therefore politic to examine a modi
fication of (6.2), in which the broken slope at v = 0 is 
softened: 

e(v,v') =! sech{3J(v - v'). (6.10) 

On a sufficiently restricted space, we then have 
e- I = (2/3J hr)cos(1TI2f3J d Idv), which supplies the formal 
motivation for the following solution of (2.17): Define as well 

a(v,v') =! tanh{3J(v - v'), (6.11) 
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and introduce operators, diagonal on Fourier space, by 

C (k) = cosh 1Tk 12(JJ, S (k) = - i sinh 1Tk 12(JJ. (6.12) 

Then indeed, 

e = 1T12(JJC -I, (7 = 1T12(JJ9 S -I , (6.13) 

where 9 denotes principal part. Further, with 
nL~' YL'YL -y, nL ± I-b, (2.17) now takes the form 

a =yC(bICy). (6.14) 

The most important property of (6.12) is that 

E ± =C ± is are automorphisms. (6.15) 

One consequence is that if Fis a linear operator and we adopt 
the convention 

Ff·g =F(fg) , F.J·g=F(f)g, Fd·g 
=fFIg) , 

then C ± is = (CI ± iSI)(C2 ± iS2), so that 

C= CIC2 -SIS2' S= CIS2 + C2SI . 

It follows that 

C2 =SSI +CCI 

and hence from (6.14) that a = C2Y·b ICy 
= (SSI + CCllY·b ICy, or 

a = S(bSyICy) + Cb. 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

The null space of S is that of constant functions, and indeed 
a - Cb has no constant component. Thus, (6.19) can be 
solved in the form 

Sy =~S-I(a _ Cb) +~, (6.20) 
cy b b 

where S -I and S - IC can be taken as the generalized in
verses of (6.12), 

S -I(V,V') = (f3J 11T)tanh/3J(v - v'), 

S -IC(V,V') = (f3J 11T)cosh/3J(v - v'), 

and a is as yet an undetermined constant. 
Another consequence of (6.12) and (6.15) is that 

SylCy = - i(E+ - E_lY/(E+ + E_lY 

= - iE+(y - E2_ y)1 (y + E2_ y) 

=iE+(E2_yly-l)/(E2_yly+ 1) 

= E+ tan( -!i In E2_ yly), or 

(6.21) 

SylCy = tan(Slny). (6.22) 

Hence a in (6.20) is determined by 

f arctan(! S -I(a - Cb) + ~ )dv = 0 (6.23) 

and (6.20) has as its solution 

Iny = S -I arctan(! S -I(a - Cb) + ~) + Y (6.24) 

for some constant y. We therefore conclude from (2.17), 
(6.21), and (6.24) that 
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In nL(v) + /3wL(v) 

= ~ f tanh/3v(v - v') 

X {arctan /3J 11T, [at + f (tanh/3J(v' - v")nL(v") 
nL+ I(V) 

- csch /3J (v' - v")nL + I (v"))dv"] 

+arctan /3
JI1T

, [az +f(tanh/3J(v'-v")nL(v") 
nL_I(v) 

- csch/3J(v' - v")nL _ .(v"))dv"]}dv', (6.25) 

which is the desired result. The constant in YL YL has been 
absorbed as a local reference in W L (v). 

7. DISCUSSION 

We have examined a number of nearest neighbor spin 
models. The possibility of solving them completely in the 
presence of an arbitrary external potential depends very 
much on the details of the interaction. But there are structur
al properties common to all such models. For example, con
sider the modified direct correlation or linear response 

(7.1) 

whose short range is the k}y to so many approximations in 
the theory offtuids. Here C2 is in fact not defined because the 
! ny (v')j are constrained by the condition 

(7.2) 

This difficulty may be overcome either by eliminating one 
component, e.g., ny(O) = 1 - ~V"'Ony(v), or more simply by 
restricting derivatives to the surface tangent to (7.2). Since 
(alany(v') - alany(v"))~ny(v) = 0, this amounts to consid
ering only 

C(xv,yv'v")=C2(xv,yv') - C2(xv,yv"). 

From (2.17), it is seen that 

C2(xv,yv'v")=0 if ix-yi#O,I, 

(7.3) 

(7.4) 

and, as the short range property, is indeed common to all 
models we have considered. It is clear that this property 
extends to the higher derivatives as well. 

The potential 

n = - ~ InE' (7.5) 
/3 

is a more basic construct, since all distributions can be ob
tained from it by differentiation. Although n appears promi
nently in our formulation, the formulation is not particularly 
lppropriate for its explicit construction. Let us, however, see 
how this can be done, without actually carrying out the 
messy calculations. The key is the relation 

(7.6) 

so that under any variation, on = ~an lawx (v)8wx(v) 
= ~nx(v)8wx(v) = 8~nx(v)wx(v) - ~wx(v)8nx(v). Thus, we 

have the two equivalent forms 
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c5l1 = L n"(v)c5w,, (v) , (7.7) 

c5( L n,,(v)w,,(v) -11 ) = L w,,(v)c5n,,(v). (7.8) 

A convenient way to generate 11 is to start at an empty lattice 
and then turn on the density according to 

n,,(v;A.) = Anx(v) for v#O, 
(7.9) 

n,,(O;A.) = 1 - A L nx(v) 
;,,<1 

as A goes from 0 to 1. If the potential reference is chosen so 
that wx(O) = 0, (7.7) and (7.8) then imply 

i 1 a 
11 -110 = L n,,(v) A - w.,(v;A. IdA 

x.v 0 aA 
= L n,,(v)wx(v) - L n,,(v) f w,,(v;A. )dA, 

~v ~v 0 

(7.10) 
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where the A dependence of w" and nx has been set off by a 
semicolon. One thing is clear, e.g., from 
w" (v) = - (1/,8 )In W" (v) and (2.17), and that is that the 

""-
nearest neighbor form of C2 is mirrored in 11, which neces-
sarily takes the form 

x.v 
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A general theory is systematically presented for handling sets of discrete quantities distributed 
over finite lattice-lattice functions. This is a more general case than we treated before and in the 
limit when a lattice becomes infinite our previous results are recovered. We find a one-to-one 
correspondence between lattice functions which interpolate between discrete lattice values. The 
uniqueness of interpolations oflattice functions with some entire analytic functions, forming the 
quasicontinua QC(a,b ) and QC(b,a)*, is a key result used. 

PACS numbers: 05.50. + q, 02.30. + g 

1. INTRODUCTION 

In our previous papers l
•
2 a general concept of a quasi

continuum QC(a,O) was discussed. It is composed of entire 
analytic functions of degree not greater than one and of type 
A = 1Tla (a-lattice constant),3-5 

tP (x + i y) = I fA dp ¢ (p) exp[i pIx + i y)]eQC(a,O) 
~21T -A 

(1.1) 

(where ¢ is the Fourier transform of ¢J ) , 

1¢J(x+iy)I..;;Cexp(A Iyl)· (1.2) 

It is a remarkable property of the quasicontinuum 
QC(a,O) that the interpolation problem possesses a unique 
solution within this set offunctions.6 This means that for a 
given set of lattice values 

I tP (na)=tP (n); neZj, 

such that 

tP(n)-D, Inl-oo, 

(1.3) 

we may find a unique function tP (x)eQC(a,O) such as its Four
ier transform ¢ (p)e L 2( - A.A ), and assuming prescribed 
valuestP (n) at lattice sites x = na,neZ. The function tP (x) has 
the following expansion: 

tP (x) = a I tP (n)Oa(X - na), ( 1.4) 

where 

oa(x) = sin(Ax)l1Tx. (1.5) 

Conversely, given tP (x) one can find the lattice values as 
follows: 

¢J (n) = f: 00 dx tP (x)oa(x - na). (1.6) 

The one-to-one correspondence between the set of lat
tice values3 and the functions from QC(a,O) permits the use 
of techniques of continuous analysis when handling discrete 
quantities (like a field on a lattice,? for example). It also per
mits definition ofa derivative of ¢J (n) as a value of the ¢J '(x) at 
x = nci (cf., e.g., Ref. 8), 

¢J 'In) = 
m= - 00 

(-W- m 

-'----'-- ¢J (m). 
(n-m)a 

(1.7) 

In this paper we would like to present a generalization 
of the formalism to the case of a finite lattice composed of the 
points I na;neZN 1, where ZN is the set of integers ranging 
from - N to N (N-some natural number), 

ZN = In;n = 0, ± 1, ... , ±N J. (1.8) 

In this case the function ¢J (x) will be defined on some finite 
interval [ - L /2,L /2] only, and the formula I cannot be true 
anymore. Vanishing outside of the mentioned interval would 
require vanishing everywhere, by analyticity. Thus we fall 
into a realm of Fourier series rather than integral, and the 
periodic boundary conditions naturally emerge, as will be 
evident in the following section. 

2. CONCEPTS OF QUASICONTINUA QC(a,b) AND 
QC(b,a)* 
A. The interpolation problem 

Let us consider two sets of lattice values, 

I tP (n)-tP (na);neZN 1 (2.1) 

and 

1¢(m)=¢(mb);meZNj, (2.2) 

such that for m,neZN the following relations hold: 

- a N 
tP (m) = -= I tP (n) exp( - imnab) (2.3) 

~21T n = - N 

and 

b N -
tP (n) = --= I tP (m) exp(imnab ). (2.4) 

~21T m = - N 

Here a and b are some positive numbers-lattice constants, 

a = 1TIA, b = 21TIL, 

L = (2N + I)a, 2A = (2N + I)b. (2.5) 

Formulas (2.3) and (2.4) define the discrete Fourier trans
forms from tP (n) to ¢ (m) and conversely. 

The interpolating functions for tP (n) and ¢ (m) may be 
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obtained from (2.3) and (2.4) upon the replacements 
mh-+ p,na_x, 

b N -
t/> (x)= -= L t/> (m) exp(imbx), 

~217' m= -N 

xe[ - !:... !:...] =18 
2' 2 ' 

(2.6) 

- a N 
t/>(p)=-= L t/>(n)exp(-inap), pel -A,A ]=m. 

~217' n=-N 

(2.7) 

Substituting formulas (2.3) and (2.4) into (2.6) and (2.7) we get 
the expansions 

N 

t/> (x) = a L t/> (n)ba,b(X - na), xeIB, 
n= -N 

_ N_ 

t/> (p) = b L t/> (mlbb,a{P - mb), pem, 
m= -N 

where the function lSa,b(X) is given by the formula 

b N 
lSa,b(X) = - L exp(imbx) 

217' m= -N 

b sin(Ax) lSa(x) 
---'---'--- = --. 
217' sin((b /2)x) LlSdx) 

(2.8) 

(2.9) 

(2.lO) 

The function ISb,a(P) may be obtained from the previous for
mula upon the replacements a+---+b and x+---+ p, 

(2.11) 

The following properties of lSa,b(X) can be deduced from the 
definition: 

lSa,b(X) = lSa,b( - x) = lS:'b(x) = lSa,b(X + L ), 

(where * = complex conjugate) 

lSa,b(na) = a-'lSno , neZN , 

1 dx lSa,b(X - na) = 1, neZN , 

N 

a L 8a,b(X - na) = 1, neZN , 
n= -N 

N 

(2. 12a) 

(2. 12b) 

(2. 12c) 

(2.12d) 

(2. 12e) 

a L 8a,b(X - nalba,b(Y - na) = lSa,b(X - y), (2.12t) 
n= -N 

1 dx lSa,b(X - y)t/> (x) = t/> (y) 

for a function t/> (x) of the form (2.6), (2. 12g) 

lim lSa,b(X) = l!.....- f exp(inbx) 
a--<l.b-fix 217' n = - 00 

= f lS(x-nL), (2.12h) 
n= - 00 

Corresponding properties of the function ISb,a (p) may be ob
tained from the above upon the following operations: 

(i) a+---+b, 

(ii)x+---+p. 
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It is not difficult to verify the following Parseval 
relations: 

L dx t/> T(X)t/>2(X) = a n=~N t/> T(n)¢>2(n) 
N _ _ 

= b L t/> T(m)t/>2(m) 
m= -N 

= i dpi>T(p)tf,2(P) (2.13) 

for any t/>dX),i>I(P) ofthe form (2.6) and (2.7), k,/ = 1,2. 

B. Analytic properties of the Interpolations 

The function t/> (x) defined by (2.6) permits an analytic 
continuation to an entire and real, periodic function 

b N -
t/>(z) = - L t/>(m)exp(imhz)=t/>{z+L), (2.14) 

217' m=-N 

z=x+iy, 

satisfying the estimate 

ItI> (z)1 ,Cb exp(A 11m zl), (2.15) 

with 

b N -
Cb = ---= I It/> (m)l· 

~217' m= - N 

Similarly, the function i> (p) defined by (2.7) can be extended 
to an entire analytic, real, periodic function 

- a N -
t/> (r) = ---= I t/> (n) exp( - inar) = tI> (r + 2A ), 

~217' n= -N 

r= p + iq, 

satisfying the estimate 

Ii> (r)1 ,Cu exp[(L /2)IIm rl], 

a N 
Ca = ---= L ItI> (n)l· 

~217' n= - N 

Introducing the variables 

t = exp(ibz), p = exp( - jar), 

(2.16) 

(2.17) 

(2.18) 

one may express the functions t/> (z) and i> (r) as follows: 

t/>(z)=t -N&'2N(t), (2.19) 

i>(r) = P- NflJ 2N(P), (2.20) 

where &' 2N and .9 2N are polynomials of degree 2N, 

b 2N_ 
&'2N(t) = ---= I t/>(k-N)tk, (2.21) 

~217' k = 0 

- a 2N k 
&' 2N(P) = -= I t/> (k - N)p . (2.22) 

~217' k=O 

The entire analytic functions t/> (z) periodic with the peri
od L, satisfying the estimate (2.15), and being of the form 
(2.19), compose a quasicontinuum QC(a,b ). Corresponding
ly, the functions i> (r), periodic with a period 2A, entire ana
lytic functions satisfying the estimate (2.17), and being of the 
form (2.20), compose the quasicontinuum QC(b,a)*. 
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c. Main formulas of the quaslcontlnual approach 

The following formulas interrelating lattice values and 
their interpolations are valid: 

b N -
<p (n) = -= L <p (m) exp(imnab )e JY'(ZN) (2.23a) 

~21T m=-N 

= 1 f dp ¢ (p) exp(inap) (2.23b) 
~21T J~( 

= 1 dXDa.b(X - na)<p (x), nEZN' (2.23c) 

_ a N 

<p (m) = -= L <p (n) exp( - imnab)E ..-#'(ZN) (2.23d) 
~21T n = -N 

= 1 f dx <p (x) exp( - imbx) (2.23e) 
~21T J~ 

= i dp Db.a(p - mb)¢ (p), mEZN' (2.230 

b N -
<p (x) = -= L <p (m) exp(imbx)eX(~) (2.23g) 

~21T m= -N 

= 1 f dp ¢ (p){a ± Da,b(X - na) eXP(inap)} 
~21T J~( n = - N 

N 

= a L <p (n)Da,b(X - na), XE~, 
n= -N 

_ a N 

<p (p) = -= L <p (n) exp( - inap)e P(~) 
~21T n= -N 

= 1 f dx <p (X){b ± Db,a(P - mb) 
~21T J~ m= -N 

X eXP(imbX)} 
N _ 

= b L <p (m)Db.a(p - mb), pE~. 
m= -N 

(2.23h) 

(2.23i) 

(2.23j) 

(2.23k) 

(2.231) 

These formulas, together with the Parseval relations, estab
lish isometric correspondences between the sets JY'(ZN)' 
..-#'(ZN)' X(~), and P(~). (See Fig. 1.) 

In practical applications one is interested in the limit 
when N---+oo in such a way that a is fixed and b--'{) (or the 
other way round). In this case the formulas (2.23) go over 
into the formulas of our previous papers. 1.2 

FIG. I. Isometric relationships between the sets of functions. 
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3. UNIQUENESS OF INTERPOLATIONS 

The two interpolations <Pt(X),<P2(X) of the same lattice 
function <p (n) differ by a function vanishing at every lattice 
site. Therefore, using (2.18) and (2.19), we have 

<Pt(x) - <P2(X) = ; - N [.9~tk(;) - .9~2k(;)] 

=; -N.9 2N (;), (3.1) 

where .9 2N is again a polynomial of order not greater than 
2N. Since; - N never vanishes, this polynomial has to vanish 
for everY;n corresponding to x = na,nEZN, 

;n = exp(inO), 0 = 21T/(2N + 1). (3.2) 

It is only possible when .9 2N vanishes identically. Hence the 
interpolation problem within the class of functions QC(a,b ) 
has a unique solution. The same is true for the interpolation 
problem within the class QC(b,a)*. The function ¢ (p) is 
uniquely determined by its lattice values ¢ (m),mEZN. 

The uniqueness of interpolation is significant since it 
permits us to replace the lattice functions p (n),¢ (m), 
m,nEZN by their interpolations <p (x) and <p (p),XE~, PE~ 
without losing any information. The inverse is also true. One 
can recover lattice values from <p (x) and ¢ (p) using formulas 
(2.23 ). We would like to maintain the uniqueness of interpo
lation also in the limits b--.{),a fixed and a--.{),b fixed. One 
knows that this requires a compactification of the set ~ in the 
first case and the set ~ in the case of second limit if one 
admits functions <p (x),¢ (p) rising at infinity not faster than 
some power of Ixi and, correspondingly, I pi (cf., e.g., Ref. 1). 
For this reason we shall consider functions 
<p (n),¢ (m),<p (x),¢ (p) on compactified sets Z~, ~*, and ~* 
even before the above-mentioned limits are taken. Com pac
tification means identification of end points in relevant sets 
and thus introducing the equivalence relations. For instance, 
the set Z~ consisting of equivalence classes, 

Z~ = !n;nEZ,n-n + 2N + 1), (3.3) 

may be identified with the set of roots r(n) of the order 
2N + 1 from unity, 

r(n) = exp(inO), nEZ~, (3.4) 

where 0 is given by formula (3.2) and the natural identifica
tion is made, 

r(n) = r(n lmod(2N + I))' (3.5) 
The roots r(n) lie on a unit circle which now replaces the set 
ZN (see Fig. 2). 

-N -I o N 

FIG. 2. Compactification of the set ZN to the set Z~ of roots of degree 

2N + 1 from unity. 
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-A -b 0 b J\ 

FIG. 3. Compactification of the interval [ - A,A] to the circle Co ' = m*. 

The set ~, after introducing the equivalence of points 
p- p + lA, goes over into circle Ca -. of the radius a-I (see 
Fig. 3). 

Similarly, identifying points x and x + L we obtain a circle 
Cb -. = )8* containing all admissible positions (see Fig. 4). 

Formulas (2.23) remain valid for compactified sets Z;e. 
~*, and )8*, due to the periodicity properties of the functions 
involved. 

4. MULTIPLICATION OF INTERPOLATING FUNCTIONS 

Let rPl(n) and rP2(n) be two lattice functions from the set 
~¥(Z;e). One may readily compose their product and get an
other lattice function 

The interpolating function rPn!x) has the form 
N 

(4.1) 

rPn!x) = a I tPl(n)rP2(n)8a,b(x - na)=(tPl·tP2)(X) (4.2) 
n~ -N 

and will be called the dot product of tPl(X) and tP2(X), which 
interpolates ~I(n) and ~2(n), correspondingly. From (2.23d) 
we have 

Calculating the convolutions denoted by * ,of the functions 

Im(n) = exp(imnab )Eff(Z;e), (4,4) 

];,(m) = exp( - imnab)E .A'(Z;e) 

we obtain 
N 

Im'*lm' (n)_a I Im,(n - n'lmOd(2N+ 11)lm·(n') 
n'~ -N 

= (21T1b)8m 'm' exp(im'nab), 
N _ _ 

In,*ln·(m)-b I !n,(m-m'lmOd(2N+II)!n·(m') 
m'= ~N 

= (21T/a)8n•n • exp( - imn'ab). 

Therefore, formula (4.3) may be written in the form 

(4.5) 

(4.6) 

(4.7) 

~1'~2(m) = --= --= I rPl(n')ln' * --= I ~2(nn)fn' (m) l[a N -][a N _] 

~21T ~21T n' = - N ~21T n' = - N 

1-- b N - -
= --=~I*~2(m) = --= I ~I(m - m'lmod(2N+ 1))~2(m'). (4.8) 

~21T ~21T m' = - N 

Using (2.23g) we obtain from it 

~1'~2(X) = r dx' r dx w Ma,b(X,x' ,xn)~I(X')~2(Xn), JiB. JiB. (4.9) 

where the form factor Ma,b(X,x',xn) is given by the formula 

Ma,b(X,x',xn) = (~)2 f exp{ib [mx - (m - m'lmod(2N+ ll)x' - m'x"] J. 
21T m,m'=-N 

(4.10) 

-ct. 0 0... 

FIG. 4. Compactification of the interval [ - L 12,L 12] to the circle 
Cn ' = ~ •. 
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Performing the above rather tedious calculations we get the 
result 

Mu,b(X,X',X") 

= L -2{ sin(Ax) sin(Ax') 
sin[(b /2)(x" - x')] sin[(b /2)(x" - x)] 

+ sin(Ax) sin(Ax") (4,11) 
sin[(b /2)(x' - x")] sin[(b /2)(x' - x)] 

+ sin(Ax') sin(Ax") } 
sin[(b /2)(x - x')] sin[(b /2)(x - x")] , 

It is easy to see that in the limit b_O,a fixed, we recover from 
this the form factor Ma (x,x' ,x"), from our previous paper. I 

From the Parseval relations (2.13) it follows that 

(4,12) 
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and 

(4.13) 

Hence, formula (4.8) may be rewritten as follows: 

I"'V Ii - -t,6!"t,62(m) = -= dp' t,61(mb - p'lmod2A)t,62(P'). 
~21T ~ 

(4.14) 
Passing to the interpolation t,6!"t,62(P) we get from it 

rv 1 i - -t,61·t,62(P) = -= dp' t,61(P - p'lmod2A)t,62(P'). (4.15) 
~21T 21 

The whole construction may be carried over into a 
product of two elements ¢1(m)'¢2(m)e.,N'(Z~). Correspond
ing formulas may be obtained by the familiar replacements 
a-b,x-p and a complex conjugation. 

The dot products and the convolutions are commuta-
I 

tive and associative operations. The dot products of more 
than two interpolating functions lead to form factors of high
er order. For example, 

(t,6j' ••• ·t,6n)(x) 

= ( dX I ... ( dXn Ma.b(X,XI"",Xn)t,6I(xd ... t,6n(xn)' J'<l J'<l 
(4.16) 

where the form factor of order n + 1 can be expressed 
through form factors of the lower order by means of the 
formula 

Applying this rule to the case n = 3 we get, after rather 
lengthy calculations, the result 

= L ~3{ cos(Ax) sin(Axl) sin(Ax2) sin(Ax3) 

sin [(b /2)(x I - x)] sin [(b /2)(X2 - x I)] sin [(b /2)(X3 - x)] 

+ sin(Ax) COS(AXI) sin(Ax2 ) sin(Ax3) 

sin[(b /2)(XI - x3)] sin[(b /2)(xz - Xl)] sin[(b /2)(X3 - Xl)] 
(4.18) 

+ sin(Ax) sin(Ax l ) cos(Axz) sin(Ax3) 

sin[(b /2)(XI - x 2)] sin[(b /2)(X3 - Xz)] sin[(b /2)(x - Xz)] 

+ sin(Ax) sin(Ax l ) sin(Axz) COS(AX3) } 
sin[(b /2)(xl - x3)] sin[(b /2)(X2 - x 3 )] sin[(b /2)(x - x3)] . 

From formula (4.17) and from the explicit form of the 
third order form factor one may easily deduce the following 
properties of the higher order form factors: 

1. Ma.b(xp' .. ,xn) is a real and symmetric function with 
respect to the permutations of its arguments, 

2. Ma.b(xj, ... ,xn) = Ma,b(X j + ka, ... ,xn + ka), kEZ, 

3. Ma,b(X I +L,x2,· .. ,xn) = Ma,b(XI,XZ'''''xn), 

4. M a.b( -Xj, ... , -xn) = Ma,b(XI,,,,,xn), 

5. (dxnMa,b (x P""Xn _ I ,xn) 
J~~. 

=Ma.b(XI, ... ,xn_I)' n>3, 

6. (dX3Ma,b(XI,X2'X~) = Oa.b(X I - x2), 
J~. 

7. lim M a,b(X I,xZ'X3) = Ma.o(XI,X2,X3) 
/>--.0 

a fixed 

8. 1.. dx t,61·t,62(X) 
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= 1.. dx t,61(X)t,62(X) = a n ~~ N (,h1(n)(,h2(n) 

= b m],- N t,bl(m)t,bz(m) = L. dp t,b1(P)t,b2(P) 

L. dp t,bj·t,bz(p). 
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Corresponding properties of the form factors 
M b.a (PI'"'' Pn) may be obtained from the Jist above upon the 
replacements a-b,x+------+ P, and a complex conjugation. 

The last relation demonstrates that the dot product of 
any two interpolating functions coincides with the usual 
product, when integrated. The equality may also happen 
without the integrations. For instance, when supports of 
t,bl(m) and t,bz(m) are confined to the domains 
Iml <NI,lml<Nz with NI + N 2<N, then the convolution 
(4.8) coincides with the ordinary one and its support does not 
exceed the interval [ - N,N]. As the result of Fourier trans
formation one then gets the equality 

(4.19) 

5. DIFFERENTIATION 

Owing the uniqueness of interpolations one can calcu
late unique derivatives of (,h (x) and t,b (p) at every point includ
ing lattice sites. For instance, from formula (2.23i) we have 

N 

(,h '(x) = a I t,6 (n)O~,b(X - na), XE~·. (5.1) 
n= -N 

Now, using once more (2.23i), we find the expansion 
N 

O~,b(X - na) = a I O~,b(ma - na)Oa,b(X - mal, (5.2) 
m= -N 

where 
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{ 

0, 

D~b(ma-na)= b(-lt-n 

2a sin[(ab 12)(m - n)]' 

m=n, 

m#n. 

(5.3) 

Therefore, the function ¢J '(x) may be written as the interpola
tion of the lattice function ¢J 'In), 

N 

¢J '(x) = a L ¢J '(n)Da.b(X - na), (5.4) 
n= -N 

with 

, b N (- It- n 
• 

¢J (n)="2 mf.-N sin[(ab/2)(m-n)] ¢J(m), neZN·(5.5) 

m#n 

The lattice function ¢J 'In) may be understood as a derivative 
ofthe lattice function ¢J (n). All higher derivatives may be 
found in the same way. 

From formula (2.23e) we now get 

~ '(m) = imb<j (m)E vU'(Z~), (5.6) 

and further, from (2.231) it follows that 

~'(p) = ip~(p)EP(~). (5.7) 

Let us now calculate the derivative of the dot product of 
two interpolating functions. Using (2.23g) and (4.8) we find 

(¢JI'¢J2)'(X) 
b 2 N _ _ 

= - L ¢J1(m - m'lmod(2N+ 1))4J2(m)imb exp(imbx). 
2tr m.m' = -N 

(5.8) 

Taking into account the identity 

m = m - m' + m' = m - m'lmod(2N+ 1) + m' +L1 (m,m'), 

where 

L1 (m,m') 

= (2N + 1)[e(m - m' - N -!) 

-elm' -m -N-!J] 

(5.9) 

(5.10) 

and e is the usual step function, we may write formula (5.8) as 
follows: 

Here L1a,b(X;¢JI,¢J2) corresponds to the third term in formula 
(5.9) and is called the "defect of the Leibnitz rule," 

L1 a.b(X;¢JI,¢J2) = { dx' ( dx" L1 a.b(x,x',X")¢Jl(X')¢J2(X"), 
J~. J~. 

(5.12) 

where 

L1a.b(x,x',x") 

ib 3 N 
= - L L1(m,n) 

2tr m,n= -N 

Xexp! ib [mx - (m - nlmod(2N+ IJJx' - mx"] J. 
(5.13) 

On the other hand, using expression (4.9) for the dot product, 
we obtain upon partial integrations with use of the periodic
ity property of the form factor the formula 
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L1 a.b(x,x',x") = (a + a' + a")Ma,b(X,X',x"). (5.14) 

Therefore, using formula (4.11) for the form factor we get 

L1 a.b (x,x' ,x") 

= AL -2{ sin[A (x + x')] 
sin[(b /2)(x" - x')] sin[(b /2)(x" - x)] 

+ sin[A (x +x")] (5.15) 
sin[(b/2)(x' -x")] sin[(b/2)(x' -x)] 

+ sin[A (x' + x")] } 
sin[(b /2)(x - x')] sin[(b /2)(x - x")] 

This expression coincides with L1a (x,x',x") calculated in Ref. 
1, in the limit b_O,a fixed. 

All the relevant formulas for the differentiation of ~ (p) 
may be obtained from the present ones by the replacements 
a+---+b,x+---+ p, and complex conjugation. 

6. GENERALIZATIONS TO HIGHER DIMENSIONS 

The whole construction presented so far permits an im
mediate generalization to higher-let us say D-dimen
sions. In order to minimize the required changes in the above 
formulas we shall use the following compact notations: 

x = (XI, ... ,xD), xl'E)EJL' f-l = 1, ... ,D, 

P = (P\J'",PD)' PvE~v'V = 1, ... ,D, 

n = (nl, ... ,nD), nJLeZN , 
" 

)EJL = Ixi'; - LJL/2< xI'<LJL/21, 

~v = I Pv; -Av<Pv<Av I, 
ZN,. = I nJL; - NJL < nJL<NJL I, 
LJL = (2NJL + l)aJL,2A v = (2Nv + l)bv, 

LJL = 2trlbJL' 2Av = 2trlav' 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

Therefore, one may have different lattice constants on differ
ent axes and the number of lattice sites may also vary. We 
find it convenient to use the following shorthand: 

na = (n1a!, ... ,nDaD), 

mb = (m!b!, ... ,mDbD), 
D 

Da.b(x) = II Da".b,.!xI'), 
JL=! 

D 

Db.a(p) = II Db",aJpv)' 
v=1 

D D 

K(a) = II aJL' K(b) = II bv, 
JL=I v=1 

D 

mb·na = L mJLnJLaJLbJL' 
JL=I 

~= ~IX'''X~D' 

)E = ~IX"'X~D' 

ZN = ZN,X"'XZND . 

Let us consider two sets of lattice values, 

I ¢J (n)==¢J (na), nE'Zw I, 
I ~ (m)=~ (mb), meZN J, 

W. Garczynski and J. Stelmach 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

1173 



                                                                                                                                    

such that 

r$ (m) = ~ I tP (n) exp( - imb.na), (6.21) 
(21T)DI2 nEZ, 

tP (n) = ~ '" r$ (m) exp(imb.na). (6.22) 
(21T)DI2 m71., 

The interpolating fields tP (x) and r$ (p) are obtained from the 
above lattice functions upon the replacements mb-+ p and 
na-+x. In the same way as before one gets 

tP (x) = K(a) I tP (n)~a,b(X - na), XE~, (6.23) 
neZN 

r$(p)=K(b) I r$(m)~b,a(p-mb), pem. (6.24) 
meZN 

The whole bulk offormulas (2.23) possesses obvious general
ization to higher dimensions and will not be reproduced 
here. The dot product of interpolations is now equal to 

tPl.tP2(X) = f dx' f dx" M a,b(X,X',X")tPl(X')tP2(X"), 
J~. J~. 

(6.25) 

where the form factor is given by the formula 
D 

M ( ''') II M (I-' 'I-' "1-') a,b X,X ,x = a .. ,b" X ,x ,x . (6.26) 
I-'~ I 

Differentiation of the dot product of two interpolations 
yields 

al-' (tPl·tP2)(X) 

= al-'tPl·tP2(X) + tPl·al-'tP2(X) + L1 th(X;tPl,tP2)' (6.27) 
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where the defect of the Leibnitz rule is of the form 

L1 tb(X,X',x") = (al-' + a~ + a;)Ma,b(X,X',x") 

(6.28) 

and its kernel might be expressed through the form factor 

L1 th(X,X',x") = (ai' + a~ + a;:)Ma.b(x,x',x") 

Mab(x,x',x") , " 
, L1 (xl-' x" X 1-'). 

M (I-' 'I-' "1-') a",b,. ' , 
a~l,b~L X ,x ,x 

(6.29) 
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Soliton solutions for self-dual SU(2) gauge fields on Euclidean space 
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Axially symmetric soliton solutions for self-dual SU (2) gauge fields on Euclidean four
dimensional flat space are found using an extension of the Belinsky-Zakharov solution 
generating technique. 

PACS numbers: 11.10.Np 

I. INTRODUCTION 

Recently Yang l reduced the problem of finding self
dual SU (2) gauge fields on Euclidean four-dimensional flat 
space to the problem of solving the system of equations 

rP (rPsg + rP'Ifi) - rPsrPg - rP'IrPfi + Psh + P'IPfi = 0, 
(1.1a) 

rP (PM + P'Ifi) - 2psrPg - 2p.,rPfi = 0, 

rP /Pst + P.,fi) - 2hrP s - 2fiiitP., = 0, 

(1.1b) 

(l.1c) 

where the subscripts denote partial differentiation and 

21/2S=x+iy, 21/2[=x_iy, (1.2a) 

21121/=z-ix4 , 21/2ij=z+ix4 • (1.2b) 

rP andp are a real and a complex functions, respectively. Ifwe 
restrict rP andp to be functions only of r = (2S[)1/2 and 
z = (1/ + ij)/21/2, we find that (1.1) reduces to 

rP (rPrr + rPrlr + rPzz) - rP ~ - rP; + PrPr + pzpz = 0, 
(1.3a) 

rP (Prr + pJr + pzz) - 2( PrrPr + PzrPz) = 0, (1.3b) 

rP (Prr + Pr1r + pzz) - 2(PrrPr + PzrPz) = 0. (1.3c) 

The system of Eq. (1.3) has been studied by many au-
thors using Backlund transformations. 2

-6 One can find par
ticular solutions to this system of equations noticing that for 
ap of the formp = ueia

, where a is a real constant and u a 
real function, the system of Eqs. (1.3) is equivalent to the 
Ernst equation for axially symmetric gravitational fields. 7 

Solutions to this last equation are well known. 
The purpose of this paper is to find explicit pure soliton 

solutions to Eqs. (1.3). The method used is a simple extension 
of the Belinsky-Zakharov solution generating technique8

•
9 

that we present in Sec. II. In Sec. III we study the equation 
for the "wavefunction" tPo. The knowledge of this field al
lows us to find the different solutions. In Sec. IV we exhibit a 
one-soliton solution to (1.3). And finally, in Sec. V we study a 
two-soliton solution, and we show how to construct n-soli
ton solutions to (1.3). 

II. THE SOLUTION GENERATING ALGORITHM 

The system of equations (1.3) can be written in a com
plete equivalent form as 

ar(rgrg- I) + az(rgzg- I) = 0, (2.1) 

where 

(2.2) 

Note that g = g+ and detg = r. The BZ method of Refs. 8 
and 9 cannot be used directly to solve (2.1) since g is not a 
symmetric matrix and its determinant is positive. Thus we 
need to extend the BZ method to the presen,t case; the exten
sion is straightforward, so we shall only present the essential 
formulas. 

The BZ method for solving Eq. (2.1) is based on the fact 
that the condition of integrability for the system of 
equations 

(2.3a) 

(2.3b) 

where 

(2.4a) 

(2.4b) 

U=rgrg- I, V==rgzg-I, (2.5) 

is just the same Eq. (2.1). tP is a 2 X 2 complex matrix func
tion of r, z, and the expectral parameter A. Putting A = ° in 
(2.3), we have that tP(A = 0) = g. Solutions with pure soliton 
character are associated with solutions of Eqs. (2.3) of the 
form 

(2.6) 

(2.7) 

where tPo is a solution to Eqs. (2.3) for a knowng, say go. Rk 
are complex matrices functions of rand z only, and Ilk are 
scalar complex functions of rand z only. The pure soliton 
character of the solution is associated with the particular 
form of X given by (2.7), i.e., with the existence of simple 
poles in the matrix X. The number of poles will tell us the 
number of solitons appearing in the solution. Note that let
ting A = ° in (2.6), we get 

g = (xl" ~ 0 )go· (2.8) 

Now we look for a condition that guarantees the fact that 
g = g+. For real g, this condition is 

g = X( - r/A,r,z)goX(A,r,z), (2.9) 

where the tilde indicates transposition. The most natural 
generalization of (2.9) for the present case is 

g = X( - rIX,r,z)go[x(A,r,z)]+. (2.10) 
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The condition (2.10) tells us that if go = go+ , then g = g+, 
when g is given by (2.6). The proof of this statement is a 
straightforward generalization of the one given in Ref. 8. 

From (2.3)-(2.10) we find 

N~I(r-I)lkN~kl 
gab = (gO)ab - L _ , 

kl Ilklll 

mlkl.;n1II=m~kl(go)abm);1, 

N ~k I=m~k I(go)ba, 

m~k l=m~bIM ~}, 

Mlkl = .f. -II 
'/"0 A=I1,' 

Ilk = a k - z ± [(ak - Z)2 + r]1I2. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

The sum convention on the indices a and b is assumed. a and 
b take the values 1 and 2. m~bl and a k are sets of arbitrary 
complex constants. Note that the solution (2.11) is complete
ly determined by go, tPo' and these sets of constants. Regard
less of the fact that the matrix whose elements are (2.11) is 
Hermitian, in general, it is not possible to cast it in the form 
(2.2), since the matrix (2.2) has determinant equal to r. To 
remedy this problem, we can define a new matrix, 

gPh=rgl(detg) I 12, (2.18) 

that satisfies the two conditions (gPh) + = gPh and det gPh 
= r. Taking the trace ofEq. (2.1), one can prove that the 

new gPh is also a solution to (2.1) whenever g is a solution. The 
determinant of (2.11) can be explicitly computed: 

detg1nl = ( - 1 )nrn IT 11l11-2detgo' (2.19) 
1=1 

Since detgo = r for ago of the form (2.2) and detg needs to be 
positive in order to normalize its value to r, from (2.19) we 
conclude that we can only have an even number of solit6ns 
associated with ago given by (2.2). We can have an odd num
ber of solitons defining a new matrix 

, (r1ifJ 
go = o (2.20) 

with detgo' = - r. Equation (2.1) for go' is equivalent to 
(1.3) withp = O. Thus, for an odd n the new g' constructed 
using Eq. (2.11) will be Hermitian with positive determinant, 
and in consequence we can define a new g,Ph like (2.18) that 
will be a solution to (2.1) (by construction) and can be cast as 
(2.2). 

III. THE FUNCTION 1/10 

The function tPo obeys the differential equations9 (2.3) 
with g replaced by go, i.e., 

(
a 2Ar a ).f. = rUo + A VO•f, 

r + A 2 + r A '/"0 A 2 + r '/"0. 
(3.1a) 

(3.1b) 

where UO=r(gO)rgo -I and Vo = r(go)zgo -I. Furthermore, tPo 
must satisfy the initial condition 
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tPOIA=O =go' 

From (3.1) we get 

AartPo + raztPo = VotPo· 

(3.2) 

(3.3) 

In this section we study the system of equations (3.1a), 
(3.3) with the boundary condition (3.2) when go is a diagonal 
matrix, i.e., (g0)12 = (gohl = O. If go is diagonal, one may as
sume that tPo is also a diagonal matrix with these assump
tions; (3.1a), (3.3), and (3.2) yield 

(ar + ~r raA)ln(dettPo) = /r , 
A + A +r 

(Aar + raz)ln(dettPo) = 0, 

dettPolA = 0 = r. 

(3.4a) 

(3.4b) 

(3.5) 

A solution to Eq. (3.4) with the condition (3.5) is 

dettPo = r -A 2 - Uz. (3.6) 

Note that this result does not depend on the explicit form of 
the matrix go. 

We shall take as go the particular solution to (2.1) given 
by 

(go)11 = rl - bexp ! - [az + c(!r - Z2)]j, (3.7a) 

(goh2 = r(go)ll 1, (3.7b) 

where a, b, and c are arbitrary real constants. Multiplying 
the rhs of (3. 7a) by a constant, we can obtain a new solution 
to (2.1), but, since this constant can be absorbed in the arbi
trary constants mbk I, the final solution will not be generalized 
by the inclusion of the above-mentioned constant. 

For the go given by (3.7), Eqs. (3.1a), (3.3), and (3.2) are 
equivalent to 

(ar + A ~ r aA )tn(tPo)11 

_ (1 - b )r - Ar(a - 2cz) - cr3 
- A2+r 

(3.8a) 

(Aar + raz)ln(tPo)ll = - rIa - 2cz), (3.8b) 

In(tPO)IIIA =0 = (1 - b )Inr - az + c(!r - Z2), (3.8c) 

In(tPob = In(r - A2 - Uz) - In(tPoh (3.6') 

A direct computation shows that 

(tPo) 1 1 = (r - A 2 _ UZ)II- bl/2 

xexp( - !a(z + 0) + cUr - (z + 0 )2]J), (3.9a) 

is a solution to (3.8a) and (3.8b), and that satisfies the condi
tion (3.8c). From (3.9a) and (3.6'), we have 

(1/10)22 = (r - ..1 2 - Uz)i1 + b)/2 

xexp!a(z + 0) + cUr - (z + 0 )2]J. (3.9b) 

Note that the solution 1/10' for the case of a go' with negative 
determinant can be obtained doing the following change of 
signal in (3.7) and (3.9), respectively: 

(go') 1 1 = (go) I I' (go'b = - (gob, 

(1/10')11 = (1/10)11' (tPo'b = - (tPob· 

(3.10) 

(3.11 ) 

The key stone of the BZ method is the function 1/10; one 
needs to have it in an explicit form, since, alas, one can solve 
(3.1) explicitly only for very special cases. The case presented 
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here is a generalization of the one that appears in Ref. 9 
which can be obtained letting b = 1 and a = c = 0 in (3.9). 

IV. ONE-SOLITON SOLUTION 

Following the indications for odd number solitons giv
en at the end ofSecs. II and III, we find that the solution (3.7) 
can be "vested" in the following way: 

gil = - r(rlmOl!f2/,u12 + Imo2!f112t,h 2)/(t,h..1), 

glz = g21 = 2mOl m02(r + 1,uIZ)a,urt,h 1(1,u I 2..1 ), 

gn = - r(lmol !fzI 2 + rlm02!f/,u12t,h 2)t,h 1..1, 

(4.la) 

(4.1b) 

(4.1c) 

where 

..1 = ImOI!f212 - Im02!f112t,h 2, 

tPl = ( - 2a,u)1I - b)/2 exp! a(z + !,u) 
+ c[!r - (z + !,u)2] J, 

tP2 = 2a,uI!fI' 

t,h = r' exp[az + c(!r - ZZ)], 

,u = z - a ± [(z - a)2 + r]l.z. 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

(4.2e) 

In (4.1a)-(4.2e) we have omitted an index (1) because it is not 
necessary in this case. The "physical" g, i.e., gP\ is obtained 
multiplying the expressions (4.1) by l,ul/r. The soliton char
acter of the solution can be perceived by noticing the special 
form of the function ..1 appearing in (4.1). 

V. TWO-SOLITON AND n-SOLITON SOLUTIONS 

When the matrix X has two poles A =,u I and A = ,u2, 
the expression (2.11) can be written as 

(5.Ia) 

(5.1b) 

where 

m(2).;;j<Z) _I ml·iie 12 
r + 1,u21 z r +,uI,uZ ' 

(5.2a) 

(5.2b) 

The indices k, I, a, and b take the values 1 and 2. From (2.14), 
(3.7), (3.9), (2.16), and (2.17), we get 

N\k) = mb~)rl-b( - 2ak ,uk)(b-l l/2 

X exp [ - c( ,ukZ + ~,u!) + ~a,uk ], (5.3a) 

N~k) = m~)rl +b( _ 2ak ,uk) - (b+ 1)/2 

xexp[c(,ukZ + l,u~) - ~a,uk]. (5.3b) 

Let us first consider the general case, i.e., all ml::h'~O. In this 
case we can cast the different functions appearing in (5.1) as 
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riB IZ 

..1 = ----'---'---
4Ia la z,ul,uzl 

(
COSh(YI + 01)cosh(Yz + O2) _I cosh(x + c) 12) 

X (r+I,u112)(r+I,u2IZ) r+,ul,uz' 

(5.5) 

m t.m2 = (m 2 .m l
). = rB I/zcosh(x + c), (5.6) 

2(a la2,u I ,u2) 

where the new constants A k' {j k' B, and c are related to the 
old constants by 

Ak = 2Imbkl)m~z)l, 

Im(klIZ _lm(kIIZ 
tanho = ot 02 

k Im~)IZ + Im~2)IZ' 

B 2 = 4m~1 ;ntgl m~i;ntgi, 

h 
m~l;ntg; - m~l;ntgi 

tan c = ---=.~..:...:....----
mbll;ntgl + mbli;ntgi 

The functions Yk and x are related to rand z by 

Yk = a(z + Rc,uk) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

+ cBr + ZZ - 2Re(z + ~,uk)2] + b InI2ak,uklrl, 

x=a[z+~(,uI+,u2)] (5.11) 

+ c[~r - ZZ - z( ,u I + ,lIz) - M,u~ +,u~)] 
+!b In(4a 1a 2,ut ,ujr). (5.12) 

Note that Ak and Ok are real and Band c are complex con
stants and also thatYI andyz are real and x is a complex 
function. 

The physical g is obtained from (5.1) as follows: 

~h = (I,ut ,u2I/r)(go - g). (5.13) 

Now we shall study particular cases of (5.1). Taking 

m~i = m~l = 0, we get 

g{; = - 1,u21,u11(g0)11' 

rl; = rlg{~, g{; = O. 

Putting mbll = m~i = 0, we have 

g{~ = - 1,u/,u21(go)1I; 

rl; and g{; are given by (5.14b). Choosing either 

(5.14a) 

(5.14b) 

(5.15) 

m~i = m~i = 0 or m~1 = m~1 = 0, after some algebra, we 
get 

(5.16) 

rl; and g{; are given by (5.l4b). 

The particular form of the solutions (5.14)-(5.16) sug
gest that any diagonal solution to (2.1), say go, give rise to 
different two-soliton solutions given by 

g{~ = ± l,ullrIE'I,u2IrIE'(g0)11; (5.17) 

rl; and g{; are given as before, and E I and Ez are constants 
that can take the values ± 1. 

That (5.17) is a solution to (2.1) for any diagonal go can 
be proved directly. Also, if cl and E2 are arbitrary constants, 
(5.17) is a solution to (2.1), but in this case we cannot say that 
the new solution is a two-soliton solution since the soliton 
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character is given by the existence of single poles in the "scat
tering" matrix X and for single poles we have € 1.2 = ± 1. 

The solution (5.17) can be also obtained by construction 
of a one-soliton solution. Taking either mOl = 0 or m 02 = 0 
in (4.1), and multiplying the result by l,ul/r, we get 

gf~ = 1,ulrIE(gO) I I; (5.18) 

€ = 1 is associated with mOl = 0 and € = - 1 with m 02 = o. 
We can repeat the procedure one more time taking (5.18) as 
(gO) I I; in this form we end up with Eq. (5.17), mod ± 1. The 
tz'~ and gf~ are obtained as before. This procedure can be 
repeated n times to give 

gf~ = CVl 1,u/lrIE}go) I I; (5.19) 

tz'~ andgf~ are obtained as in (5.14b). For an odd n we con
sider go to be given by Eq. (2.20). This shows how to con
struct an n-soliton solution from any known diagonal solu
tion to (2.1). As a final remark, we want to add that the 
solutions (4.1) and (5.1), in the general case, are not solutions 
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to the Ernst equation since p = - g~~ I gf~ and for these so
lutionsp cannot be cast in theformp = ae,a, where a is a real 
constant and a a real function. Nevertheless, the particular 
cases (5.17), (5.18), and the n-soliton solution (5.10) are solu
tions to the Ernst equation, because gf~ = 0 for these solu
tions; then we have a = O. 
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The relativistic Pauli-type equation lill"ill" + m 2 + iea·(E + LB)Jr,6 = 0 (one ofa pair of second 
order equations that follow from the Dirac equation) is investigated. Here r,6 is a 2 X 1 Pauli spinor, 
and aa' a = 1,2,3, are the usual Pauli spin matrices. We investigate the correspondence between a 
description of a Dirac particle based on this second order equation and a single 2 X 1 spinor wave 
function r,6, and a description employing the conventional Dirac equation. To this end, a 
representation is derived that expresses the exact interacting Dirac propagator in an arbitrary 
external electromagnetic field in terms of the 2 X 2 interacting propagator of the Pauli-type 
equation. Techniques for discussing scattering of a Dirac particle using the above wave equation 
are presented. The Feynman rules, at least for the external c-number field problems considered 
here, are basically those of scalar electrodynamics. A notable difference is the replacement of the 
factor - ie( PII" + Pil") for the one-photon vertex of scalar electrodynamics by the new factor 
- ie( Plv(ovl" + iavl") + (0I"V + ial"v) Piv) for our one-photon vertex. al"v is a self-dual spin tensor 

whose components are the usual Pauli matrices, times ± 1. 

P ACS numbers: 11.10Qn 

I. INTRODUCTION 

We will here investigate a relativistic Pauli-type wave 
equation, 

lill,il
" 

+ m 2 + iea·(E + IB)Jr,6 = 0, 
(1.1) 

ill" =J/iJxl" - eA
"

, 

for a Dirac particle moving in an arbitrary c-number electro
magnetic field, AI" (A I' A 2 , A 3; A4=iV). In this equation r,6 
is a 2 X 1 Pauli spinor and aa' a = 1,2,3, are the usual Pauli 
spin matrices. Equation( 1.1) and the analogous equation, 

l/ll"/l" + m 2 
- iea·(E - iB)J1] = 0, (1.2) 

arise naturally in the theory of the Dirac equation if one 
works in a representation in which Y5 is diagonal. In a work 
of Laporte and Uhlenbeck 1 Eqs. (1.1) and (1.2) are derived 
from a spin or form of Dirac's equation due to van der Waer
den. 2 Also, with the help of the spinor-analysis formalism of 
van der W aerden, 3 it is possible to motivate Eqs. (1.1) and 
(1.2) without recourse to the Dirac equation.4 

It is evident that a single one of the second-order equa
tions (1.1) or (1.2) alone should already contain all the phys
ics of a Dirac particle. Accordingly, it should be possible, for 
example, to fully describe a Dirac particle using a single 2 X 1 
spinor r,6 obeying the second order equation (1.1). Because of 
the small dimension of the matrices involved, Eq. (1.1) for a 
Dirac particle may prove to be quite useful for applications, 
for example to quantum electrodynamics. Also, the equation 
involves the mass only quadratically. This feature may make 
Eq. (1.1) quite suitable for application to the" indefinite 
mass theory" of Hostler5

; or to the similar "mass Hamilton
ian" method of Feynman, Kislinger, and Raundal,6 and 
analogous formalisms of Hiroshi Enatsu and others. 7-9 

We will here investigate the relationship between the 
description of a Dirac particle using Eq. (1.1) and a single 
2 X 1 spin or wave function r,6, and a description employing 
the conventional Dirac equation. The material in Sec. IIA, 
although not especially new, is included for completeness, 

since this background material is needed to do the physics of 
a Dirac particle using Eq. (1.1). The propagatorofEq. (1.1) is 
investigated in Sec. lIB. A representation, Eq. (2.41), is de
rived expressing the exact interacting Dirac propagator SF 
in an arbirtrary external electromagnetic field in terms of the 
2X 2 interacting prpagator,g +, ofEq. (1.1). The equivalence 
ofEq. (1.1) with the original form of Dirac's equation is made 
manifest through this representation. For example, the 
equivalence of the two bound state spectra, if one exists, fol
lows, since two functions related as in Eq. (2.41) must have 
the same pole structure in the complex energy plane. 

In Sec. IIC amplitudes for scattering, pair production, 
and pair annihilation are compared for the new formalism 
and for the original form of the Dirac equation, The repre
sentation (2.41) of the Dirac propagator plays a central role 
in this comparison. Feynman rules for Eq. (1.1), at least for 
the external c-number field problems considered here, are 
basically those of scalar electrodynamics. A notable dif
fernce is the replacement of the factor - ie( PiI' + P'jt) for 
the one-photon vertex of scalar electrodynamics with the 
new factor - ie(hv(o"ll + ia",,) + (°1", + ial,v)Piv) for our 
one-photon vertex. The spin tensor 0'1"" occurring here is a 
self-dual tensor made up of the Pauli matrices [see Eq. 
(2,12)]. 

II. PHYSICS OF THE SL(2, C)-INVARIANT WAVE 
EQUATION 

A. General formalism 

1. Relation to the Dirac equation 

Our Dirac equation is written in the form 

(fl - im)t/J = 0, lI-yIJl
l
" 

y_(? - ia) r _(1 0) 
la 0 ' 4= 0 - 1 ' 

Equation (2.1) is equivalent to the two equations2 

(2.1) 

(2.2) 

mr,6 = 71" ill" 1] (2,3) 
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(2.4) 

for a pair of 2 X 1 Pauli spinors ifJ and 1]. The matrices 7 p. are 
defined through the equations 71,2.3 =at •Z•3 and 74 -i 

7 t = (~~). 72 = e ~ i), 
(2.5) 

(
i 0) 

74 = 0 i' 

while the matrices Tp. are defined as 

Tp.=(7p.f (2.6) 

Equations (2.3) and (2.4) can be derived by writing the 4 Xl 
Dirac spinor rp in terms of ifJ and 1] 

(2.7) 

When the representation (2.7) is substituted in the original 
Dirac equation (2.1), the Dirac equation splits into the pair of 
equation (2.3) and (2.4). The second-order equations (1.1) and 
(1.2) now follow by eliminating 1] and ifJ, respectively, from 
Eqs. (2.3) and (2.4). 

For future reference we prefer to express the second 
order equations (1.1) and (1.2) in the manifestly covariant 
forms t 

and 
(Ilp.Ilp. + m 2 

- eWp.vFp.v)1] = 0, 

respectively. We here require the identities 

Tp. 7 v = Op.v + iap.v' 
and 

In these identities, ap'v is the self-dual spin tensor 

_(- ~3 ~ -;; ::). 
ap.v= 0' a2 - at a3 

- at - a z - a3 0 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

and Up.v' whose dual is equal to minus Up.v' is the spin tensor 

- (-~3 ~ -;; =::) 
ap.v= az 0 -at -a3 

at a2 a3 0 

(2.13) 

Lorentz invariance ofEqs. (2.3), (2.4), (2.8), and (2.9) is best 
discussed in terms of the spinor analysis formalism of van 
der Waerden mentioned above. Relevant transformation 
properties are discussed in Appendix A, but the reader is 
referred to the sources cited in Ref. 3 for derivations. We 
record here for future reference the algebra of the matrices 10 

CJ,lvaAp = O'lAOvp - 0l'pOvA + €,lvAp 
+ i(Op.A a vp - Op.pavA + ovpa,lA - O"A ap.p ). 

(2.14) 

From Eq. (2.14) we learn that the spin tensor a,lj2 obeys the 
Lie algebra of the homogeneous Lorentz group 
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[ap.v;aAp] = 2i(0p.Aavp - op'pavA + Ovpap.A - OvAap.p )' 
(2.15) 

2. Unitary dot product 

We here take the point of view suggested in the intro
duction of treating just one of the second-order equations, 
chosen to be Eq. (2.8), as providing a full description of a 
Dirac particle. In order to ensure the physical equivalence of 
the original Dirac equation and our relativistic "Pauli equa
tion" (2.8), we require a generalized inner product (ifJb ;ifJa)' in 
the space of the states ifJ which agrees with the Dirac inner 
product of the corresponding four-spinors, rp, 

(ifJb;ifJa)=f d 3rrpb trpa· 

From Eqs.(2.7) and (2.4) we obtain 

f 
2 +----> 

(ifJb; ifJal = d 3rifJb t m 2:~ B ifJa , 

where 

B=7p.Ilp.' 

(2.16) 

(2.17) 

(2.18) 

For future reference, we record here an analogous definition 

A =Tp.Ilp.. (2.19) 

Note that in Eq. (2.17) and throughout this paper we adopt 
the convention that a derivative acting to the left shall mean 
minus differentiation of the objects on the left; e.g., 
ifJ tap. = - aifJ t/axp.. Equations (2.8) and (2.17) enable us to 
discuss the physics of a Dirac particle without further refer
ence to the original Dirac equation. 

Equation (2.8) admits a conserved transition current 

- ilp. (- ap'v ) 
(l'l )b. = - ifJb 2m2 ifJ. - av ifJb 2m2 ifJ. , 
i ifJ ti. 

(2.20) 

(2.21) 

We define (l4)b. iPb •. It is straightforward to verify that 
Sd 3r Pb. differs from the original inner product (2.17) only in 
that the present expresion for Sd 3r Pb. incorporates the 
equation of motion. 

The object i defined in Eq. (2.21) plays a role for the 
relativistic Pauli equation (2.8) which is quite analogous to 
the role played by If=rptY4 in conventional Dirac theory. In 
this connection it is worth pointing out the SL(2,C) transfor
mation laws 

(2.22) 

(2.23) 

of ifJ and i. According to these transformation laws the com
bination ibifJa is Lorentz invariant. For future reference we 
note the expression for the charge conjugate C [ifJ ] of the 
wave function ofEq. (2.8): 

a = 
C[ifJ] -Y ifJ. 

m 

B. Propagators 

Two related propagators g ± (2, 1) are defined as 
follows: 

Levere C. Hostler 
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{(lll'h(lll'h + m2 + iea.(E(2) + iB(2))}g+(2, 1) 
= - D(t2 - tl)83(r2 - rd, (2.25) 

{(lll'b(lll'b + m2 
- iea·(E(2) - IB(2))}g_(2, 1) 

= - D(t2 - t l W(r2 - rtl. (2.26) 

In accordance with hole-theory concepts, we assume Feyn
man boundary conditions. As is known, the Feynman 
boundary conditions can be incorporated by giving the mass 
parameter m a small negative imaginary part. This prescrip
tion will be implicit in the following. 

To proceed, it is convenient to go over to an abstract 
operator notation. We introduce space-time coordinate ei
genkets, 11)=lr\>tl ) defined through the equations 

xl'll) = (xl')II1), (2.27) 
and 

(2.28) 

The time component of the four-vector xI' is thus treated as 
an operator on the same footing as x, y, z. II From Eq. (2.28) 
the completeness relation 

(2.29) 

follows. The propagators g ± (2, 1) in Eqs. (2.25) and (2.26) 
are visualized as coordinate space representatives of abstract 
operatorsg ± : g ± (2, 1)=(2Ig ± 11). In this notation Eq. 
(2.25) reads 

{lll-'lll' + m2 + iea·(E + ieB)} g+ = - 1, 

or, in terms of the operatorsB and A ofEqs. (2.18) and (2.19), 

(AB + m 2 )g + = - l. (2.30) 

The analogous equation for g _ is 

(BA + m2)g_ = - l. (2.31) 

The Green's function g _ can be expressed in terms of g + as 
follows. Multiplying Eq. (2.31) on the left by A we find 

(AB + m2)Ag_ = -A, 

Ag_ = - (AB + m2)-IA =g+A. 

Now multiply g +A = Ag _ on the left by B and use Eq. (2.31) 
again:Bg +A = (BA + m2 - m 2 )g _ = - 1 - mZg _. Thus, 

g_ = _ Bg+A,+ 1 (2.32) 
m-

Next we explore the relationship between the propaga
tor g + of the relativistic Pauli equation and the propagator 
SF of the usual Dirac equation. The latter is defined (in the 
same abstract notation, and with the same m having 
Im(m»Oby 

- 1 
SF= --

ll-im 
(2.33) 

The propagator SF is first expressed in terms ofthe propaga
tor GF of the second-order Dirac equation 

SF = (ll + im)GF, (2.34) 
and the equation 

{lll-'lll' + mZ + ie(a·E + ia.B)}GF = - 1 (2.35) 

for G F is integrated in terms of g +. Here a and 0' are the 
usual 4 X 4 Dirac matrices. The same notation 0' will be used 
to denote either the 4 X 4 Dirac spin matrices or the 2 X 2 
Pauli matrices, depending on the context. Thus we write 

a = e ~) and a = (~ ~). 
Equation (2.35) can be integrated in terms ofg + andg_ 

by projecting onto subspaces defined using the perpendicu-

lar projectors!(l ± rs), where rs = r4rlrZr3 = (~ ~). By 

inserting a resolution of the identity in Eq. (2.35), we find 

{Oi(1 + rs) + 0!(1- rs)}GF = - 1, (2.36) 

(2.37) 

Next, it is convenient to write the 4 X 4 matrices 0 M 1 ± rs) 
as Kronecker products of two 2 X 2 matrices. The explicit 
prescription for this is 

(2.38) 

Equation (2.36) then goes over to the form 

{O+ ®!(l + O'x) + 0_ ® W - O'x)}GF = - 1, (2.39) 

where 

O+=lll'lll' + m2 + iea.(E + IB), 
and 

O_=lll'lll' + m2 
- iea·(E -IB). 

Since the 2 X 2 operators !( 1 + 0' x) are a set of perpendicular 
projectors, we can write the solution of(2.39) in the form 
GF = - (0+)-1 ®!(1 + O'x) - (0_)-1 ®!(l - O'x)' The re
lations - (0 ± )-1 = g ± then lead to 
GF = g + ® !(1 + O'x) + g_ ®!(1 - O'x)' or more explicitly, 

(i. = ~(g+ +g- g+ -g-). (2.40) 
2 \.g+ -g_ g+ +g_ 

Next we substitute the representation (2.32) for g _, and 
apply the operator (ll + im) in a accordance with Eq. (2.34). 
The result is a representation expressing the exact 4 X 4 
Dirac propagator with arbitary external electromagnetic 
field in terms of the 2 X 2 propagator g + of the relativistic 
Pauli equation (2.8). This representation is 

( 

(B - m)g+(A + m) + 1 
2m 

is = 
F _ (B+m)g+(A +m)+ 1 

2m 

(B - m)g + ( - A + m) + 1 ) 
2m 

_ (B + m)g + ( - A + m) + 1 . 

2m 

(2.41) 

To obtain this identity repeated use of the propagator equa
tion (2.30) is required. The representation (2.41) makes the 
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For example, it is clear from (2.41) that a bound-state spec-
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trum, ifit exists, must be the same for g + and for SF' since 
two functions related by Eq. (2.41) will have the same pole 
structure in the complex energy plane. 

c. Scattering amplitudes 

To discuss scattering it is convenient to rewrite Eq. (2.8) 
in the form 

(p2+m2+ V)tP=O, 
(2.42) 

v = - ePI'AI' - eAI'PI' + e2
AI'AI' - e~ul'vFl'v' 

The spin dependent part of V can be transformed as follows: 

-e~ul'vFl'v 
- e!ul'v(JI'A v - JvAI') 

= - ieul'vi-'aAjJxl' 

= -ieul'v[pl';Av] 
= - iepl' ul'vAv - ieAvuvl'PI" 

Through the use of this transformation, the spin term of V 
merges with the orbital terms to give 

V = - ePI'(Dl'v + iUl'v)Av 

- eAv(Dvl' + iUvl'lPl' + e2AI'AI" (2.43) 

The mathematics of integrating Eq.(2.42) with interaction 
potential (2.43) is basically not different from the familiar 
mathematics of the Klein-Gordon equation. Indeed, Feyn
man rules developed for Eqs. (2.42) and (2.43) will be basical
ly the same as for scalar electrodynamics, at least for the 
external c-number field problems considered here. The prin
cipal difference between the two sets of rules will be the re
placement of the one-photon vertex - ie( P JI' + P;I') of sca
lar electrodynamics by the new factor 
- ie(PJv(Dvl' + iuvl') + (Dl'v + iul'v)p;v) for our one-photon 

vertex. 
The integration of Eq. (2.42) involves the standard lore 

of scattering theory. Therefore the following results on scat
tering can be reported briefly. We denote by 1,6; +(x) the solu-

tion ofEq. (2.42) that describes the action of the potential on 
a positive or negative frequency free particle, described by a 
plane wave state, tPAx). We go over to the abstract notation of 
Sec. lIB and write Eq. (2.42) in integral form as follows: 

11,6; +) = 11,6;) + go V 11,6,+), (2.44) 

where 

1,6; +(x)=(xltP; +), tP;(x)-(xltP;), 

and go= - 1/( p2 + m2) is the free particle propagator. 
Feynman boundary conditions are assumed and the same 
small negative imaginary part of m is implicitly assumed. 
Equation (2.44) can be solved by iteration in a Born series 
11,6; +) = (1 +goV + go Vgo V + .. ,)11,6;); equivalently, 

ItP;+)=g+(-(p2 +m2))ltP), (2.45) 

g + being the propagator (2.30). Although the representation 
(2.45) would have the indeterminant form % for real m, the 
representation is well defined here because m has a small 
negative imaginary part. In the following the representation 
(2.45) will be convenient because it avoids any expansion in 
the potential. 

Scattering amplitudes can now be computed as 

Sfi = (tPJ; 1,6; +) = f d 3r fJ(ill4 /2m 2)tP; +, 

where tPJ is the final plane wave state. Using standard reduc
tion techniques '2 this amplitude fori =I- i can be transformed 
into 

Sfi = EJ(fJI( - i(p2 + m2)12m2) 11,6; +), 

or in view of Eq. (2.45), into 

Here 

Sfi = (iE/2m 2
) (tPJI( - (p2 + m2)) 

xg+( - (p2 + m2 ))ltP;), I=l-i. 

(1,6 1=(1,6 IB 

and EJ = + 1 for electrons, EJ = - 1 for positrons. 

(2.46) 

(2.47) 

Next we substitute in Eq. (2.46) explicit expressions for initial and final plane wave states, 1,6;./' These expressions are here 
required in the forms'3: 

11,6;) = (2E;(E; + m)) - 112(Ao + m)zI"(O)lp;) (electrons), 

11,6;) = (2E;(E; + m))-1I2( -Ao + m)zI"(O)I- Pi) (positrons), 

(tPJI = (PJlzI'10)t(Bo - m)m(2EJ(EJ + m)) - 112 (electrons), 

and 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

In theseequationsAo= - ip4 + a·pdenotes the free particle form of the operator A ofEq. (2.19), and Bo=ip4 + a·p is the free
particle from of B defined in Eq. (2.18). Also, the subscripts i andlfor "initial" and "final" are to be interpreted as "unper
turbed" and "perturbation" respectively, and do not necessarily refer to the actual chronological ordering of events. When the 
representations (2.48)-(2.51) are substituted in Eq. (2.46), we obtain the following expressions for Sfi: 

and 

1182 

C (PJlzI'10)t( - (p2 + m2))(Bo - m)g+(Ao + m)( - (p2 + m2))zI'i(0)lp;) (electron-electron scattering,J=l-i); (2.52) 

_ C ( - PJlzI'1W( - (p2 + m2))(Bo + m)g+(Ao + m)( - (p2 + m2))uPi(0)lp,) (pair annihilation); 

C (PJlzI'10)t( - (p2 + m2))(Bo - m)g+( - Ao + m)( - (p2 + m2 ))zI''(O)1 - p;) (pair production); 
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- c ( - hlz/'10)t( - (P2 + m 2))(Bo + m)g +( - Ao + m)( - (p2 + m 2))z/"(0)1 - Pi) 

We are now in a position to compare our scattering 
amplitudes with those of the original Dirac theory. The scat
tering amplitudes for the latter can be written in the form 
[analogous to Eq.(2.46)] 

Sfi = Ef ('hi (p - im)SF(p - im)ltPi)' 

! :;ii, (tP/I =(tPf lr4' (2.56) 

When explicit expressions for the Dirac plane wave states 
are substituted in Eq. (2.56) the factors (p - im) are convert
ed into factors (p2 + m 2

), and we find simply 

Sfi = - EA2E;(E; + m))-1/2(2Ef (Ef + m))-1/2 

X (EfPrlU'10)( - (p2 + m2))SF( _ (p2 + m 2))z/'i(0)IEiPi)' 
(2.57) 

! :;ii; and E;.f = + 1 for electrons, Ei,f = - 1 for positrons. 
In Eq. (2.57) we substitute the representation (2.41) of SF and 

then select spinors 11"(0) and i1'10) as appropriate to describe 
one of the processes (2.52)-(2.55). Doing this will automati
cally select only one sector of the 2 X 2 matrix of matrices 
(2.41), and we obtain structures almost identical to Eqs. 
(2.52) through (2.55). For example, if we select 11"(0) and 
i1'10) to be electron states in Eq. (2.57); Then when (2.41) is 
substituted in Eq. (2.57) we find 

Sfi = - (2E;(E; + m))-1/2(2Ef (Ef + m))-1/2( - i/2m) 

X (Pr Iz/'10)t( - (p2 + m 2)) 

X [(B - m)g+(A + m) + 1]( _ (p2 + m 2))z/"(0)lp;), 
!#i. (2.58) 

Now z/'"P10) denote 2 X 1 column matrices. Because of the 
condition! #i, orthogonality permits dropping the term in
volving the unit matrix in the bracket of(2.58). Equivalence 
of(2.58) and (2.52) now follows if we are permitted to make 
the replacements A-Ao and B-Bo in Eq. (2.58). But this is 
permitted because in the limit Im(m)-o- the factors 
( - (p2 + m2)) in (2.58) will act on the initial and final states 
and annul terms in A and B that involve the potential. 14 The 
amplitudes for the other processes (2.53)-(2.55) can be simi
larly seen to be equal to the corresponding amplitudes calcu
lated with the original Dirac theory. 

APPENDIX 

Lorentz invariance will be reviewed here briefly. As 
mentioned in the introduction, the reader is referred to the 
sources cited in Ref. 3 for derivations. 

To each Lorentz transformation x'l" = x"R"1" we asso
ciate a linear transformation U of SL(2, C) according to the 
rule 

Uil" U
t 

= T"R"I" , 

equivalently, 

(U -1)t U-I - R 1"1" - Ty Yl"' 
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(AI) 

(A2) 

(positron-positron scattering,J :;ill, (2.55) 

Equations (AI) or (A2) establish a homomorphism between 
the homogeneous Lorentz group and the group SL(2, C), and 
show that 1'1" and 1"1" in Eqs. (2.3) and (2.4) will behave as four
vectors, thereby assuring the Lorentz invariance of these 
equations. Note that ¢J is transformed according to Eq. 
(2.22), and 1] according to 1]'==ut1]. From Eqs. (2.10) and 
(2.11) and the transformation laws (A I) and (A2), it is 
straightforward to show that the spin matrices (jI'Y and iiI''' 
have the expected tensor transformation properties 

(A3) 
and 

(U-I)tiil'yUt = ii).pR).I'Rp,,' (A4) 

Equations (A3) and (A4) assure the Lorentz invariance of 
Eqs. (2.8) and (2.9). 

The homomorphism between the homogeneous Lo
rentz group and SL(2, C) can be exhibited more explicitly by 
writing both matrices Rand U in canonical form with the 
same canonical parameters wI''': R = exp( - !iwI'YSI''') and 
U = exp( - !iwl'v(jI''')' The canonical parameters are de
fined as: V_ 

~o 
03 - O2 

It 
i - 03 ° 01 

wl'Y = ~2 - 01 ° 
(A5) 

IVI - iV2 - iV3 ° 
in which the real angles 01•2•3• describe spacial rotations and 
the pure imaginary angles iV I •2•3 describe Lorentz boots. The 
matrix U(wl'v) has the property U(wl''' *)-1 = U(wl'v)t. The 
generators, S 1'", of Lorentz transformations in coordinate 
space are self-adjoint matrices with matrix elements 

(SI'V )aP =i- I (0l'aoYP - 0l"pova)' 

'0. Laporte and G. E. Uhlenbeck, Phys. Rev. 37, 1380 (1931). 
28. L. van der Waerden, Group Theory and Quantum Mechanics (Springer, 
New York, 1974), p. 137. 

'See Ref. 2 and the review article cited in Ref. 1. Other references on spinor 
analysis are: W. L. Bade and H. Jehle, Rev. Mod. Phys. 25. 714 (1952); H. 
Umezawa. Quantum Field Theory (North-Holland, New York, 1956); and 
E. M. Corson. Introduction to Tensors. Spinors. and Relativistic Wave
equations (Hafner. New York, 1953). 

4H. M. Pilkuhn. Relativistic Panicle Physics (Springer, New York, 1979). p. 
18. 

'L. Hostler, J. Math. Phys. 21, 2461 (1980). 
6R. P. Feynman. M. Kislinger, and F. Ravndal. Phys. Rev. D 3. 2706 
(1971). 

'H. Enatsu, A. Takenaka. and M. Okazaki, Nuovo Cimemto 43, 575 
(1978). 

8K. Fujimura. T. Kobayashi. and M. Namiki, Prog. Theor. Phys. (Kyoto) 
44. 193 (1970). 

9In the work ofW. C. Davidon [Phys. Rev. 97. 1131 (1955)] a form ofEq. 
(1.1) has already found application in such a theory. 

"'The analogous algebra for iT". is 
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U"vU),p = 8,.;.8"" - 8",,8vA - £"v),p 

+ i(8,.;.u"" - 8""uVA + 8""u,.;. - 8VA u"". 

Products involving one factor T" and one factor of u"v or U"V can be evaluat
ed using 

T"U"" = -i£"vp"T" -i(8"vTp -8"pTv) 

and 

U"V Tp = - i£"""" T" + i(8"" Tv - 8pv T,,). 

By taking the adjoint, similar identities for u"" r" and rpu"v can be found. 
The identities noted here and the identities (2.10), (2.11), and (2.14) of Sec. II 
Al are the only binary products of the matrices T", r", U"V, and U"V that 
will have a tensor structure in their Lorentz indices. The reason is that only 
the above mentioned matrix products express the spinor operations of outer 
product and contraction of spin or indices of the same (dotted or undotted) 
type. 
liThe notation is that of Julian Schwinger, Proc. Nat. Acad. Sci. 37, 455 

(1951). 
12J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw

Hill, New York, 1964). 
13In order to obtain positive frequency free-particle wave functions which 

correspond to the usual Dirac plane wave states, we start with the wave 
function for a spin up (down) electron in the comoving frame, and then 
perform a Lorentz transformation taking us back to a general frame. Posi
tron wave functions t/J3.4(p,x) are obtained from the electron wave func
tions t/J1.2(p,X) by application of the charge conjugation operation (2.24) 
t/J,.4(p,X)""C [~ 1.2(p,X)]. 
The normalization is 

PI'PZ = 1,2,3,4; 
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where the unitary dot product is that of Eq. (2.17). 
I~O clarify this point let us examine the effect of substituting the Born 

expansion for g+. A typical term involves the factor 

(PfluP1W( - (pz + mZ))(B'_ mlgoV .•. Vgo(A + m)( - (pz + m2))uP~Ollp;) 
= (pfluP10)t( - (p2 + m2))[(Bo - m) - e(iA4 + a·A)]goV .. ·Vgo 

X [(Ao + m) - e( - iA4 + a.A)l( - (pz + m2))uP'(O)lp). 

Now we expand each expression in the square brackets into two separate 
terms, generating four terms in all. In the term 

(pfluP10)t( - (p2 + m2))(Bo - mlgoV·· .Vgo(Ao + m) 
X( - (p2 + mZ))uP'(O)lp;) 

the factors ( - (p2 + m2)) cancel against corresponding factors of go a,nd we 
obtain a matrix element 

uP10)t(Bof - m)(pfl V·· ,Vlp)(Ao; + m)uP'(O) 

that remains finite as Im(m)~-. The analogous structure 

(Pfl(iA 4 + a.AlgoV·· .Vlp) 

will likewise remain finite as Im(m)-+O-. 
Consequently the term 

uP10)t( - (p} + m2))( - e)(pfl(iA4 + a.AlgoV·· ,Vlp;)(Ao; + m)uP'(O) 

from the expansion of the bracket is finite as Im(m)-+O- before the factor 
( - (p2 + m2)) is applied. Because of this finiteness, and because 
( - (p2 + m2))~ as Im(m)-+O-, the whole expression is annulled by the 
factor ( - (p2 + m2)) in the limit Im(m)-+O-. Treating the other potential 
terms from the expansion of the bracket similarly completes the justifica
tion of the desired replacements (B - m)--+(Bo - m)and(A + mHAo + m) 
in the brackets of Eq. (2.58). 
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High-energy asymptotic expansion and Regge trajectories for the general 
even power potential in the Klein-Gordon equation with applications 
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Large energy asymptotic expansions, wavefunctions, and Regge trajectories of the generalized 
even power potential VIr) = - i'!.t= ON2jrj in the Klein-Gordon equation are obtained. These 
general expansions are then used to obtain Regge trajectories for the anharmonic oscillator and 
Gauss potentials. Finally, the charmonium spectroscopy for an harmonic oscillator is studied. 

PACS numbers: 11.60. + c 

1. INTRODUCTION 

With the recent discovery of several new particles I in
terest in hadron spectroscopy has been revived. Many at
tempts have been made to study the hadron spectrum using 
the nonrelativistic Schrodinger equation with a linear poten
tial. 2.3 A linear potential is suggested by the gauge theory of 
quark confinement4 and by exactly soluble two-dimensional 
QED.5 The resulting spectroscopy seems to be quite satisfac
tory and even has significant advantages over earlier 
schemes in the case of ordinary mesons and baryons. 3 Be
cause of this success it is important to go beyond the nonrela
tivistic approach, which must be regarded as a first approxi
mation for a complicated hadronic system. 

A complete treatment should incorporate both relativ
istic and quantum effects, and in addition, requires a full 
understanding of the underlying dynamics of the quarks. 
The well-known complexity encountered in the bound state 
problem in relativistic field theory suggests that the com
plete solution of this problem is rather remote at the present 
time. 

In a paper by Kang and Schnitzer6 meson spectra have 
been calculated using a linear potential function as the 
fourth component of a four-vector in the Klein-Gordon 
equation. Gunion and Li7 have studied the same potential as 
a Lorentz scalar in both Klein-Gordon and Dirac equations. 

A phenomenological view point was adopted by Ram 
and Halasa8 to investigate the meson spectra using a har
monic oscillator potential function. A semirelativistic quark 
model for mesons has also been studied by Horwitz9 using a 
square-well potential model. 

The main result of the present investigation is the deri
vation of the high eigenenergy and Regge trajectory expan
sions for a general even power potential in the Klein-Gor
don equation. The general even power potential is of 
particular interest in potential theory. Since such well
known potentials as the harmonic oscillator, the Gauss po
tential and the anharmonic oscillator potentials (with even 
anharmonicities) may be derived from this as particular 
cases. The general even power potential has alreadylO been 

alOn leave from Department of Applied Physics, Government-Engineering 
College, Jabalpur, India. 

studied in the Schrodinger frame work using large coupling 
constants. In the present investigations we use the perturba
tion technique explained in Ref. 11. In Sec. 2, we derive the 
large energy expansion and Regge trajectories for the gener
al even power potential. In Sec. 3, we give applications of the 
general eigenenergy expansion to the Gauss and the anhar
monic oscillator potentials. Meson spectra of the charmed 
quarks is also investigated using the harmonic oscillator po
tential. Finally in Sec. 4, we give a brief discussion of our 
results. 

2. EIGENENERGIES FOR THE GENERAL EVEN POWER 
POTENTIAL 

We consider the radial part of the Klein-Gordon equa
tion given by 

d
2
¢(r) +((E- V)2_m2 _ 1(/+ 1) rr)=o. (2.1) dr r 

(lI=c= II 

Setting E2 = m2 + k 2, K = ik, 

. . dX 
Z = - 2lkr X = - (2.2) , dZ 

and 

tP{r) = eikr';+ IX(r) 

we obtain 

(2.3) 

ZX + (21 + 2 - Z)X - {(l + 1) - (Z 14K2)(V2 - 2EV)}X 

=0. (2.4) 
We now assume a potential ofthe form 

VIr) = - i' I-N2j r
j
, 

j=O 

where the coefficients N2j can be positive or negative. 

(2.5) 

Substituting (2.5) in (2.4) we obtain an equation which 
may be put in the form 

ZX + {21 + 2 - z)X - {I + 1)X 

(2.6) 

where 

Mj = ±N2(j_'1 N2i ' (2.7) 
;=0 
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The right-hand side ofEq. (2.6) is of order 11K 2. To a 
first approximation it may be neglected for IK 21_ 00 • Hence 
the equation reduces to 

Z%(I) + (2/ + 2 - z)X(J) - (/ + I)XI1) = O. (2.8) 

A solution of(2.8) is 

XII)=¢(a,b;z), (2.9) 

where 1,6 is a confluent hypergeometric function with 

a = / + 1 (2.10) 

and 

b = 21 + 2. 

This solution will be a normalized bound state wavefunc
tion, if 

a= -n for n=O, 1,2,.... (2.11) 

Hence, in our original problem we may write 

1 + 1 = a + Ll (K2)14K2 = - n + Ll (K2)14K 2, (2.12) 

whereLl (K 2) is an (as yet) undetermined expansion in powers 
of 11K 2. 

Inserting (2.12) in (2.6) we have 

DnX = [Ll (K2)h - Jto(g4Mj + 2Eg2N 2J )Z2J+ Ih J+ I]X, 

(2.13) 

where 
d 2 d 

Dn =Z- +(b-z)- +n 
dz2 dz 

(2.14) 

and 

h = 1I4K2. (2.15) 

As a first approximation to X we have (apart from an overall 
normalization constant) 

X=X(1)=¢n(z). (2.16) 

This approximation obviously leaves uncompensated terms 
on the right-hand side of (2. 13) amounting to 

R (I) = [Llh - Jto(g4MJ + 2Eg2N2J)z2i+ Ih j + I ]¢n(Z). (2.17) 

For convenience we set ¢n (z) = 1,6 (a,b;z) = 1,6 (a) and write the 
recurrence relation for 1,6 (a) in the form 

Z¢ (a) = (a,a + 1)1,6 (a + 1) + (a,a)¢ (a) 

+ (a,a - 1)1,6 (a -1), (2.18) 

where 

(a,a + 1) = a = - n = / + 1 - Llh, 

(a,a) = b - 2a = 2(/ + n + 1) = 2Llh, (2.19) 

(a.a - 1\ = a - b = - (2/ + 2 + nl = n - 2Llh. 

By repeated application of (2.18) we obtain the following 
general relation: 

zm¢ (a) = f Sm(a,a + j)¢ (a + i), (2.20) 
j= - m 

where the coefficients Sm (a,a + r) satisfy the recurrence 
relation 

Sm(a,a+r)=Sm_l(a,a+r-l)(a+r-l,a+r) 

+ Sm _ I (a,a + r)(a + r,a + r) (2.21) 

+ Sm _ I (a,a + r + l)(a + r + 1,a + r), 
with 

So(a,a) = 1, 

all 

So(a,a + i) = 0 for i-i'0 (2.22) 

and 

Sm(a,a + r) = 0 for Irl > m. 

The expansion R (I) may now be written 

oc (2J + I) 

R{I}= IhJ+ 1 I [a,a+K)J+I¢(a+K), 
j = 0 K = - (2) + I) 

(2.23) 

where 

and 

[a,aL = Ll - (g4Mo + 2ElNo)SI(a,a) 

[a,a + K L+ I = - (g4MJ + 2Eg2N 2J )S2J+ I (a,a + K), 

(2.24) 

for j and K not simultaneously equal to zero. 
WenowobservethatDn ¢ (a + K) = K¢ (a + K)sothat 

a term/-l¢ (a + K) may be removed by adding toX(I) the con
tribution (p,/ K )1,6 (a + K) except of course when K = O. 
Hence the next contribution to XiI) becomes 

[a,a + K )j+ I 1,6 (a + K). (2.25) 
K 

This contribution leaves uncompensated a sum oftermsR (2) 

which again lead to X (3). Repeating this process successively 
and adding these contributions to XiI) we obtain. 

x = X(II + X (2) + X (3) + .... (2.26) 

However, (2.26) will be a solution of our equation only if the 
sum of all terms containing 1,6 (a) in R (I), R (2), ... , etc., left un
compensated so far is set equal to zero. Thus 

0=h[a,a]l+h 2 {[a,a
b

+ [a,a+l]\[a+l,a]1 [a,a-1L1[a-l,a]l} 

h 3{[] [a,a+ Ib[a+ l,a]1 + [a,a- 1b[a-I,aL 
+ a,a 3 + 1 _ 1 

+ [a,a + l]l[a + I,ab + [a,a -lL[a -l,a]z + [a,a + I]I[a + 1,a + l]l[a + I,aL 
1 - 1 1 

+ [a,a - IL[a - 1,; - IL[a - I,a]1 } + O(h4). (2.27) 
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The expansion (2.26) is then an eigensolution and (2.27), the appropriate secular equation which enables us to calculate.1 and 
hence the eigenenergy. Explicit calculation of terms up to 0 (h 3) yields the following expression for the eigenenergies for large 
K2 or small h 

1 [ _ lIh 2 + 2PoIh n + 1 + 1 =.1h = 
(2n + 1)(2P~ - 12P\) + h {P2(2SSn3 + 360n2 - 232n - 200) 1 
- 4P1(3n 2 + 3n - 1) + 2P~ + 2P~(n2 + n) + h {P2(60n4 + 120n3 - 140n2 - 200n + 4S) 

+ 24nP\Po(n2 - 2) - 4P~(n2 + n - I)} 

+ (.1h )2{SP\ + h [P2(SOn 2 + SOn + 2S0) + 4SP\Po]} 
+ (.1h)3 [160P2h (2n + 1) + (.1h )4.32P2h ] + O(h 2), (2.2S) 

where 

Pj = g4Mj + 2Eg2 Nz; for i = 0,1 ,2,3,.··,etc. 

Expanding the denominator of (2.2S) in powers of h and then iterating for .1h we finally obtain 

1= -n-1 + (lIh 7 )[32PzB
5] -(lIh 6)[32P2B

5(SPo+5A)] 

+ (lIh 5 )[32PzB
5(15A z + 4OPoA + 24P~ - 4x) _B4D] 

+ (lIh 4) [32PzB 5( - 35A 3 - 120PoA 2 - 120P~A + 20Ax + 24PoX - 4a - 32P~) + B4D(6Po + 4A) + SB 3P\] 

+ (lIh 3)[32PzB
5(70A 4 + 2S0A 3po + 360P~A 2 - 60A 2X - 120PoAx + 20Aa + 160P6A 

+ 16Pri + 6x2 - 4SP~x + 24PoA) + B4D(3x - 12P~ - 24APo - lOA 2) + B 3( - 32P\PO + c - 16APIl] 

+ (lIh 2)[32P2B
5( - 126A 5 - 560A 4PO - S40A 3p~ + 140A 3X + 360A 2PoX - 60A za - 4S0A 2P6 - SOPriA 

- 30x2A + 240P~xA - 120APoO + 12ax - 24PoX2 - 32P~a + 32P6X - lSP~a) 

+ B 4D(SP6 + 3a - 12PoX - lUx + 4SP~A + 60PoA 2 + 20A 3) 

+ B 3(4P~b - 2bx - 4Poe + SPoAb + 3A 2b - Uc) - B ] 
+ (lIh ) [32P2B 5 12 lOA 6 + l00SA 5po + 16S0A 4P6 - 2S0A 4X - S40A 3PoX 

+ 140A 3a + 1120A 3P6 + 240A 2Pri + 90A 2X2 
- 720A 2p~X + 360A zPoO 

- 60Ax + 120APoX2 + 160AP~a - 160AP6X + 90AP~a + (4PoX - 2af + 2a2 - 16PoXa 

- SPo02 + 2(4P~ - 2x)(x2 + 4PoOll 
+ B4D(120P~x - 3x2 - 12PoO - 32P6A - lUa + 4SPoAx + 30A 2X - 120A 2p~ - 120A 3po _ 35A 4) 

+ B313A 2C - 4A 3b - 12PoA 2b + SPoAc + (4P~ - 2x)(c - Ub) + 4PoXI + B(2Po +A)] 

+ [ - 330A 7 - 16S0A 6PO - 3024A 5P6 + 504A 5X + 16S0A 4PoX - 2S0A 4a - 2240A 4P6 

- 560A 3Pri - 2 lOA 4X2 + 16S0A 3P6X - S40A 3PoO + 60A 2xa - 120A 2PoX2 - 4S0A 2P~a 

+ 30A 2(4P6 - 2x)(4PoX - 20) - 5A (4PoX - 20)2 - lOAa2 + SOAPoXa + 4OPoAa2 

- lOA (4P6 - 2x)(x2 + 4PoO) + 4ax(4P~ - 2x) + 2(4PoX - 2a)(x2 + 4PoO) 

+ B4D(12P~a + 6x2po - 6xa - 4SP~Ax + 1Ux2 + 4SAPoO + SOA 2P6 + 30A 2a - 120A 2PoX 
- 60A 3X + 240A 3p~ + 150A 4po + 56A 5) + B 3{ 5A 4b - 4A 3C - 12A 2POC + 16A 3Pob 

+ (4P~ - 2x)(3A 2b - Uc) + 4PoX(c - Ub) + b (x2 - 2a + 4PoO) 1 
+ B (x - 2PoA - A 2)] + h [495A 8 + 2640A TPO + 5040A 6P6 - S40A 6X 
+ 3024A 4POX + 504A 5a + 403U 5P6 + 1120A 4Pri + 420A 4X2 - 3360A 4p~X + 16S0A 4PoO - 140A 3xa 

+ 2S0A 3PoX2 + 1120A 3P~a + 30A 2(4P~ - 2x)(x2 + 4PoO) - 20Axa(4P6 - 2x) 

- lOA (4PoX - 2a)(x2 + 4PoO) + B 4D {x3 - a2 + 12PoXa - 4SAP~a - 24Ax2po 
+ 24Axa + 120A 2p~X - 30A 2X2 - 120A 2PoO - 160A 3P6 - 60A 3a + 240A 3PoX + lO5A 4X 

- 420A 4P6 - 336A 5po - S4A 61 - B 3{ 5A 4C - 6A 5b - 20PoA 4b + 16PoA 3C 
+ (4P~ - 2x)(3A 2C - 4A 3b) + 12PoA 2bx - SPoAcx 

+ 2bxa + x 2 - 2a + 4PoO(c - Ub)) + B {a -Ax - U 2PO + A 3}]+ O(h 2) , (2.29) 

where 

1187 

A = [P2/(2n + 1)(2P~ - 12P\)] [2SSn3 + 360n2 - 232n - 200 - (2n + 1)(72P\Po + 4P6)], 

B = [1I(2n + 1)(2P~ - 12P\)], x = - 4PJ(3n 2 + 3n - I) + 2P~ + 2P~(n2 + n), 

c = P2(SOn 2 + 80n + 2S0) + 48P1PO, 

a = P2(60n4 + 120n3 
- 140n2 - 200n + 48) + 24nP I PO(n 2 - 2) - 4P6(n2 + n - 1), 

b= 8P I , 

D = 160P2(2n + I). 
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Although terms up to 0 (h 3) have been calculated but for brevity we have mentioned terms only up to 0 (h ) in our expan
sion (2.29). However, for calculating Regge trajectories and for studying the charmonium spectroscopy for the harmonic 
oscillator, eigenenergy expansion up to 0 (h 3) have been used. 

3. APPLICATIONS OF THE GENERAL EIGENENERGY 
EXPANSION 

We now apply the eigenenergy expansion (2.28) to the 
following cases. 

A. Gauss potential 

The Gauss potential is given by 

VIr) = - i-e - a',.' (3.1) 

so that 

N2j = ( - I)J(a2J/j1). (3.2) 

Hence the eigenenergy expansion is obtained by making the 
following substitution in Eq. (2.28). 

Po = g4 + 2Eg2, 

PI = 2aZg4 - 2Ei-az, 

Pz = 2a4g4 + Ei-a4. 
(3.3) 

The ground state Regge trajectories are shown in Fig. 1. 

B. Anharmonic oscillator 

We consider the potential 

VIr) = - g2(No + Nz~ + N4r4). 

Hence in (2.28) we make the substitutions 

Po =g4No
2 + 2Ei-No, 

PI = 2g4N2NO + 2Ei-Nz, 

Pz =g4(N/ + 2NoN4) + 2Ei-N4. 

The Regge trajectories are shown in Fig. 2. 

7 

6 

I I. 

3 

2 

oL---~--~~~--~----L---~--~--~ 
a 2 3 I. 5 6 7 8 

E ------

(3.4) 

(3.5) 

FIG. 1. Ground state Regge trajectories for the Gauss potential with m = I. 
a 2 = I and different values of the coupling parameter If. 
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I 
C. Charmonium spectroscopy with a harmonic 
oscillator 

We study the potential 

VIr) = - i-(No + Nz~). (3.6) 
The total energy E in the center of mass of a classical system 
of a quark and an antiquark interacting by means of this 
potential is given by6 

E - V = (pz + m/)I/z + (pz + m/)l/Z, (3.7) 

where p is the three momentum ofthe quark. For equal 
masses, 

ml=mZ=m, 

!(E - Vf = pZ + m Z
• 

(3.8) 
(3.9) 

Making the usual quantum identification we arrive at the 
Klein-Gordon equation given by 

[ "12 + !(E - V)2 - mZ] t/'(r) = O. (3.10) 

Hence in our original Eq. (2.2) we make the following 
alteration 

EZ/4=m2+k2. 

So that Eq. (2.15) is now transformed to 

h = 11 16K 2. 

(3.11 ) 

(3.12) 

The eigenenergy expansion is obtained from (2.28) by mak
ing the substitutions 

Po = g4No
2 + 2EgZNo, 

PI = 2N2NoK4 + 2EgZNz' (3.13) 

P2 =g4N/. 

In fact for obtaining the Regge trajectories for the above 
potentials and for calculating the meson masses it has been 
found convenient to solve Eq. (2.28) (which is a fourth power 

7 

4 

3 

2 

2 3 4 5 6 7 

---- E -----<-

FIG. 2. Regge trajectories for the even power potential (N2j = I) for differ
ent values of n. The coupling parameter If has been taken to be - I. 
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TABLE I. Predicted masses in GeY for mesons with charmed quark pairs 
with the oscillator potential of parameters No = - 0.002 GeY, N2 = 0.65 
GeY', g = 1, and m = 1.5 GeY. 

~ 0 2 3 4 

0 3.095 3.45 3.62 3.94 4.12 
1 3.69 3.95 4.21 4.44 4.68 
2 4.10 4.31 4.52 4.78 4.83 
3 4.4 4.6 4.83 5.01 5.2 

equation in ilh ) rather than Eq. (2.29). 
The meson masses are given in Table I and Regge tra

jectories for the same are shown in Fig. 3. The predicted 
masses for mesons with charmed quarks are in agreement 
with those obtained earlier by Ram et al.8 with the oscillator 
potential in the Klein-Gordon equation using a numerical 
method in the WKB approximation. 

4. DISCUSSION 

It is common knowledge that the nonrelativistic har
monic oscillator leads to rising trajectories. The same view 
point is established here for a relativistic case also. The 
Regge trajectories shown in Fig. 3 also appear to be nearly 
parallel. The meson masses with charmed quarks-anti
quarks have also been calculated using this potential. The 
results are very much in agreement with those obtained by 
Ram et al.8 who have however used a numerical method for 
solving the harmonic oscillator potential in the K-G equa
tion using WKB approximation. Although numerical meth
ods have been found to be quite useful in such type of study, 
it has been thought worthwhile here to obtain theoretical 
expression for the eigenenergies and wave function using a 
perturbation theory. 

The Regge trajectories for the anharmonic oscillator 
(with r4 anharmonicity) and the Gauss potential shown in 
Figs. 1 and 2, respectively, are also linear in the range of E 
considered here. The slope of the ground state trajectories 
decreases as the coupling constant is decreased for a Gauss 
potential. A similar effect is observed for the Regge trajec
tories of a general even power potential with increasing n. 
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6 

5 

4 

2 

OL-____ -L ____ ~UL __ ~~~L_~ ______ ~ __ ~ 

1 2 3 4 5 6 

------- E 

FIG. 3. Regge trajectories for the harmonic oscillator potential in the 
Klein-Gordon equation with parameters No = - 0.002 GeY, N2 = 0.65 
Gey3

, g = 1 and m = 1, and m = 1.5 GeY. 
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This paper treats the problem of the unique and constructive determination of 1TN scattering 
amplitudes by means of fixed t dispersion relations and isospin in variance from data on the 
differential cross section and polarization of the elastic and charge exchange reactions. The 
conclusion is that the amplitudes can be uniquely constructed in a neighborhood ( - a, a) of 
t = 0 if they are continuous functions of both reals and t for s on the cuts and 4f-l2 > t> - a o, 
ao>a and there exists Vo such that, for Ivl;;.vo, both IA +(v,t)I!IA +(v,t) + vB +(v,t)1 <const, 
t E ( - ao, 4f-l2) (as indicated by spin rotation measurements) and 
IRe(A + + vB +)I/Im(A + + vB +) <const, tEl - ao,O). This result is specificfor 1TNscattering, as 
it depends on a small number of experimental facts concerning this process, which are 
enumerated in the text. 

PACS numbers: 13.75.Gx, 13.85.Dz, 11.20.Fm 

I. INTRODUCTION 

Over the last years, considerable technical progress has 
been achieved in phase shift analysis. As a result, one is now 
able to produce amplitudes which, in contrast to the fixed 
energy analyses, 1.2 fulfil exactly analyticity constraints in en
ergy, either at fixed momentum transfer3 (t) or along curves 
in thes-tspace.4 More precisely, in the special case of the 1TN 

phase shift analysis based on fixed t analyticity, which is the 
object of this paper, one can claim nowadays that one knows 
to a good approximation a pair offutlctionsA (s,t ), B (s,t ) with 
the following properties. 

(PI) At fixed t, insomeintervalO;;.t;;. - to,A (s,t),B(s,t) 
are real holomorphic in s in the complex s plane cut for 
s;;'(m + f-l)2, u;;.(m + f-l)2 (s,t,u are the Mandelstam variables, 
m = mass of the nucleon, f-l = mass of the pion); 

(P2) at fixed s = So + i£ (or U = Uo + i£), the functions 
A (s,t ), B (s,t ) are holomorphic in t in an ellipse with foci at the 
end points of the physical region and extending to t = 4f-l2; 

(P3) the partial waves projected out of A (s,t ),B (s,t )satis
fy the unitarity constraints; 

(P4) the observables constructed from these amplitudes 
agree with their measured values, within experimental 
errors. 

In practice, one has just a large, but finite, set of holo
morphic functions of s, A, B (s,t) ), for tj in an interval ( - to,O), 
to = 1.5 Ge V2

, and a finite set of holomorphic functions of t, 
A, B (s},t) for s) ;;.(m + f-l)2 [and ui ;;;. (m + f-lfl 

A normal question to ask in the face of this achievement 
is whether the pair of functions satisfying properties (P 1)
(P4) is unique, that is, whether A, B (s,t) represent indeed the 
true amplitudes. 

This question has received much attention in connec
tion with the phase shift analyses at fixed energy, where anal
yticity in s is ignored. The conclusion of these studies was 
negative; it was, namely, shown that there exists a discrete 
and a continuum ambiguity in the determination of the 
phase, even if analyticity in t is taken into account.5

-
12 The 

continuum ambiguity is related to inelastic unitarity; the dis
crete one can appear in both the elastic and inelastic do-

mains. I J A detailed practical investigation of these ambigu
ities has been performed for 1T+ p scattering.b

•
12 Their extent 

increases, (very) roughly speaking, with the energy. 
With few exceptions, 14.15 however, there exist no de

tailed studies concerning the ambiguities of phase shift anal
yses, which include analyticity constraints in the energy. 
The reason for this lies, in the opinion of the author, partly in 
the fact that it is more difficult to formulate a clear and 
relevant mathematical problem related to this question than 
in the fixed-energy case. 

Indeed, consider for simplicity a spin less reaction de
scribed by an amplitude A (s,t) and assume that IA (s,t) I is 
known, at fixed t < 0 along the whole sand U cuts (Sth , 00 ), 

(u th , 00) (including the unphysical region). If one ignores in
formation coming from unitarity, then analyticity in energy, 
at fixed t, cannot determine the phase of the amplitude A (s,t) 
from its modulus. There exists, namely a large ambiguity, 
partly given by products of the type 

n Z -z· 
B(Z,ZI"",Zn) = IT " 

'~I I-zzt 
(1.1) 

(Sth - S)112 - (uth - U)112 
Z = -------....:.:~--

(Sth - s)1I2 + (uth - U)1I2 • 
(1.2) 

Each factor in (1.1) has unit modulus along the cuts and 
carries a zero in the cut s plane at the image of z, through the 
inverse of (1.2). Even if one invokes vague arguments to fix 
the number n of such factors, there remains, in principle, a 
large uncertainty concerning the actual values of the param
etersz, in (1.1). 

On the other hand, if one uses unitarity, one concludes 
that the amplitude can be obtained exactly in a sufficiently 
small neighborhood ofthreshold7

,8,lb and therefore that it is 
known in the whole cut s plane by the uniqueness of analytic 
continuation. The value of this argument is limited in prac
tice by the fact that the errors of the data render the continu
ation of the phase to higher energies impossible. So, one 
would like to have a proof of uniqueness (or a study of ambi
guities) which would avoid any steps of analytic 
con tin uation. 
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This requirement is however, too strong, since in order 
to draw conclusions from fixed t dispersion relations, one 
must have information on the amplitude in the unphysical 
region present at t < 0, S;>Sth . One can obtain it by continuing 
IA (s,t ) 12 at fixed energy from its measured values in the phys
ical region to unphysical points by means of 

Ms (t )~ IA (s,t W = A (s,t)A *(s,t *), (1.3) 

which is holomorphic in t in the same domain as the ampli
tude. We shall adopt, then, the rules of game of Ref. 14, 
according to which one takes the modulus of the spinless 
amplitude as being known (with finite errors) in a domain 
D = 14#2> t> - to, s,u;>(m + #)2j, by means of (1.3) and 
tries to avoid in the discussion of uniqueness any steps of 
analytic continuation in energy. We can also modify slightly 
this assumption 15 in that we can replace the modulus of the 
amplitude on the unphysical part of the cut, for t < 0, by its 
imaginary part, as extrapolated from a supposedly unique 
phase shift analysis on some interval (m + #)2 < s < So' The 
larger analyticity domain of the imaginary part makes the 
extrapolation in the angle practically more reliable. 

Studies of ambiguities at fixed energy show that the 
constraining power ofunitarity for the phase decreases with 
increasing energy. To get a manageable problem for a large 
range of energies, it appears natural to ignore the exact ex
pression ofunitarity, except for its simple consequence, valid 
at all energies: the positivity of the imaginary part of the 
partial waves. 

Further, in 1rN scattering, there exist many high preci
sion data not only on the 1r ± P elastic processes, but also on 
the charge exchange one 1r-p_1r°n. The amplitudes for the 
latter processes can be related linearly to those of the elastic 
ones if we assume invariance of the Tmatrix elements under 
rotations in isospin space. For our purpose it is relevant that 
this linear relation turns out to produce non-negligible con
straints on the phase of the amplitudes, if data on all three 
reactions are taken into account. In fact, we take in Sec. III 
as a first-order problem that of describing the ambiguities 
allowed by fixed t analyticity and isospin invariance, with a 
constraint derived from fixed s analyticity. We show in Sees. 
IV and V that, under some smoothness assumptions con
cerning the phase, all the solutions of this problem can be 
found. We then use the positivity property of the partial 
waves, experimental information, and some assumptions, 
which seem acceptable, to show that the remaining ambigu
ity is actually nonexistent for all t in some neighborhood 
( - a,a) of t = 0, a,a > 0. 

So, we achieve "uniqueness", and the next question 
concerns the stability against errors of the method which is 
required, according to this study, for the construction of am
plitudes from data (differential cross sections, polarizations, 
and their extensions at fixed s; see Sec. II). In Secs. IV-VII 
we show that the determination of the amplitudes is equiv
alent (under the assumptions to which we referred above) to 
the construction of a meromorphic function in some un
bounded domain (the ratio of two polynomially bounded ho
lomorphic functions) from its values (modulus and phase) 
along the boundary. 

This process might still appear to be unstable against 
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small errors, unless one can control the number of zeros and 
poles of the meromorphic functions to be determined. We 
shall show, however, in Sec. VIII that a (slight) strengthen
ing of the assumptions we needed to establish uniqueness 
allows us also to settle the question of stability. This is dis
cussed in detail in Sec. VIII. 

To give an idea of the assumptions and experimental 
facts that are involved, we shall next explain roughly the 
argument for uniqueness in the simple (and artificial) case of 
a spinless amplitude a(s,1 ) with normal thresholds in the s 
and u channels. We assume a(s,t) satisfies (twice-subtracted) 
dispersion relations in some interval - to < I < t l' lo,t. > ° 
and wish to reconstruct it from knowledge of 

la(v,t)1 f(v,t), 

la-(v,t )I=!a(v,t) - a( - v,t)1 fo(v,t), 

(1.4) 

(1.5) 

where v = s - u. Equations (1.4) and (1.5) hold on the cuts 
Ivl ;> vth , for - to < t .;; t •. Equation (1.5) represents the 
isospin relation: for v ;> Vth we know the modulus of a linear 
combination ofthe amplitudes a( v,t r, a( - v,t ) (for thes and u 
channel processes). Clearly, in (1.5),/o(v,t) = fo{ - v,t). At 
each v ;> Vth and t, the functionfo(v,t) is restricted by the 
inequalities 

If(v,t) - f( - v,t)1 <fo(v,t) <f(v,t) + f( - v,t),(1:6) 

i.e''/o(v,t ),/(v,t ),/( - v,t) should make up an "isospin trian
gle." We further assume that the combination a+(v,t) 
= a(v,t) + a( - v,t) has positivity properties in ° < t < t l' 

and we shall confine ourselves to the construction of a in this 
interval of t values. 

We proceed as follows. From (1.4) and (1.5), we con
struct along the cuts 

la+(v,t W = 2(/2(V,I) + 12( - v,t)) - f~(V,t). (1.7) 

We can then determine the ratioR (v,t) = a-(v,t )la+(V,t )at 
each vand t up to a twofold ambiguity. Indeed, dividing (1.5) 
by (1.4) and squaring, we find 

Re a(v,t) =.!. p(v,t) + P( - v,t) - f~(V,t) (1.8) 
a( - v,t ) 2 12( - v,t ) 

and thus wecan determine Im(a(v,t )la( - v,t )) from (1.5) and 
(1.8) up to a sign ambiguity. A simple calculation shows that 
this ambiguity is precisely that of the area of the isospin 
triangle constructed from/o(v,t ),/(v,t ),/( - V,I). The area of 
this triangle is a holomorphic function of I at fixed s, in the 
same domain as the amplitude. Consequently, its orientation 
is known by analyticity, once it is known at some I value. At 
t = 0, however, the optical theorem (assumed to be valid for 
this artificial example) 

Ima(v,O)-uto, (v) (1.9) 

allows one to fix the amplitude completely, 14 in conjunction 
with (1.4), and in particular the sign of the isospin triangle. 
Consequently, we can assume we know a(V,t )la( - v,t) and 
thus R (v,t) = a-(v,t )/a+(v,l) at all points of the domain 
D = I - to';; t .;; t.,lvl ;> Vth J. The poles of R (v,t) coincide 
with the zeros ofa +(v,t )unlessa-(v,t ) happens to have a zero 
at the same place. Unless such coincident zeros occur, we 
can determine a+(v,l) completely from knowledge of the 
poles of R (v,l). 
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Indeed, the supposed positivity of the imaginary part of 
a+(v,t) in tl ;;;. t ;;;. 0 implies that the latter has only a finite 
number of zeros ( ",;;; 2) in the complex v plane l4 and that it is 
representable as 

a+(V,t) = B +(v,t)E +(v,t), (1.10) 

where B + (V,t ) is a function of the form (1.1) carrying the 
zeros of a + (V,t ) and E + (V,t ) is a function having no zeros in 
the cut v plane and the modulus of a + on the cuts. 17 If we 
know a + (V,t ), the other amplitudes can be obtained 
algebraically. 

We conclude that the construction of a( v,t ) is equivalent 
to the determination of R (v,t ) from its boundary values, pro
vided we can show that no common zeros of a + , a - occur. It 
is possible to show that this occurence is forbidden if the 
following (virtual) "experimental facts" are verified: 

(ft) There exists a domain DI = ! vth ",;;; V ",;;; VI' - t3 
",;;; t",;;; t2 J so that, for no point (v,t) in DI dof(v,t ),f( - v,t), 

fo(v,t) vanish simultaneously; 
(f'l) there exists a constant c, so that Ima+(v,O) > CV, for 

v;;;. VI (i.e., Utot(V) + Utot ( - v) > c,v;;;'vI); 
(f3) the amplitude a(v,O) has no symmetrical zeros in the 

v plane and if it it true that 
(a1) the amplitude a(v,t) is continuous in v and t at all 

points of the region D. 
We shall only sketch the reason for this, since the proofs 

are done for the rr N case, from similar facts and assumptions, 
in the body of the paper. From (f3), one sees that 
a+(v,O),a-(v,O) do not have common zeros. So, if there exist 
any such zeros in the interval 0 ",;;; t ",;;; t I' they must disappear 
throught the cut or move to infinity, as t-+O. However, from 
(f'l) and the positivity of a+, it is possible to show (see Sec. VI) 
that a+(v,t) cannot vanish for Ivl sufficiently large in the 
complex plane. So, the latter possibility is discarded. But, for 
Ivl ;;;. vl,t;;;. 0, Ima+(v,O) ;;;. cv > 0 and so a+ cannot van
ish. For v",;;; VI' we can show that (a1) implies (see Sec. VI) 
that if two coincident zeros reach the cut, then the isospin 
triangle vanishes at that point. This is in turn forbidden by 
(ft). 

SothepolesofR (v,t ) determineallthe zeros ofa+(v,t lin 
0",;;; t",;;; tl andthusa+(v,t)canbeconstructedfromEq. (1.10) 
Let us notice that, since in this simple case the number of 
zeros of a+(v,t) cannot be larger than two, no stability prob
lem occurs in the determination of R (v,t) from its boundary 
values (see Sec. VIII). 

The problem of rrN scattering is more complicated than 
this example. There are two amplitudes to be determined 
and the extrapolated modulus of the relevant amplitudes 
does not coincide with the modulus of the extrapolated am
plitudes. Further, positivity is known to occur on both sand 
u cuts for one special combination of amplitudes only. 

However, it seems to the author that the same conclu
sions can be drawn as for this simplified example, with some 
supplementary assumptions. In Sec. II we introduce the nec
essary definitions and state the correct mathematical prob
lem for rrN scattering. The assumptions and experimental 
facts [analogous to (al) and (ft)-(f3)] that are needed to 
achieve uniqueness will be introduced in the course of the 
paper and are listed again in the conclusions (Sec. X). 
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II. NOTATIONS AND STATEMENT OF THE PROBLEM 
(a). The notation used in the following coincides with 

that of Ref. 18. 
Consider pion nucleon elastic scattering. Let 

p,pl,Ua(p),Up(pl) be the momenta and Dirac spinors for the 
initial and final states of the nucleon and q,q' be the initial 
and final pion momenta: p + q = pi + ql. The T matrix ele
ment between these states can be expressed in terms of two 
complex amplitudes: A (s,t ),B (s,t ): 

TaP ( p, p') = up( p') (A (s,t) + (q + ql)" 1'" B (s,t ))Ua (p.), 
2 

s=(p+q)2,t=(p'-pf (2.1) 

If exact isospin symmetry holds, the amplitudes for the 
charge-exchange process are expressed in terms of those for 
elastic scattering by 

Ao(s,t) = 2- 1I2 [A+(s,t) -A_(s,t)], (2.2) 

and similarly for Bo(s,t). The indices +, - ,0 stand for rr+ p 
elastic, rr-p elastic, and charge-exchange scattering, respec
tively. It is useful to define 

vB 
C(s,t) =A + 2' 

1 - t/4m 
(2.3) 

with v = (s - u)/4m. 
We need the following analyticity properties of A (s,t), 

B (s,t ):foralltin It I < 41l2,A (s,t), vB (s,t )areholomorphicin 
the s plane cut from s = (m + 1l)2 to the right and 
U = (m + Ilf to the left, apart from a pole at U = m 2 in 
vB (s,t ) (the nucleon pole), and satisfy twice-subtracted dis
persion relations. Further, for each s ;;;. (m + 1l)2 above the 
cut, the amplitUdes are hoi om orphic in an ellipse (which we 
call the small Lehmann-Martin ellipse), with foci at 
Z, = ± 1 and large semi axes extending to 
Zmax = (1 + 1l2/q~)1/2 with 

q~ = [s - (m -Ilf] [s - (m + Ilf]!4s, Z, = 1 + t /2q;. 
(2.4) 

The amplitUdes of Ref. 3 are even analytic in an ellipse ex
tending to Zmax = 1 + 21l2/q;. 

This is also true for U ;;;. (m + 1l)2 above the cut. 
A ± ,B ± are related by crossing: 

A+( - v,t) = A_(v,t), B+( - v,t) = - B_(v,t). (2.5) 

These properties can be deduced, as is well known, from field 
theory (Refs. 16 and 19-21). Thus, if analyticity, crossing, 
and isospin symmetry are taken into account, rrN elastic and 
charge-exchange scattering is completely described by two 
complex functions, which we can choose to be 
A+(s,t ),B+(s,t). 

(b). Information aboutA+,B+ comes from measure
ments of the differential cross sections (du/dfl) ± ,0 and po
larizations P + .0 • We regard these as "the data" and ignore 
(until Sec. VII) any information coming from the few spin 
rotation measurements. The relation of observables to am
plitudes is most easily expressed by means of the functions 
h ± ,g + of Ref. 3, defined by 

hJc = (4m 2 
- tl l12C ± 

+ [t((m2-1l2f-su)]1/2/(4m2-t)1/2B±, (2.6a) 
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g± =(4m2-t) 1/2C:± 
- [t((m 2 _,u2)2_SU)]1/2/(4m2 _t)1!2B+. (2.6b) 

The square root in (2.6) is defined so that, for t < 0, it has a 
cut for Ivl > v(t), where 

~(t) = ((,u2 - t 14)( 1 - t 14m2))1!2, (2.7) 

and is positive for Ivl < ~(t). The physical region (in which 
measurements can be performed) extends for I vi ;;. ~(t), at 
t < 0. Th.: relation of h :±- ,g ± to the data is given3 for t < ° 
and v ;;. v(t) by 

Ih ± (v,t W = 64rs (1 + P ± )du ± Idfl, 

I g ± (v,t W = 641T2s(1 - P ± )du ± Idfl. 

(2.8a) 

(2.8b) 

Because of Eq. (2.5) it is true that 

h ± ( - v,t) = g,+ (v,t). (2.9a) 

Therefore, for t < 0, we can take h ± (v,t) as the two ampli
tudes to be determined and define 

Ih + (v,t)1 =!+(v,t), 

IL(v,t)1 =!_(v,t), 

(2.lOa) 

(2.lOb) 

for all v, with Ivl ;;. ~(t). The function!+.f_ are known by 
(2.8). We define, further 

ho(v,t) = h +(v,t) - h _(v,t), (2.11a) 

go(v,t) = g +(v,t) - g _(v,t). (2.11b) 

It follows that 

hot - v,t) = - go(v,t). (2.12) 

It is also true that 

Iho(v,tW= 128rs(1 +Po)duo/dfl f~(v,t), (2.13a) 

Iho( - v,tW = 128rs(1 - Po)duo/dfl f~( - v,t), 
(2.13b) 

v;;. v(t). We assume that data are available for all v ;;. v(t), 
and for all t in an interval ° ;;.t;;. - to, for some to' 

(c). We next discuss the information that can be ob
tained on the unphysical part of the cut, for t < 0, by ex
trapolation at fixed energy from the data available in the 
physical region. 

The definition we chose in the previous paragraph for 
the root in Eq. (2.6), namely with cuts in s, whose location 
depends on t, is awkward for extrapolation at fixed s to com
plex or unphysical t values. We choose another definition for 
real s > (m + ,u)2, by letting the cut lie across the physical 
region IZs I < 1 and the root be negative imaginary above it. 
[We can extend by continuity this definition of the root to 
other real (and complex s), by letting a cut run in the t plane 
between t = ° and t = (2s(m 2 + ,u2) - S2 - (m 2 - ,u2)2)/s. 
The surfaces of discontinuity of the root in Eq. (2.6) that are 
thus obtained do not coincide with those one gets by unifor
mizing the two-sheeted function of s at each point in the 
complex t plane. Hence the different notations h vs Ii.] With 
this new choice for the root, we define functions 
Ii ± .0 (s,t ),g ± .0 (s,t ) by the same formulas as hand gin (2.6). 
These functions have two sheets in t at each fixed s and have 
the property that, for t in the physical region of the s channel, 

Ii ± (s,t + iO) = h ± (v + iO,t) = g ± (s,t - iO), (2. 14a) 

i ± (s,t + iO) = g ± (v + iO,t) = Ii ± (s,t - iO), (2. 14a) 
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For t < ° and s in the unphysical region, V th (t) < v < ~(t), 
one gets 

Ii ± (s,t) = h ± (v,t), 

i ± (s,t) = g ± (v,t). 

(2.15a) 

(2.15b) 

Apart from the cut, for IZs I < 1 ,Ii ± .oi ±.o are holomorphic 
in the Martin ellipse. The two-sheeted Z, plane can be uni
formized by means of the variable 

w, = Zs + (Z; - 1)1/2 (2.16) 

so that the upper and lower lips of the cut on the first sheet 
come onto the upper and lower halves of the unit circle in the 
w, plane. We call U +(w,) the unique function representing 
Ii +.i + in the w s plane. The sheets I and II are indexed so that 
U+(tt! = Ii +. U+(t ll ) =g+. From (2.10) and (2.14) we 
know the modulus of U + (w,l for Iw, I = 1 

1U+(w,W = U+(w,)U*.- (ws) = U+(w,)U*.- (~~) 

= {lh+12, 0< argw, < 1T (2.17) 
Ig+12, 1T < argw, < 21T' 

The function U(ws) is holomorphic in a ring: 

lIr, < IWsl <'so's =,ulq, + (1 +,u2/q;)1/2, (2.18) 

which is the image of the small Martin ellipse lying on the 
two sheets of the Zs plane. Clearly, U*.- (lIw:) is holomor
phic in the same domain, so that (2.17) can be extended ana
lytically to lI,s < I Ws I <'so We are interested in the points 
with w, real, outside the physical region. We do not obtain 
by analytic continuation of I U +(wsW the modulus of the 
amplitude at these points, but rather the complex values 
K +(v,t) of the combination (for Iw, I > 1): 

K+(v,t)=K+(s,w,) = U+(ws)U*.- ( ~s) 
= Ii+(s,z,li*.- (s,Z,) = h+(v,t )g*.- (v,t). (2.19) 

Equation (2.19) follows from the fact that the points w,' and 
lIw, on the real axis correspond, by (2.16), to the same value 
of ZS' IZ, I > 1, but on different sheets of(2.16). If we had 
chosen Ws < 1 in (2.19), we would have obtained K *.- (v.,t). 

We conclude that in the unphysical region of the cuts at 
t < O,,u + t 14m < v< v(t), we have the following informa
tion concerning h + ,h _ : 

h+(v,t)g*,- (v,t) = h+(v,t)h ~ ( - v,t) = K+(v,t), 
(2.20a) 

h_(v,t)g~ (v,t) = h_(v,t)h *.- (- v,t) =K_(v,t), 

(2.20b) 

ho(v,t )gt(v,t) = - ho(v,t)h t( - v,t) = Ko(v,t), (2.21) 

where use has been made ofthe crossing relations (2.9) and 
(2.12). Using the isospin relation (2.11) we can write (2.21) as 

h+(v,t)h *.- ( - v,t) + h_(v,t)h ~ ( - v,t) 

= K _(v,t) + K +(v,t) - Ko(v,t )-K (v,t). (2.22) 

Equations (2.20) and (2.22) represent the information on 
h+(v,t ),h_(v,t) on the unphysical part of the cut, for t < 0. 

(d). Following Ref. 14 and the discussion of the Intro
duction, we now formulate the problem of phase shift analy-
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sis for 0 < t < 4/.1,z. 
Clearly, information on the amplitude in this interval is 

obtained by extrapolating the moduli of h ± .o,g ± .0' known 
in the physical region [Eq. (2.10-(2.13)]. We define 
h (v,t ),g(v,t )fort;;. Oby the same formula (2.6) where we now 
choose the cut of the square root to lie along I vi < v(t) and be 
negative for v ;;. v(t). This is not what one would obtain by 
continuing the definition for t < 0, through a circuit of com
plex t values around the origin but has the merit that it re
spects Eq. (2.15). (We do not introduce new symbols for h,g 
in t > 0). With this new choice of the cut, the crossing rela
tions read 

h+( - v,t) = L(v,t), (2.23a) 

g+( - v,t) =g_(v,t). (2.23b) 
We call H (v,t ) the two-sheeted function which is equal 

toh +(v,t Jon the first sheet of the v plane and tog +(v,t) on the 
second sheet. Clearly, apart from the cut along 
( - v(t), v(t )),H (v,t) has cuts on both sheets, running at 
Ivl ;;. fl, + t 14m. By extrapolating as in the preceding para
graph the moduli of h ± .o,g ± .0' we conclude that our knowl
edge of the functionH (v,t) for v ;;. fl, + t 14m above the cut is 
summarized by 

h+(v,t )g~ (v,t) = H (vpt)H *(vlI ,t) 

=K+ (v,t), 

L(v,t)g*- (v,t) =H( -vl,t)H*( -vll,t) 

=K_ (v,t), 

ho(v,t )g~(v,t) = Ko(v,t). 

By using (2.11) we reformulate (2.25) as 

L(v,t )g~ (v,t) + h+(v,t )g*- (v,t) 

=H( - vl,t )H*(vll,t) + H(vl,t)H*( - vll,t) 

= K+(v,t) + K_(v,t) -Ko(v,t) 

(2.24a) 

(2.24b) 

(2.25) 

= K(v,t). (2.26) 

Equations (2.24) and (2.26) summarize our knowledge about 
H(v,t) for t;;. O. 

(e). Independent information on the amplitude at t = 0 
comes from measurements of atot (1T ± pI, by the optical 
theorem 

ImC ± (s) = (qssJ/2/m)atot(1T±p). (2.27) 

We assume atot is known at all energies. As a consequence, it 
can be shown that, if (2.10) is used at t = 0, C ± (v,t = 0) is a 
known complex function of v. A proof of this is given in Ref. 
14, Sec. 4. 

(f). We are now in a position to state the first-order prob
lem mentioned in the Introduction, concerning the ambigu
ities allowed by fixed t analyticity and the isospin constraint. 
The statement of the problem is different, according to 
whether t > 0 or t < O. 

Problem I. t > 0; determine all functions H (v,t), holo
morphic in the two-sheeted v plane [cut along - v(t ),v(t I], 
except for cuts extending on the two sheets for 
I vi ;;. fl, + t 14m, and poles at u = m2 on both sheets, polyno
mially bounded as Ivl-oo (on both sheets), and satisfying 
Eqs. (2.24) and (2.26) for v > fl, + t 14m. 

Problem II. t < 0; determine all pairs of functions 
(h+(v,t ),h _(v,t)), holomorphic in the v plane cut for 
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Ivl ;;. fl, + t 14m, withapoleatu = m2,polynomiallybound
ed as Ivl-oo, and which satisfy Eqs. (2.10) and (2.13) for 
Ivl ;;. v(t) and Eqs. (2.20) and (2.22) for fl, + t 14m < Ivl <v(t). 

In formulating these problems, we have ignored the 
constraint of fixed s analyticity. In Sec. III, we show how we 
can take it partly into account, by altering slightly the for
mulation of (I) and (II). 

(g). Before proceeding to the solutions of these prob
lems, we make an assumption right now, which will be con
stantly used in the following 

(A 1): the amplitudes A + (s,t ),B + (s,t ) describing the scat
tering are continuous functions of both variables s,t in the 
region D = ! 4fl,2 > t > - tn,s,u ;;. (m + fl,)2l (this is the re
gion in which we assume information on the amplitudes is 
available). Further, we assume there exist constants K,N, so 
that ImIA+(s,t)l,ImIB+(s,t)! < KlsIN,fors,tinD. 

Clearly, this assumption cannot be tested experimental
ly. One can only state that phase-shift analysis would not be 
practically feasible if continuity in sand t were not assumed 
for the observables, since the latter must currently be dis
placed by small amounts in energy and angle to form bins, on 
which statistical averages can be performed. This assump
tion does not imply (AI) but makes it reasonable. 

As a first consequence of (A 1), the functions K 1. .0,K in 
Eqs. (2.20)-(2.22) are continuous functions ofv and t, defined 
on fl, + t 14m < v < v(t), - to < t < O. Also, the functions 
K ± .0 ,K in (2.24)-(2.26) are continuous in both v and ton 
their domain of definition. 

III. THE ISOSPIN MAP 

It is well known that the isospin constraint (2.11) im
poses restrictions on the possible values of 
(daldfl) + o,P + 0 at fixed energy and angle. These are usu
ally22-24 express~d by the requirement that the square of the 
areas of the triangles constructed with 
(1 + P)(daldfl) + ,0,(1 - P)(daldfl) ± ,0 be positive for all 
v,t. With the notation of (2.10) and (2.13), this constraint on 
the area can be expressed for all v real, I vi ;;. v(t ),t < 0 by 

16 P2(V,t )=4 j2+ (v,t )j2_ (v,t) 

_ (f~(v,t) - j2+ (v,t) - j2_ (v,t ))2;;. O. (3.1) 

The function F(v,t) is the area of the triangle construct
ed with (1 + P)duldfl for v;;. v(t), and the area of the trian
gle constructed with (1 - P )daldfl for v< - v(t). 

Equivalently, we may consider the same function at 
fixed s, using Eq. (2.14): 

F(s,t) = ~ 1m (h+h*-) = !lh+ilh_lsin th,h 
= (1/4i)(h+(s,t)h*- (s,t) - L(s,t)h~ (s,t)), (3.2) 

where eh h is the angle between the complex numbers 
h +,Ii _. F~om the analyticity properties of h (s,t ) at fixed s, we 
see that F (s,t ) can be extended analytically to the small Leh
mann ellipse, with a square root cut for IZ, I < 1. The con
tinuation of F(s,t) through the cut is obtained by replacing h 
by g in (3.2) and is again analytically extendable to the Leh
mann-Martin ellipse. Using the variable W s ' Eq. (2.14), we 
can write for all w, in a ring 1/r, < Iw, I < rs with r, given 
by (2.16): 
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F(s,ws) = (1/4i)[U+(s,ws)U~ (s,1/w~) 

- U_(s,ws)U~ (s,1/w~)], (3.3) 

where U (s,ws ) is the function introduced in (2.15). Notice 
F(s,ws) is real along IWsl = 1. 

Clearly, the values of F(s,ws) are known along Iws I = I 
from the measured quantitiesf+,f_,fo up to a sign, by Eq. 
(3.1) [recall Eq. (2.14)]. Further, ifthe sign of F(s,ws) is 
known along some angular interval 0 1 ..; argws ..; O2, it is 
known everywhere on I Ws I = 1 by analytic continuation. We 
point out that the determination ofF (s,ws from its values on 
the interval (01,02) is not a problem of numerical analytic 
continuation, but one of finding the unique function that is 
holomorphic in the ring 1/rs < I Ws I < rs in the finite set of 
functions obtained by assigning signs in all possible ways to 
IF(s,ws)1 outside the interval (01,02), [Since F(s,ws) is holo
morphicin1/rs < IWsl < rs,itcanchangesignonlyafinite 
number of times, at fixeds.] This selection can be easily done 
in practice (if data are available on the whole circle I Ws I = 1) 
and we show an example of this in Sec. IX. 

So, we can assume that at eachs > (m + f-lf (or at least 
where data exist over the whole angular range), we know 
F(s,ws) up to an overall sign ambiguity. But, according to 
(AI), F(s,ws) is a continuous function ofs, so that its sign 
cannot change arbitrarily as we move in s, for Iws I = 1. 

In fact, maps of the lines where F(s,wsl = 0 have been 
drawn for a long time25 in connection with the saturation of 
the isospin bounds. Their up-to-date shape can be found in 
Ref. 18. From these maps, we can take the following to be 
true. 

(FO'). There is no energy, so that the isospin triangles are 
simultaneously degenerate (with zero area), along the whole 
angular interval. Because of (FO'), we can determine the sign 
of F (s,w,) by analyticity at fixed s, at all points where the 
whole angular region is covered by data, from knowledge of 
the sign at just one point. We can choose the latter to lie in 
the forward direction, since C+(v,t = 0) is completely 
known. It is indeed true that: 

(FO"). There exists v I' so that the phase of C + (v I ,t = 0) 
is different (mod 1T) from the phase ofC+( - vl,t = 0). This 
means that there exist energies where the isospin triangle 
constructed from the forward amplitudes is not degenerate. 
We conclude that, with (A 1), (FO'), and (FO"), we can assume 
the function F(s,w,) to be known at all energies, where data 
exist on the whole angular region. It turns out that, at higher 
energies, where data are limited to an interval of low t, one 
can nevertheless fix the sign of the triangles by continuity 
from low s (see the figures of Ref. 18). We shall take it from 
now on as a fact that: 

(FO). The function F(s,ws) is known over the whole do
mains;;;. (m + f-lf,4f-l2 > t;;;. - to. We now alter slightly the 
formulations of Problems I and II in that we ask only for that 
subset of their solutions for which the area F(v,t) is also giv
en. More precisely, this means that, for problem I, the solu
tions should satisfy 

(1/4i) [H(vi ,t )H*( - VII ,t) - H( - VI ,t )H*(vlI ,t)] 

=F(v,t) = F(s,ws ), (3.4) 

[where we have used the crossing relations (2.23)]. 
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For Problem II, knowledge of F(s,ws) means knowl
edge of the combination 

(1/4i)[h+(v,l)h ~ (- v,l) - h_(v,t)h_ *( - v,I)] 

=F(v,t) =F(s,ws)' (3.5) 

forV(t) ;;> Ivl ;;> f-l + t 14m [we have used the crossing relation 
(2.9)], and of 

(1/4i)[h+(v,t)h ~ (- v,t) - h_(v,t)h ~ (v,t)] = F(v,t), 

(3.6) 

for Ivl ;;;. V(I). 
Equations (3.4)-(3.6) are the only way we make use at 

this stage of analyticity in t at fixed s. 

IV. THE INTERVAL 0..; t..; 4f-l2 

We now turn to the explicit solution of Problem I, with 
the restriction (3.4). It is convenient to introduce the unifor
mizing variable 

wt(v) = vlv(t) + (v/-j;2(t) - 1.)1/2, (4.1) 

which maps the two sheeted v plane onto the whole w plane 
in such a way that the upper lip of the cut Ivl ..; v(t) comes 
onto the semicircle IW t I = 1 lying in the upper half-plane. 
The second sheet lies inside the circle. Points that lie at the 
same position on the two sheets of the v plane have their 
images in the relation 

wdv)w lI (v) = 1. (4.2) 

There are two nucleon poles lying at 
- :-2 1/2 

W BI ,2 =vB (t)lv(t)±i(I-v1(t)lv(t)) , (4.3) 

where VB = (2f-l2 - t )14m (lwB 1,21 = 1). 
We wish to determine all functions H (w), holomorphic 

in thew plane cut for Iwl ;;;. w(vth )=wth (vth f-l + t 14m) and 
Iwl ..; 1/wth , with simple poles at w B 1,2' polynomially 
bounded in w, behaving like 1/ w n near w = 0, for some 
n > 0, and obeying for w ;;;. W th (above the cut). 

H(w)H*(1/w) =K+(w), (4.4) 

H( - w)H*( - 1/w) = K_(w), (4.5) 

H( - w)H*(1/w) + H(w)H*( - 1/w) = K(w). (4.6) 

We divide (4.4) and (4.6) by (4.5) and get 

H(w) H*(1/w) = ~+(w), (4.7) 
H(-w)H*(-1/w) K_(w) 

H(w) + H*(1/w) = !(w) , (4.8) 
H( - w) H*( - 1/w) K_(w) 

From Eqs. (4.7) and (4,8) we can determine at each w ;;;. W th 

the values of XI = H(w)IH( - w),xz = H*(1/w)lH *( - 1/w) 
up to a twofold ambiguity (namely the assignment of the 
roots) by solving the equation 

x2K_(w) - xK(w) + K+(w) = 0, (4.9) 

K_ +K+ -Ko ± [(K_ +K _K)2 
2K_ + 0 

(4.10) 

Expressing (3.4) in the variable w, one can check that the 
following identities, inspired by (4.10) and (3.1) hold: 
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2 H~~~/C(CU)-K(CU)=4iF(cu,t), (4.11) 

2 H*(1/cu) K_(w) - K(w) = - 4iF(w,t). (412) 
H*( -1/w) . 

Expressions (4.11) and (4.12) [which we could have written 
without resorting to (4.9) and (4.10)] show that 
r/..cu)=H(w)lH( - w) is fixed for all cu E (O,1/wth )U(Wth ,oo). 
We next define 

S(w) = H(cu) + H( - w) = S(w2
), 

A (w) = H (w) - H ( - w). 

(4.13a) 

(4.13b) 

The ratio A (cu)IS (cu) is known on the cuts at the same time 
with r/..w) = H(w)lH( - wI. 

A (w) = R (cu) = r/..cu) - 1. (4.14) 
S(w) r/..w) + 1 

Clearly, R ( - w) = - R (cu). All the zeros ofS(cu), which do 
not have the same position as the zeros of A (w), are to be 
found among the poles of R (w). We next use Eq. (4.4) to 
determine S (w), 

K+(w) =H(cu)H*(1/w) 

= S(w)S*(1/cu)(1 + R (cu))(l + R *(1/cu)). 

Defining 

K(W 2) = K+(cu) 
(1 + R (cu))(l + R *(1/cu)) 

=K+(cu) +K_(w) +K(cu) 

(4.15) 

(4.16) 

[which we can also obtain by addition of (4.4), (4.5), and 
(4.6)], for cu > wth ' we have reduced the problem to the 
following: 

Find all functions S (cu 2
), real holomorphic in the cu2 

plane cut along (0, 1/ CUth )U(W;h' 00 ) with two simple poles at 
w~ 1.2' polynomially bounded in w2

, behaving like 1/w", 
n > 0, at w 2 = 0 and satisfying for cu 2 > CU~h on the cut 

(4.17) 

We are interested in the subset of solutions S (w 2
) which van

ish at the positions of the poles of R (w). From now on we 
shall make the following assumption 

(A2) The phase if> (v,t) of S (v,t) can be defined at fixed t 
along the cuts, on both sheets of the v plane, by continuity 
from threshold, except for a finite number of points, where it 
has finite discontinuities. The magnitude of the latter is 
uniquely determined by small excursions in the complex v 
plane (we assume no accumulation 01 zeros occurs at points 
of the cut). Moreover, we assume for simplicity that if> (v,t) 
approaches a finite limit if>o(t), as V-oo, in such a way that 
V1 (if> (v,t) - if>o(t ))-0, for some (J > 0, and that it is Holder 
continuous on its intervals of continuity. 

It is easy to see that any solution of (4.17) leads to a 
solution of our problem, provided it has zeros at the poles of 
R (cu). Indeed, from (4. 14) we can then find A (cu)andweknow 
that it is holomorphic in the correct domain. We then con
struct H (w), H ( - w) and verify that all Eqs. (4.4)-(4.6) are 
satisfied. 

It is convenient to move over to the variables 
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(4.18) 

which maps the intervals (O,1/W;h ), (W;h' 00 ) ofthew2 plane 
onto the lines ( - A, - ;th )'(;th,A. ), respectively 
;th =; (CU~h ). In terms of this variable, Eq. (4.17) turns into 

S(;)S *( -;) = K(;),; E (;th,A.). (4.19) 

The behavior of S at ± A should be proportional to 
1/(;-..1.Y,1/(; +..1.)Q,forsomep,q > OandS(;)-constas 
;-00 (the constant could be zero). To simplify the argu
ment, we shall make the assumption that K{; ) has no zeros on 
(;th,A. ). The general case is treated in Appendix A. It follows 
from (A2) that the phase qJ K (; ) of K(; ) in (4.19) is Holder 
continuous on [;th,A. ]. So one can define26 

fl K (;) = exp[J.. f tP~(;') d;'], (4.20) 
1T ~,,,; -; 

with tP K (; ) = qJ K (; ) or qJ K (; ) - 1T, according to whether 
qJ K (;th) = 0 or 17'. We define further 

sg )=S (; )Ifl K (; ),K g )=K(; )I(fl K(; )flK( - ;)). 
(4.21) 

It is clear that, as ;-00, n K (; )-1; at 
; =..1.,flK(;)-(; - A) tfrKlA)hr; argflK (;) = argK(;)(mod 1T) 
for all; E [Sth,A. ]. We conclude K 1(; ) is a real nonvanishing 
continuous function of; on [;th,A. ] and 

SI(;)Sf(-s)=KI(;). (4.22) 

Clearly, Sd;) behaves at A like 1/(; - A y', with 
p' = p - tPK(..1. )117'. From (4.22) and the real analyticity of 
SI(S) we conclude that argS l (;) = argS.( -;)( mod 1T), for 
; E (;th,A. ). Let then S ~ (;) be a solution of (4.22), and let its 
phase on (;th,A. ) be qJ~ (;). We are free to choose qJ~ (;th) = ° 
since, according to (4.22), if S~(;) is a solution, - S~(;) is 
also a solution. We consider then the function 

(4.23) 

This function is even in;, and has the same phase (mod 17') as 
S~(;) on the cuts (;th,A. ),( - A, - ;th)' Consider then 
5;(s )-S~(; )Iflo(;). This function has no cuts, but just the 
zeros of S~ (;) [it follows from (A2) that there are a finite 
number of such zeros 27] and its poles, and possible poles or 
zeros at; = ± ..1.. There cannot be essential singularities at 
these last two points because of the known endpoint behav
ior26 of (4.23) and the boundedness condition at ± A on 
S~(;). 

We conclude. 

(4.24) 

wherep p ql are integers of any sign. Let 
PI - ql = p' - q = m. We see that, if we know the positions 
of the zeros and the number m, we can define 

S2(;) = SI(;) (S' - A rill (; - ;i)' (4.25) 
i-= 1 

and we know that S2(; ) is an even function of;. Then let 
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K2(; )-Kg )(;12 - ; 2)ml fI (n - ; 2). (4.26) 
i= 1 

It is easy to verify that K 2(; ) is positive for; E (;th,A. ). It 
follows that the even function of ;,S2(; ), satisfies 

[S2(; W = K2(; 2), ; 2 E (;:h,A. 2). (4.27) 

Further, it has no zeros in the cut; 2 plane, it has one nucleon 
pole (on the negative real axis) at; 1, and falls off more rapid
ly than (II; )2r at infinity, where' = [(n - m + 1)12], and 
[x] means the greatest integer smaller than x. Such a function 
is easily constructed by a series of mappings, as follows: let 
u = ; 2, u/ = 2.(u - (;1 2 + ; :h )/2)/(..1. 2 + ; ;h) [which brings 
the cut C;;h,A. 2) onto ( - 1,1 I], and finally 
7] = u' - (0'2 - 1)1/2 (which brings the cut onto the unit 
disk, so that infinity comes to the center). In terms of 7], the 
solution to our problem is 

S () 
r 1 - 7]7] B 

27]=7]' 
7] - 7]B 

X exp _ 7] [ Ii" 1- 2 

2rr 0 1 - 27] cos 0 + 7]2 
In K 2(O )dO ], 

(4.28) 

where 7] B = 7] c; 1) and 'I is an integer larger than ,. In 
(4.28) we have applied Poisson's formula. The existence of 
the integral in (4.28) is ensured if [lnlS (7])11 is integrable over 
[0, rr]. The latter follows from (A 1) and the fact that S (v) satis
fies dispersion relations in our interval of t values. 17 Equa
tion (4.28) solves Problem I completely. The zeros of S (w) in 
(4.25) are free parameters and can be chosen to agree with the 
poles of R (w). There could be more zeros, which are then 
coincident with zeros of A (w). Knowledge of R (w) also fur
nishes the minimal possible value of' I in (4.28). Higher val
ues of ' I are possible if S (w),A (w) have common zeros at 
Woo = w(; = (0). We conclude that the ambiguity left in the 
solution of Problem I consists of possible common zeros of 
S (w) and A (w), and in the difference m between the behaviors 
ofS I (; )atAand - A. TheoverallambiguityH(w)_ - H(w) 
can be solved by continuity from the foward direction. 

There is also the problem of the practical construction 
of R (w) from its values on the cut. We turn to this in Secs. 
VIII and IX. 

V. THE INTERVAL t < 0 

We now turn to Problem II, Sec. II, with the restriction 
on the area given by (3.5) and (3.6). We show first that Eqs. 
(2.10), (2.13),(2.20), and (2.22), together with (3.5) and (3.6), 
determine the ratio h+(v)lh_(v) on the cuts Ivl ;;. fl + t 14m. 
Indeed, from (2.10) and (2.13) we get, for Ivl ;;. v(t), 

l(h+(v)lh_(v)) - W = (f~(V,t)lf2_ (v,t)). (5.1) 

Using (2.10) again, we get from (5.1) 

Re (h+(v)lh_(v)) = !((f2+ + f2_ - f~)lf2_ . (5.2) 

Further, using (3.6), 

1m (h+(v)lh_(v)) = 1m (h+(v)h *- (v))/lh_12 = (F(v,t )lf2_ ), 
(5.3) 

which shows that h+(v)lh_(v) is completely known for 
Ivl ;;. ~t). For the interval ~t) ;;. Ivl ;;. fl + t 14m, we follow 
Sec. IV and construct 
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2 h+(v,t) K_(v) - K(v) = 4iF(v,t), 
h_(v,t) 

(5.4) 

h * (- v,t) -
2 - K_(v) -K(v) = - 4iF(v,t), (5.5) 

h*+- (-v,t) 

where we have used Eqs. (2.20), (2.22), and (3.5). So Eqs. 
(5.2)-(5.5) fix h+lh_ on the whole cut Ivl ;;. fl + t 14m. 

It is convenient for the following to move over to 
h + = h+(v,t) + h_(v,t ),h -(v,t) = h+(v,t) - h_(v,t) = h 0; 
notice, h + ,h - do not have any symmetry in vat fixed t. 
According to the above,R(v,t ) = h -(v,t)lh +(v,t ) is known 
for Ivl ;;. vth • From (2.10) and (2.13), we get, for Ivl ;;. V(l), 

Ih + 12 = 2F+ (v,l) + 2f2_ (v,l) - f~(v,t) f+2(V,l). 
(5.6a) 

and from (2.20) and (2.21), for Vth .;;; Ivl .;;; V(l), 

h +(v,t)h +*( - v,t) = 2 K +(v,t) + 2K _(v,l) 

- Ko(v,t )=K +(v,t ).(5.6b) 

Equations (5.6) represent our knowledge about h +(v,l) on 
Vth .;;; Ivl. The zeros of h + are determined from the poles of 
R(v,t), in so far as h +(v,t ),h -(v,t) do not have common 
zeros: any solution of(5.6) with the correct zeros leads then 
to a solution of Problem II. 

To simplify the treatment, from now on we make the 
assumption (A2/): The phase of h + (v,t ) has the same proper
ties as the phase of S(v,t) in (A2), on both cuts Ivl ;;. v th • 

It follows then from the polynomial boundedness of 
h +(v,t) and from (A2/) that h +(v,t) has only a finite number 
of zeros VI ,V2, ... ,Vn in the interior of the v planeY 

To find all solutions h +(v,t) of (5.6), we define 

E +(v) = exp [-I-i" 1 - S2(V) 
2rr 0 1 - 2S (v) cosO + S 2(V) 

X In Ih +(0 WdO ], (5.7) 

where S (v) is the mapping of the v plane cut for I vi ;;. v(t ) 
onto the unit disk, in such a way that the points ± 00 come 
to ± i, respectively. We also define 

B+(v)= I-SBS IT S(v)-S(vj ) , (5.8) 
S - SB ;= I 1- S(v)S*(v;) 

with SB = S (VB)' Then let 

h +(v) = h +(v)l(B +(v)E +(v)). (5.9) 

The function h +(v) has no zeros in the v plane, cut for 
Ivl;;' vth,andmodulusoneforlvl;;. v(t).Wecanthendefine 
[possibly changing the sign of h + (v)] 

L'+(v) = Inh+(v) (5.10) 

which is real analytic in v, in the v plane cut for Ivl ;;. v th , 

satisfies 

L'+() L'+*( ) I K+(v) 
V + -v = n B+(v)B+(-v)E+(v)E+(-v) 

==XI (v) (5.11) 

forvth .;;; Ivl .;;; V, is purely imaginary for Ivl ;;. ~t ) and, from 
(A2/), is bounded by a constant in the whole v plane. [The 
discontinuity of the phase of K + is positive if it occurs at a 
point where h + (v) has a zero and is negative at a point where 
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h +( - v) = 0.] We define further 

L +(v) = L + (v)/(v - V)1/2, (5.12) 

with the root cut for Ivl ;;;. v and positive for Ivl.;;;;v. 

The function L + (v) goes to zero as v- co, and satisfies on 
V th .;;; Ivl .;;; V(t) a condition similar to (5.11) for f +(v), with 
KI(v) replaced by K,(v) K,(v)/(V 2 - v)'/z. Now let 

(5.13) 

and define 

L +(v) = L +(v) - J+(v). (5.14) 

The existence of the integral in (5.13) is guaranteed by (A2'). 
Sincel +(v)isrealforv.;;;; J.l + t 14m, we conclude thatL +(v) 
satisfies for J.l + t 14m.;;;; Ivl .;;;; V(t) the equation 

i +(v) + i H( - v) = K 2(v)=K,(v) - 1m I +(v),(5.15) 

where K2(V) is a real function. We conclude from (5.15) that 
lmi +(v) = lmi +( - v). Let then i 0+ (v) be a solution of 
(5.15) and let L t (v) be the function defined by 

- 21v lmi 0+ (v')v'dv' 
Lt(v)= -

1T V,h V,2 - V 
(5.16) 

Consider.ilL (v)=L 0+ - Lt. This function has no cuts, 
goes to zero at infinity, and has no singularities in the whole 
complex plane. So,.ilL (v)==O and it follows that L 0+ (v) is an 
even function ofv. Using the variable 77 = v, we then reduce 
our problem to that of finding a holomorphic function of 77 in 
the 77 plane cut along ((.u + t 14m)2,V(t)) and having a given 
real part K2(V)/2 along this cut. The solution of this problem 
is easily obtained by 

L +(77) = (l/1T)[(77 - (.u + t 14m)2)(77 - V(t ))]1/2 

X LVI') K 2(77')d77' 
iJt +, 14m)' (77' -77)[ (77' -( J.l +t 14mf)(77' - V(t)) ]112 • 

(5.17) 

In this way, we have completely solved Problem II. We 
see that, analogously to Problem I, the ambiguity of the solu
tion is that of common zeros of h + and h -. There is no 
ambiguity concerning the behavior at infinity [L + (77) defined 
by Eq. (5.17) will not, in general, vanish for 77-co unless 
K 2(77') satisfies a sum rule. A non vanishing i + leads to a 
phase which increases indefinitely as v-co .]; the overall 
sign of the solution is fixed by continuity from t = O. The 
practical question still to be solved is the one of finding the 
zeros and poles of h - (v)1 h + (v) from its values along the cut. 
We discuss this in Sec. VIII and IX. 

One could wonder whether a qualitative change ap
pears if, instead of assuming the combinations (2.20) and 
(2.22) to be given on the unphysical part of the cut, for t < 0, 
one were to take as input the imaginary part obtained from 
the presumably unique 1TN phase shift analysis at fixed low 
energies. This question is treated in Appendix B. The conclu
sion is that this problem always has at most one solution, but 
its construction requires unstable steps of analytic continua
tion in energy at fixed t, unless the two amplitudes 
h+(v,t ),h_(v,t) have no common zeros in the complex v 
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plane. So there is no practically significant change from the 
solution of Problem II. It might be surprising, however, that 
the COO ambiguity, which is usual in this type of problem, 
disappears because of the isospin constraint. 

VI. REMOVAL OF AMBIGUITIES FOR t> 0 
In this section we wish to show that, if we use some 

experimental facts concerning 1TN scattering amplitudes to
gether with some plausible assumptions, we can remove 
completely the ambiguities left in the determination of 
S (v),A (v) in some interval (O,a), a > 0, of t values. 

We shall take the following facts to be experimentally 
established. 

(F 1) There exists no point (s,t ) in the physical region, 
restricted to t > - to,to > 0, where any of the isospin trian
gles collapses to a point. To be sure, there are many points 
where their area vanishes, but none where all sides of one of 
them simultaneously vanish. 

(F2) There exists a constant Ca and an energy Sa so that, 
fors > sa,atot (1T+p) + a tot (1T-p) > ca; in fact, Sa can betak
en arbitrarily close to threshold, provided Ca is sufficiently 
small. 

(F3) The forward amplitude of elastic scattering 
C+(v,t = 0) [see Eq. (2.3)] has no symmetrical zeros, i.e., 
there exists no v in the complex plane, so that 
C+(v,t = 0) = C+( - v,t = 0) = O. 

Notice the analogy of(Fl-3) to (fl-3) in the Introduc
tion. Apart form (AI) and (A2), we shall make the 
assumption 

(A3) There exist constants c,vo and an interval 
I, = ( - a' ,a') of t values such that for tEl, and v ;;;. V o, 

(6.1) 

This inequality is verified, for t " 0, by spin rotation 
measurements and the value of the constant is small for large 
enough v (see Sec. IX). Its validity for t > 0 can in principle 
be checked by analytic continuation in angle at fixed energy. 

Before proceeding to the discussion of ambiguities, we 
recall that, as a consequence ofpositivity,2o,21 

(a) the combination 

D +(s,t) = A +(s,t) + vB +(s,t) (6.2) 
has, at fixed s, a monotonically increasing imaginary part in 
o .;;;; t .;;;; 4J.l2; 

(b) the amplitudes A +, vB + satisfy a twice-subtracted, 
uniformly convergent dispersion relation in It I .;;;; '0 < 4J.l2. 

In Appendix C we show that assumption (A 1) concern
ing the continuity of the amplitudes in two variables in the 
physical region, and statement (b) above, have as a conse
quence that the amplitudes are continuous even in three var
iables Res, Ims, and Ret at points of the physical region. This 
means that, for any sequence of points 
(sn ,tn) (sncomplex, tnreal) converging to a point (s,t) ofthe 
physical regionJ(sn ,tn )_/(s,t) where/is anyone ofthe 
amplitUdes. As a consequence, we know that any complex 
zero of the amplitudes in the cut s plane, which approaches a 
point of the cut, gives rise to a zero of the measurable modu
lus of the amplitudes. 

We next discuss the ambiguity in the solution ofProb
lem I concerning the possible common zeros of of S, (s),A t (s) 
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in the complex (two sheeted) s plane. (The values of t is used 
as a sUbscript) Clearly, if common zeros occur only at isolat
ed values of tin (0,4jL 2), then the solution is uniquely fixed for 
all t in this interval. It can be obtained at those exceptional 
points by analytic continuation in t at fixed s. Assume there
fore that S,(s), A/(s) have common zeros Ys(t ),Y A (t) in the 
open complex cut s plane on some interval (t ',t ")C(0,4p2). 
We can now follow Ys(t )=Y A (t) analytically as t goes to
wards t = 0. The function Ys(t) can have at most branch 
points of finite order, according to Weierstrass's I'reparation 
theorem28

; the identity Y s (t )=Y A (t ) holds for all branches 
and we follow the function analytically along all of them, in 
case we meet a branch point. In this process, one of the fol
lowing three situations can occur: 

(i) Ys(t) can be analytically continued to t = 0. In this 
situation, the functions S/ = 0 (v),A / = 0 (v) have common zeros 
at t = 0. This means that the forward amplitude has sym
metrical zeros, which contradicts F3). 

(ii) Y s (t ) reaches the cut at t = t I and according to Ap
pendix C, gives rise to a zero of the modulus of S/(v). Since 
Y A (t )==Y sIt ),A/(v) will have a zero at the same position. 
We shall show that, as a consequence of (AI), (A3), (FI), and 
(F2), this is impossible if t I is less than a certain constant ao. 

(iii) Ys(t} gets unbounded as we continue to lower val
ues of t. This means that, for any N, there exists a t N such that 
for any t < tN' if Ys(t) can be continued down to t then 
IYs(t)1 ;> N. We shall show, however, that (A3) and (F2) 
imply the existence of a certain interval [O,a~] of t values 
where the positions of the zeros cannot acquire an arbitrarily 
high modulus. 

We next explicitly discard possibility (ii). To this end, 
we write the t channel isospin even combinations of h,g, Eq. 
(2.6), as functions of the amplitudes D + and B + 

h +(v,t) = (4m 2 - t )1/2 

X{D + + (t1::v~: [It )1/2 + 2m (v -vV(t W
/2 

]), 

(6.3a) 
g+(v,t) = (4m 2 - t )1/2 

X{D++ (t1::v~:[(t)1/2- 2m(V-vV(t
WI2

]}. 

(6.3b) 
Clearly, h + andg+ are the values on the two sheets of the v 
plane of the function S,(v). It follows from (A3) that there 
exists c i so that, for v;> vo,lvB + I/ID + I < CI , for all 
t E ( - a',a'). Let VI = max(vo,vu)'vu = v,(su) of (F2). For 
v;> vl,lm D + ;> cuv, because of consequence (a) of posit iv
ity, for tE(0,4p2(Ca is a positive constant). Further, (A3) 

ID+I=/ ~ roc ImD+(X',t)dX'/ 
1T Jvi x'(x' - x) 

implies for v ;> v I 

Ih +(v,t)1 ;> (4m2 - t )Ca v 

X{l- ;~~)~2t[(t)\/2+ 2m(V~V(tWI2)}, 
(6.4) 

where we have used ID + I ;;;.Im D + ;>ca V. SO Ih + I cannot 
vanish for v high enough and t < (m - p fl d ; in particular, 
it cannot vanish simultaneously with h -. The same reason
ing can be used for g+ ,g- and we again call [O,a I] the result
ing interval of t values. 

If a common zero of S/(v),A/(v) occurs for v < VI' at 
some t > 0, it follows thatH (v), H ( - v) vanish there simul
~ne~sl~ by (4.13), so that the complex quantities 
K +,K _,K, ~s. (4.4)i4.6), all vanish at that point. But 
%(v,t) = IK+12+ IK_12+ IKI 2 isacontinuousfunctionof 
v and t on the compact domain 
p + t 14m < v < vl,O < t <ro < 4p2 and is therefore uni
formly continuous there. According to (F 1), %(v,t ) is differ
ent from zero at t = 0, and attains there its minimal value 
K min · It follows that there exists a whole interval of t values 
(0,a2), a2 = a2(Kmin ), so that .5Y(v,t) is different from zero 
there, for v < VI' SO, if we take ao = min(al,az) we have dis
carded possibility (ii) for t < ao. 

We can obvi9us,!¥ a~id this argument if we dare state 
as a "fact" that K +,K _,Ko, as obtained by extrapolation at 
fix~d ~nergy t? t > 0, do not vanish simultaneously at any 
pomt 10 a regIOn ° <t < a, V,h < v < 00 [as we did in the 
Introduction in (n)]. This we shall assume in the next 
section. 

To discuss possibility (iii), we notice first the following: 
Fact (F2) and the positivity of D + in [0,4p2) imply that there 
exists N(c.,.) [cain (F2)] such that, for Ivl ;;;. N,D + does not 
vanish in the complex v plane. 

To show this we write a once-subtracted dispersion re
lation for D + in the v plane. We denote x = v 
= Ivl2(cos 0 + i sin 0), 

D +(x,t) = ao(t) + ~ 
1T 

X roc ImD +(x',t) dx' _ g2 _1_ 
JV,h x'(x' - x) m x - ~ . 

(6.5) 

Let a = max ao(t) for t E [O,a'] and d = max ImD +(x',t) for 
(x' ,t ) E [O,a'] X [V'h' va]. Both a and dare clearly finite since 
the domains are compact and the functions ao(t ), ImD + con
tinuous. We next estimate a lower bound for D + on a circle 
of radius Ix I. 

Consider to this end first the angular interval ° < 0 < 31T14: 

;;;. 21xllIm ('" ImD +(x',t) dx' I = 21xl (00 ImD +(x',t)x sin a dx' 
1T Jvi x'(x' - x) 1T Jvi (x' - Ixl cos ())2 + Ixl2 sin2() 7' 

;;;. 21xl c I'" dx' x sin a 21xl I',} 1 I 
a , I 2 , = -- C 1m ----- ' 

1T vi (x) I [(x - Ixl COSO)2 + Ixl 2 sin2a 1 1T a vi (X')I12 x' _ x dx 

;;;. 2lx lcu(lm I _ ~), 
(V-x) Ixl 

(6.6) 
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where A Ilx[ is an upper bound for 

11m S;Tdx'/((Vx')(x' - x)) I for large Ixi- In (6.6) we have 

used the positivity property (a) ofImD +. Using 
Ixl Im[l/( - xJr!2 = Ivl cos (812), we conclude that, for Ivl 
sufficiently large, ° < 8 < (317/4), 

for a certain A /. Consequently, for 31T/4 < 8 < 1T, 

ID +(v,t)1 ;;. 2cu Ivl sin (8/2) - 2c"A ' - a - d AI - A2 • 

(6.9) 

Inequalities (6.7) and (6.9) show that, if Ivl is larger than a 
certain N (eu )' ID + I cannot vanish any more. Further, N (cu ) 

is independent of t,t E [O,a/]. 
Now consider the ratio vB + ID +. This ratio is holomor

phic for Iv[ > N, since D + has no zeros there. Further, we 
have seen that along the cuts IvB + I/ID + I < C 1 for Ivi ;;. Vo 

[from (A3)]. But liD + ispolynomiallyboundedforlarge Iv\ 
as one sees from (6.7) and (6.9). 

Since vB + is also polynomially bounded, it follows 
from the Phragmen-LindelOftheorem that 
IvB + I/ID + I < c; for alllvi ;;. N, where 

c; = max(cl' sUP'EIO.a'J,\v\ = N(lvB + I/\D + Ill· 
But then it is easy to see that, for Ivl ;;.N, 

where c2 is an upper bound for Ivl ;;. N,O < t<a' of 
It 112 + 2m(v - V(t))1/2Ivl. Since ID + I does not vanish for 
Ivl ;;. N, we conclude that, for 
0< t< min(a',(4m2 - tf/(c;2,c~)) = a,h + cannot vanish 
for IV1 I ;;. N in the complex v plane. 

The same reasoning is clearly true for g+(v,t) = S,(vn ). 
Therefore, there cannot be common zeros of S, and A, in the 
v plane for large I vi· 

This way we have removed the ambiguity of the com
mon zeros in Problem I. We now turn to the one concerning 
the number m, [Eq. (4.25)]. To this end, we recall that we 
havejust seen in Eqs. (6.7)-(6.9) that there exist a constantK, 
such that (tE[O,a]): 

IS,(vIJi > K,[v t [, [S,(vn )[ > K,lvlIl (6.11) 

for large Ivl[,lvlI I, on the two sheets of the complex v plane. 
Equation (6.11) can be reconciled with the requirement of 
twice subtracted dispersion relations for S, (v) at most for one 
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[D +1> 2c"lv\ cos (8/2) - 2c"A - ii - dAl -A2' 

with A t.A2 upper bounds, for large lxi, of 

21x\ IV, ~~ ,i _1_. 
1T V,h x x m x - Va 

We now turn to the interval 1T> 8> 31T14. There 

(6.7) 

(6.8) 

value mo of m: If 1m - mol> 0, the behavior of S, (v) on one 
of the sheets is changed by a power of Ivl 2 as v~c(), which is 
not admissible. 

We have shown in this way that, for each t in an interval 
[O,a], we can construct at most one pair of 1TN amplitudes 
consistent with fixed t analyticity, isospin invariance, fixed s 
analyticity, positivity, assumptions (Al)-(A3), and the ex
perimental facts (FO)-(F3). Its explicit construction is given 
by formulas (4.25), (4.28), (4.20), (4.21), (4.11), and (4.12). 

VII. REMOVAL OF AMBIGUITIES FOR t,;;; 0 

We can clearly obtain the amplitudes for t < ° by ana
lytic continuation from t > 0. Few people would believe this 
is feasible practically. We now investigate supplementary 
conditions which allow a unique and stable construction of 
the amplitUdes at fixed t < O. 

For this interval of t values, we replace the fact (F2) 
concerning the forward amplitude by 

(F'2) There exists a constant c+ > 0, such that 
Ih +(v,t)l;;. c+lvl,forlvl ;;. v+,insomeinterval( -a',O)oft 
values and v + sufficiently large. Evidence for this is dis
cussed in Sec. IX, 

Since there exist measurements which directly verify 
(A3), we may take it as a fact and not as an assumption for 
t.;;; O. 

We now show that a sufficient hypothesis for a unique 
determination of the phase in some interval ( - a,O) of t val
ues is that 

(A4) There exists a constant CR > 0 such that, for 
tE (- aR,O),v;;' vR, 

\ReC +(v,t)\ < CR 1m C +(v,t). (7.1) 

Clearly, (A4) is true in a model where the amplitude C + has 
Regge asymptotic behavior (Pomeron exchange) and is plau
sible by continuity from the forward direction, where 
IReC + (v,O) I! ImC + (v,O)-+O as v~C(). Most physicists are 
accustomed to (A4). 

To show that (A4) is sufficient, we recall the discussion 
of Sec. V, according to which the only ambiguity in the deter-
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mination of the amplitudes h +(v,t ), h _ (v,t ) consists of possi
ble common zeros lying in the complex v plane. We then 
follow the reasoning of the previous section: Since h + ,h_ 
have no such common zeros in the forward direction and, for 
some interval - a" , t , 0, there is no value of von the cut 
Ivl > Vth where the isospin triangle collapses to a point (by 
invoking, as before, the continuity of the observables in sand 
t for the unphysical region at low energies), it follows that 
common zeros may appear in the v plane only from infinity. 
So, we remove all ambiguities ofthe phase for - a < t< 0 if 
we show that there exists anNI such that h+(v,t), h_(v,t) do 
not have common zeros for Ivl > N I, - a < t, O. A suffi
cient condition for this to happen is that h +(v,t) does not 
vanish for Ivl>NI, - a<t,O. Writing (A3) as 
IvB + I/IC + I < C4 for v > Yo, - a' < t < 0 and a certain 
constant C4, we get from (2.6) 

, (7.2) 

where Cs is an upper bound of the brackets for - a' < t < O. 
From (7.2) and (7.1) we get that, for v > Yo, 
1m C +(v,t) > c + v/(cs{1 + c~)), It follows from Sec. VIthat 
there exists an N I, such that C +(v,t) does not vanish for 
Ivl > NI(NI is independent oft for - a' < t < 0). We deduce 
as before from the Phragmen-Lindel6f theorem that 
IvB +I/IC +1 "c~ for all v,lvl>NI , tE [- a',O] and there
fore that 

Ih +(v,t)1 > IC + I ((4m 2 - t )112 _ 2m(Vlt 1)I(v(v - V)l c') 
Ivl(4m2 _ t )1/2 4 

cannot vanish for Ivl > NI and t sufficiently small. This con
cludes the argument. Here, as before 
c~ = max(c4,suPlvl =N,.'E (_a',oJlvB + I/IC + I). 

SO, we have seen that under assumptions (AI), (A2'), 
and (A4) and because of the facts (A3), (FO), (Fl), (F'2), and 
(F3) we can uniquely construct the amplitudes h +(v,t), 
h - (v,t ) in some interval ( - a,O) of t values by means of for
mulas (5.2)-(5.5),(5.11 ),(5.13), (5.14), and (5.17) of Sec. V. 

VIII. THE MAGNITUDE OF THE INTERVAL ( - a,a) AND 
STABILITY QUESTIONS 

So far, we have argued that if the area is known as a two 
sheeted function for each s > (m + JLf, in some interval 
- to , t < 4JL2, if the functions 

R (v,l) = A,(v)IS,(v),R(v,t) = h -(v,t )/h +(v,/) can be de
termined in the whole v plane, and if assumptions (A 1 )-(A4) 
in Sections VI and VII are correct, then there exists an inter
val - a , t " a where we can construct the amplitudes 
from data by explicit formulas, given in the preceding sec
tions. We have, namely, shown that all their zeros-which 
appear as parameters in these formulas-are determined for 
tEl - a,a) by the meromorphic functions R (v,/), R(v,t). 

There still persist the following reasons for dissatisfaction: 
(i) These assumptions do not permit a determination of 

the interval ( - a,a), where the construction can be done; (ii) 
We do not yet know how difficult it is to construct accurately 
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the meromorphic functions, R (v,t ),R(v,t), 
In this paragraph, we show that essentially by strength

ening assumption (A4) and assuming that the analysis of Ref. 
3 performs a correct extrapolation (withfinite errors) of the 
observables to the unphysical region, we can give an answer 
to these questions. 

Namely, instead of (A4), let us assume that 
(A4') the phase of the amplitude C + (v,t ) has a limit 

tPelt) as V--+oo, for each - 10 < t < 0, and this limit is uni
form with respect to t in an interval 0 > I > - ao, 

We assume for simplicity that the values a' in (F'2) and 
(A3) also equal a o. In fact, we can choose ao = 0.5 GeV2 (see 
Sec. IX). 

Clearly, (A4') implies (A4), since (i) tPc!O) = 1T12 and (ii) 
IC +(v,t)1 > 0 for v large enough and 0> t> - ao by (F'2) 
and (A3). According to (A4'), tPelt) is then the uniform limit 
of continuous functions, is itself continuous, and so there 
exists an interval ( - aR,O) where it does not vanish. 

From Ref. 3, we shall take the following to be true 
(AF1):ThefunctionsK +,K _,Ko(v,t) [Eqs. (2.18)-(2.19)] 

do not vanish simultaneously at any point in 
0> t > - ao,v(t) > v> v th • 

We emphasize that, strictly speaking, the errors of ana
lytic continuation off the physical region are infinite. 

We consider in detail in the following only negative val
ues of t. The situation for positive t is simpler and can be 
treated by analogy. 

With (A4') and (AF1) the determination of the value a 
[so that uniqueness is achieved in ( - a,a)J, as was done in 
the previous section, still appears difficult because it con
tains a priori unknown quantities like a R in (A4), NI (the 
radius of the circle such that C + does not have zeros in 
0> t> - aR,lvl > N I), and 

Ivl =N, 

We can clearly apply the construction of amplitudes of 
the previous section for any t, but the problem is that, below 
a certain t = - iI, we might no longer obtain the true ampli
tudes by this method. 

One can, however, show the following: 
Assume we know functions h + ,h - (and G,B), for 

o > t > - a I' constructed according to the assumption that 
they do not have common zeros (in the s plane at fixed t l. 
Assume further, that these functions are such that 

(a) C +(v,t l does not vanish outside a circle of radius 
Ivl=NinO>t> -a l ; 

_ (b) if c4 = max lvl = N, _ a, "'" 0 IvB I/IG + I, then 
tolc4) = (2m 2Ic4 )2 > a l ; 

(c) 1T :- 1,60 > ielt) > 1,60 > 0, where tPelt ) is the limiting 
phase of C +. Then if h + ,h - are the true amplitudes, fulfill 
assumptions (Al)-(A4') for 0> t> - a 1 [and the facts 
(FO)-(F3') and (AFl)], they coincide with h + ,h - for all t, 
O>t> -a l • 

For simplicity, we shall also assume that the constant 
c l , which one derives from (A3) for a uniform bound on 
IvB +(v,t )I/IC +(v,t)1 along the cuts, v> N,O > t > - ai' is 
such that (2m2/c l )1/2 > a l (this is verified in reality). 
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According to the preceding section, we know that there 
exists an a, 0 < ii<a I' such that, for 
0< It I < a, fi ± (v,t )=h ± (v,t); we do not know, however, 
the value of ii. Because of (AF l) and (F3), the only possibility 
for h + ,h - to acquire common zeros is from infinity. In other 
words, if the construction ceases to be valid at t = - a, a 
sequence of points (V,.,t,.) must exist such that, as n-oo, 
IV,. I-oo,t,.-+ - a, t,. < - a, and h +(vn,t,.) = 0. 

At the same time, we know from (A4') that a constant 
c~ and a neighborhood Ua of t values exist, such that 
IRe C + I < c~ 1m C + for all v sufficiently large on the cut. 
Indeed, according to (b), ¢c(a):;;6 0. As a consequence, there 
exists a circle of radius N I , which we can choose larger than 
N of (c), with the property that I C + (v,t ) I does not vanish 
outside I vi = N I for t E U a' and is even bounded from below 
by const Ivl (cf. Sec. VI). So, vB + IC + is holomorphic and 
polynomially bounded outside Ivl = N I . Consider then 
mN, (t) = max\v\ = N, IvB + I/IC + I· It is a continous function 
oft,tEUa· 

On the other hand, from the vanishing of h + (v n ,t n ), 

where Vn is such that Iv,. I ;;;. N] and tn E Ua We deduce that 

(4m 2 
- t )v 

(vB+IC+)(vn,tn) = n n , (8.1) 
2m(vltn I)(v~ - v(t)) 

and so 

2m IVn I 
Vltnl (vlv,.1 2 +v(t))· 

(8.2) 

In particular, w~ deduce from the Phragmen-Lindeloftheo
rem, at t = - a, 

(8.3) 

wherec i is the uniform bound on IvB + I/IC + I along the cuts, 
Ivl ;;;. N. However, using (a) for t;;;. - a, we also know from 
the maximum modulus theorem that 

(8.4) 

But, from (b) above, we learn that 
mN(a) < 2mlvla l l < 2mlVlal. Using the inequality for 
c(, we see a contradiction with (8.3). In other words, the 
hypothesis that the construction loses its validity for 
- a ;;;. t;;;. - a ( is inconsistent with the other assumptions. 

We can apply the same reasoning to an interval 
a J ;;;. t;;;. 0, using the D + amplitude (instead of C +), and an 
assumption (AF2), similar to (AFl), but referring to t > O. 
Condition (c) can be abandoned and (A4') is not necessary. 

In this way, we have answered question (i) at the begin
ning of this section. To sum up, we assumed that functions 
have been constructed according to the formulas of the pre
ceding sections (i.e., under the assumption that h + ,h - or S,A 
have no common zeros) and conditions have been given 
which are sufficientfor them to be true amplitudes, on some 
interval of t values, - a] < t < a (. 

Question (ii) concerns the stability of the construction. 
Consider the class of pairs of functions I h + ,h _ J, defined by 
assumptions (Al)-(A4') and facts (FO)-(F3) and (AFl) with 
the correct analyticity properties and such that the corre
sponding combination D + (v,t ) has a monotonically increas
ing imaginary part(at fixed s) in 0 < t < 4,u 2. Consider also a 
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specific pair I h + ,h _ I in this class and a sequence I h + ,h _ J 
so that the (six) observables constructed from each of its 
terms, at every point of 
D= Iv,tER Ilvl;;;. v'h,-a l < t < all. tend to those con
structed from [h + .h _ I in some sense, in all of D. \ Notice, 
we suppose that even in the unphysical region the quantities 
K ± ,0 [Eqs. (2.20) and (2.21)] and K +.0 [Eqs. (2.24) and 
(2.25)] are well approximated J. Can we then infer that the 
pairs [h + n ,h _ n 1 approximate [h + ,h -I increasingly well 
asn-+oo? 

There are three steps to be analyzed: 
(a) If the "data" are close to each other, are the zeros 

and poles of Rn (v,t), or Rn (v,t) [corresponding to 
(h +- n ,h _ n)] close to those of Rn ,R,. ? 

(j3 ) If the zeros are close to each other. is the result of the 
construction of Sec. IV-VII stable under small variations of 
the observables? 

(r) If the construction is stable, are the criteria of its 
validity, as shown in this section, insensitive to small errors? 

Questions (j3) and (r) are mild if h +, h - have only a 
finite number of zeros in the complex s plane (this is the only 
case we shall consider-see below). For example, one can 
show 17 that the ratio E +(h / )IE +(h +) [see Eq. (5.7)] ap
proaches 1 at any interior point of the complex s plane, uni
formly on compact subsets, iflnlh,~ (5)1 - In Ih +(5)1 
tends to zero in L 2(0,21T), for 15 I = l: here 5 is the variable 
used in Eq. (5.7). On the cuts themselves (151 = 1), the loga
rithm of the ratio goes to zero in L 2 (0,21T). Pointwise conver
gence can be achieved atthose points where In Ih +(5)1 obeys 
a Holder continuity condition. Similar considerations apply 
to the other integral expressions. 

As for (r), an apparent difficulty is that vB +(v,t) is de
termined with increasing errors as t-O. This is a conse
quence of the V t factor multiplying B in Eq. (2.6). However, 
we could have formulated a weaker condition instead of (b) 
in this section, namely (b'): for each t in ° ;;;. t;;;. - a (, (V I t I) 
XsuPlv\ = N IvB +(v,t )ViC +(v,t)1 < 2m - {j,D > O. The 
proof can be done then in the same way, by comparing two 
estimates of max\v\ = N IvB + III C + I atl = - (I, obtained by 
continuity from t > - a and t < - a, respectively. If 
h, + h - are known with finite errors in the whole v plane, so 
are C + , (V I t I lvB + , and condition (b') can be checked 
reasonably. 

Question (a) is at first sight more difficult. The reason is 
that we cannot fix the number of zeros and poles of R(v,t) 
from its boundary values at fixed t only. Indeed, we can al
ways place one zero and one pole in R (v,t ), with a sufficiently 
small distance between their positions, and in this way dis
turb the boundary values of R only within arbitrarily small 
errors. As we change the value oft, then, according to (AI), 
such pairs of zeros and poles can appear either from infinity 
or from the zeros of h +(v,t) and h -(v,t) lying on the cut. 
However, according to (AI)-(A4') and (FO)-(F3), we are not 
free to let the zeros of h + reach infinity at an arbitrary t 
value. This could, namely, cause a discontinuity in t of 
max\v\ ~ N(V It DlvB +(v,t lIIlC +(v,t)1 for some circle ofra
dius N, as explained at the beginning of this section. 

So the relevant question is whether we can control the 
zeros and poles of R(v,t) in an interval of t values, 
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o > t > - a, where conditions (a), (b), and (c) are satisfied. 
At these t values, a constant C{t ) exists such that 

Ih +(v,t)1 ;;. C{t )Ivl (8.5) 

for alllvi sufficiently large in the complex v plane. 
For simplicity, we shall take the following "experimen

tal fact" to be true (see Sec. IX): 
(SFl): there exist constants c_ > 0,0 < r < 1, such 

that Ih -(v,t)1 < c_vY,v;;' vth , - a..; t..; O. 
Inequality (SFl) is valid for alllvi sufficiently large in 

the complex plane, by the Phragmen-Lindeloftheorem. As 
a consequence of (SFl), (F'2), and Eq. (8.4), the amplitudes 
h+ = ~(h + + h -),L = !(h + - h -) do not vanish for Ivl 
sufficiently large in the complex plane, 0;;. t;;. - a. Even 
more, they increase like Ivl if Ivl is large enough. 

If one further assumes [this assumption is only partly 
independent of (SFl)] that (SAl) the phases of h ± (v,t) at 
fixed t can be defined along the cut and have the same prop
erties stated in (A2) for the phase of S, (v), then one can write 
a decomposition like 

h ± (v,t) = B ± (v,t )E ± (v,t), (8.6) 

with similar notations and meanings as in Eq. (1.10) 
Further, as a consequence of (A 1), we know that, as we 

movedownint,h +(v,t ),h_(v,t ) acquire (orlose) zeros only at 
those points of the cut where h ± (v,t) = O. 

We can take the following to be true. 
(SF2): The zeros of h + ,h _ along the cut are isolated, i.e., 

if h + (so,t~») = 0, so,fo real, there exists an r, such that for no 
other point (s,t), s,t real in Is - Sol < r,lt - fol < r, is 
h+(s,t) = O. 

As a consequence, using (F/2), there are only a finite 
number of zeros in v ;;. vth ' 0 ;;. t;;. - a I' They all lie below 
a certain finite v +(v _I. Even more is in fact true [The facts 
(SF 1-3) are not necessary in order to produce a stable con
struction. They shorten, however, the discussion.] 

(SF3): There is no t, - to ..; t ..; 0, so that 
h + (sopt ) = O,h _ (S02,t ) = 0, SOl> SOl are real numbers larger 
than (m +!1f 

Then consider the ratio 

r(v,t)= h_(v,t) = I-R(v,t). 
h+(v,t) 1 + R (v,t) 

(8.7) 

We can divide out a function E,(v), having the modulus of 
r(v,t) and no zeros in the cut v plane. Clearly, 
E,(v) = E_(v)lE+(v). We are left with 

( ) 
_ r(v,t) _ B_(v,t) 

r l v,t - ---- . 
E,(v,t) B+(v,t) 

(8.8) 

The total variation L1 (t ) of the phase of r 1 (v,t ) allows one to 
determine N n - Nd, where N n - Nd are the zeros of the 
numerator and denominator, respectively, in (8.8). From 
(SFI) and (SF2), it follows that jumps in L1 (t) appear only at 
thosetvalueswhereh_{v,t ),h+(v,t ) vanish on the cut at some 
point. From (SF3), one sees that one can determine succes
sively Nn ,Nd by finding the jump in L1 (t) at those t values. 
Thus, the number of parameters appearing in (8.8) is fixed. 

The determination of the finite number of zeros and 
poles of r(v,t) can be done in such a way that the errors of 
their positions tend to zero as the errors of the boundary 
values tend to zero, at least on open subintervals of 
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o ;;. t;;. - a. One must exclude the possible finite number of 
t values, where the zeros of the numerator happen to coin
cide with zeros of the denominator. At all other t values, 
o ;;. t;;. - a, there exists a minimal distance dmin (t):fO be
tween the zeros of B_ and B+(v,t). 

Assume then that stability was not achieved at such a t 
value: this means a number d existed such that, for any E, we 
could find approximants 

I 
Bn - (v) B_(v) I (8.9) 
Bn+ (v) - B+(v) < E 

for v on the cuts, so that the number of zeros of 
Bn _ (v),Bn + (v) is the same as that of B_(v),B+(v), respec
tively, but some of them staying a distance d away from the 
true ones. Let then v_be a zero of B _ (v), which is not ap
proximated by corresponding zeros of Bn _ (v). So, for any E, 

Bn _ (v) > const > O. On the other hand, 

IBn- (v)B+(v) -B_(v)Bn+ (v)1 < E (8.10) 

for v on the cuts, and since the expression between bars is 
bounded by a constant for v----+ 00 in the complex plane, (8.10) 
holds in the whole complex plane. In particular, at v _, we 
get IBn _ (v)1 < c/IB+(v _)1. This contradicts the earlier in
equality for E sufficiently small. 

For t ;;. 0, the domain of interest is doubly connected, 
and this procedure must be slightly modified. One divides 
out a function n (lU), similar to (4.20), containing the phase of 
r(lU) = H ( - lU)/ H (lU), along the two cuts [under a corre
sponding assumption (SAl) for the phase of H(lU)] and one 
fits the resulting real analytic function, known along parts of 
the real axis, with a ratio of polynomials of known degrees. 

This concludes the discussion of stability. 

IX. THE SITUATION IN PRACTICE 

In this section we state in more detail the evidence for 
the "experimental facts" (or assumptions) used in the text 
and give the actual numerical values of some of the quanti
ties that occur in the construction of amplitudes described in 
this paper. 

(a) We start with assumption (A3), Sec. VI. It states 
essentially that the amplitudes A + (v,t ) and vB + (v,t ) should 
not cancel each other when they form the combination 
A + + vB +. This occurence is allowed by unitarity, since the 
Froissart bounds for A + and vB + are actually21 

IA +(s,t = 0)1 ..; Cs(ln S)3, 

IvB +(s,t = 0)1 ..; Cs (In S)3, (9.1) 

but 

ID +(s,t = 0)1 ..; Cs (In sf (9.2Y 

We can get, however, independent information about the 
amplitudes from spin rotation experiments which measure 
the Wolfenstein parameter R, e.g., in rr+p scattering. The 
latter is related to h+,g+ in Eq. (2.6) by means of 

(9.3) 

where eN is the recoil angle of the nucleon in the laboratory 
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frame. Together with P ±.O and (do/ dJJ ) ± .0 it clearly deter
mines h ± ,g ± and so all amplitudes up to a common phase 
and a twofold ambiguity at any specific point (s,t ) (if continu
ity of the area as a function of energy is used). The latter 
ambiguity is resolved by a measurement of the parameter A + 

or of R in 1T-p scattering. Practically, the charge exchange 
differential cross section is much smaller than the elastic one 
at high energies and small It I, so that one can verify (A3) at 
these energies directly from the results of Refs. 29,30, and 
31. One deduces \A + \lID + I S 0.5 and decreasing for 
t = - 0.2+ - 0.5 Gey2 and k > 6 GeY Ie. 

Thisjustifies (A3) in a sufficient way for t < O. Informa
tion about IA + I, ID + I at t > 0 can be obtained by simple ex
trapolation of these results in angle. The quality of the data 
does not allow this, but the fact that IA + \/ID + \ isso small at 
t<O makes (A3) plausible also for t>O. We point out it is 
actually possible to believe32,33 that not only 
A +(v,t )/(vB +(v,t ))-0 at high energies (s - channelhelicity 
conservation) but even A +-0 (decoupling of the pomeron 
and/trajectories from A +). There is no strong counterargu
ment to this belief so far?4 

(b) Statement (F'2) is implied by the fact that the differ
ential cross section duldt of 1T ± P scattering at high energies 
(see, e.g., Ref. 35) stay larger than a constant for t > - 0.5 
Gey2 and the polarization in elastic scattering decreases in 
absolute value at fixed t (see Refs. 36 and 37); e.g., at 
t = - 0.2, it decreases from IP ± 1-0.2 at k = 6 GeY Ie to 
IP + 1~0.05 at k = 45 GeY Ie. Since 
Ih + 12 = 2[lh+ 12 + Ih_12] - Ih -1 2 and the contribution of 
Ih -I is negligible,38 we can conclude Ih + I > e + Ivl for high 
v. In fact, wejustneed Ih +(v,t)1 > c+ Ivl Y! Ivl > voforsome 
r. > O. For stability we prefer r. > r in (SFl). 

Statement (SF1) is related to the absence of a subtrac
tion constant in the dispersion relation for e - Iv. A discus
sion of this is given in Ref. 39. For (F2), see especially the 
same reference. 

(c) The absence of symmetrical zeros of the forward am
plitudes can be inferred from Ref. 40. There exists so far no 
published calculation of the zeros ofe ± (t = O,v). However, 
one finds in Ref. 40 the position of the single zero in the V 
plane of e + (t = 0, v) and one can check from the low-energy 
expansion of the same Ref. 40 (see also Ref. 41) that e - (v,t ) is 
non vanishing there. There is just one zero of e + (v2,t ) in the 
forward direction (there cannot be more than two; for the 
detailed pattern of zeros at low It I, near t = 0, see Ref. 42). 

The determination of the area [in (FO)] at high energies 

t 1m v [GeVl -
. 0.4 . 0.3 '0.2 i . 01 '020'008 ''"\' rO.01 '002 

~4 ~',".".\t . 0.20 .. - .... ·-0.08 
• .... ~0.12 -006 . 0.2 ';)o.o-o.:.p.:12 

'o:{.08 

~"004 fo -008 "·0. 

'o":'~~o 
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by continuity from low energies is made possible by the re
markably simple appearance of the lines where the isospin 
bound is saturated. At high s, they run approximately at 
Zs = cos e = const (see Ref. 18). 

(d) Reference 3 produces amplitudes only at t < O. To 
make use of the discussion in Secs. IY and VI, we extrapolate 
them by means of phase shifts and check whether they are 
consistent with the correct analyticity properties. We do this 
by expanding B ± ,e ± (multiplied by suitable factors) at 
t > 0 in a Fourier series in the variable z, which maps the cut 
v plane onto the unit disk, and computing the sum S(-:-) of 
squares ofthe coefficients with negative frequency. The lat
ter do not vanish identically because of the noise in S of the 
functions e ± (Sj, ,t ),B ± (Sj, ,t ), furnished by Ref. 3 (see Intro
duction), but one expects that they should be in some sense 
small compared to the corresponding sum S(+) of coeffi
cients of the positive frequency terms. One obtains the ratios 
0.003, 0.007, 0.02, and 0.05 as averages in the range 
o < t < f-l2 for sums of the first four coefficients. 

(e) The amplitudes of Ref. 3 satisfy assumptions (Al)
(A4') and facts (Fl )-(F3). So, we know there exists an interval 
- a < t < a where they are the only ones compatible with 

the observables they generate (including the unphysical re
gion). One can check that IvB + I/le + 1-1 on a circle ofradi
us N,..." 10 Gey2, for f-l2 > t > - 0.5 Gey2. Further, the 
limiting phase tP c (t ) of e + (v ,t ) increases slowly as t decreases, 
and is approximately 21T13 at t = - 0.5. So, according to 
Sec. YIII, they are the only ones satisfying (A1)-(A4') and 
(FO)-(F3) and reproducing the observables on 
f-l2 > t> - 0.5 Gey2. The amplitudes of Ref. 3 satisfy the 
construction ofSecs. IY and Y identically. 

(f) The stability of the construction is good if zeros of 
h+(v,t ),h_(v,t) in the complex v plane stay far apart and is 
worse if the distance between them is small. 

Figure 1 shows the variation of the positions ofthe zeros 
of h +,h _ in the complex v plane, as a function of real t, as 
determined from Ref. 3. One sees thatazeroofh_(v,t) moves 
close to one in h + (v,t ) at t = - 0.04 Ge y2 and stays so until 
t = - 0.16 Gey2. To get a measure of the dipole formed in 
h+lh_ by the two almost coincident zeros, wedivideh+lh_ 
by a function having its modulus on the cut I vi > f-l + t 14m 
and no zeros in the cut v plane. The relevant information 
coming from h+lh_ is represented by a ratio of two 
Blaschke products, each containing as many factors as there 
are zeros in h +,h _. Those zeros ofh _(v,t) which lie far away 
from the one in h +(v,t) lead to clear structures in the phase 

Re v[GeVl 

0.2 0.3 0.4 '008't 
• 
\ 

'0.12 • 

. 0.16 

FIG. I. The variation of the ze· 
ros of h + (black dots) and of h. 
(open circles), as a function of 
1,0>1> - 0.2 GeV2

, as deter· 
mined from the amplitudes of 
Ref. 3 . 
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and can be easily determined. We show in Fig. 2 the phase of 
the ratio of the two factors corresponding to the zeros that lie 
close to each other, for different (values. At (= - 0.12, we 
see that the variation of the phase is small, and instabilities 
can occur. However, the present author believes the other 
curves show the existence of a domain where the structure of 
the phase of h+/h_ cannot be obscured by small 
perturbations. 

(g) We now turn to the interval 0.;;; t.;;; 41l 2
, i.e., we 

study the zeros and poles of R,(w) = A,(w)/S,(w). Because of 
(F2), (A3), and positivity, S,(w2

) does not have zeros far away 
in the v plane, so that "dipoles" [almost coincident zeros of 
S,(w).A,(w)] can appear in R,(w) only in the low energy do
main. A computation has been performed by means of the 
low energy expansion of Refs. 40 and 41 of the zeros of 
S,(w), A,(w)/w, w = w 2 for the amplitudes of Ref. 3, for 
t > O. The results are shown in Fig. 3 in a Rew - t plot, 
which looks at first unnatural (the zeros lie mostly on the real 
axis of the w plane). A possibly dangerous dipole is seen near 
w = - 1. One can estimate whether it is observable in the 
data for R,(w)/w by computing the residue at the zero of 
S,(w) and checking whether the pole gives an effect in the 
physical region larger than the resolution level. It turns out 
that this residue is rather large for (,,-,0 (i.e., "-' - 1.5 in the 
w plane) but decreases quickly as one goes to 21l 2

• The effect 
at w = 1 is larger than 0.01 until t = 1. 71l2. So, at least in the 
range 0 .;;; ( .;;; /12

, one can construct the amplitudes of Ref. 3 
by starting from the observables extrapolated in angle, at 
fixed energy, and allowing for small errors. [According to 
Sec. YIII, we should have studied the zeros and poles of 
H(w)/H( - w), rather than of A,(w)/S,(w). For the present 
purpose this is, however, irrelevant.] 

(h) The last question we wish to discuss is the determi
nation of the sign of P(v,t), Eqs. (3.4)-(3.6). Figure 4 shows 
the area as a function of angle along the unit circle of the w s 

plane, Eq. (2.16), at s = 3.54 Gey2 as obtained in Ref. 3. The 
problem is whether one can exclude possible reflections 
along the dotted line P = O. To this end, we compute the 
Fourier coefficients an of the expansion 

(9.4) 

and with them the quantity 

(9.5) 

j "-"--"--,,- • t =-002 ; -._,-.-._-.-
/. ...--0 __ 0_ 2=-0.08/t=-012 

..... - _---!:==!.-~==_-!Z::::..-.-

"'t =-0.20 
·1 

·2 

0.1 0.2 0.3 0.4 os 06 v[GeV] 07 

FIG. 2. The phase of the ratio of the Blaschke factors corresponding to the 
nearby zeros of h + ,h _ in Fig. I, as a function I vi. 
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FIG. 3. The variation of the zeros of S,(w) (black dots), A,(w)==A, (UJ)/UJ 

(open circles), w = UJ2, in the w plane, as a function of t,t ;;. 0, as determined 
from the low energy expansion of Ref. 41. 

with r 1 < rn's given by Eq. (2.17). In the limit of infinitely 
many Fourier coefficients, this quantity should be finite only 
for the correct choice of reflections. [A change P-+ - Pis 
excluded by the known forward amplitude.] There are clear
ly many possible combinations of such reflections; to give an 
idea, we quote just the values of tP for the plot of Fig. 4 and for 
the possible reflections of the negative pieces I, II, III of Fig. 
4. We get tP: tPI: tPII: tPIII = 40: 612: 3270: 97 for r1 = 0.99 r,. 
The difference between 40 and 97 might not seem convinc
ing; it is important that this effect is the same over large 
intervals of energy. 

X. CONCLUSIONS 

It was the purpose of this paper to provide a theoretical 
description of the rrN phase shift analysis based on isospin 
invariance and fixed (analyticity. There were two reasons to 
start this investigation. The first one is given by the rather 
surprising stability in time of the results of such an analysis; 
this is a priori not expected, in view of the large ambiguities 
at fixed energy which can appear. Moreover, its results show 
much similaritl2 to those obtained by other methods (Ref. 
4), so that one can believe that they do represent the truth 
approximately and one would like to understand why. A 

Area 
!1/GeVl] 

3 

FIG. 4. The area of the isospin triangle constructed from the transversity 
amplitudes" F( + ),F( - ), as a function ofarg w, in (radians), Eq. (2.14), at 
s = 3.54 Gey2. 
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second reason is that no clear statement was known to the 
author concerning the assumptions that get into the techni
cally very involved procedure of phase shift analysis, in or
der to get the unique final result. 

The problem of this paper might seem artificial to those 
concerned with a study of real data; we have assumed that 
the analysis of Ref. 3 provides a correct representation of the 
data on differential cross sections and polarizations of the 
elastic and charge exchange reactions (including their ex
trapolations to unphysical regions) in an interval 
4J.l2 ;;. t;;. - to for all energies. We have, in particular, ig
nored all problems related to gaps in the data, incompatibili
ties between experiments, etc. However, we did not need the 
assumption that the input data are free of errors and the 
present author regards this point as important. We have, 
namely, argued in Sec. VIII that all calculations required are 
also feasible. 

Apart from a reference to positivity in Sec. VI, we have 
completely ignored the constraint of unitarity, which is nev
ertheless the most important one for phase shift analysis at 
low energies. In particular, the poles of the ratios 
H{w,t )IH ( - w,t ),h_{v,t )/h+{v,t), which all lie in the low 
energy domain, are much more precisely determined by this 
requirement than shown in Sec. VIII, from considerations of 
analyticity and isospin invariance. We expect the study of 
this paper to be of use for analyses at higher energies, where 
many partial waves occur and the constraint of unitarity is 
ineffective. 

We next collect and list again the assumptions and 
"facts" that have been introduced in various parts of the text, 
to delimit a class of amplitudes in which, according to this 
paper, uniqueness can be obtained on an interval 
- a < t < a. 

(A l) The amplitudes A + (s,t ),B + (s,t ) are continuous in 
two variables in the region 
D = 14J.l2> t> - to,to>O,s,u;;,(m + J.l)2J and lmA+(s,t), 
1m B + (s,t ) are polynomially bounded in D. 

(A2) The phase ofS, (v) [andofh +(v,t)] can be defined at 
fixed t > 0 (t < 0) by continuity along the cut, except for a 
finite number of finite jumps, is piecewise Holder continu
ous, and has a finite limit as v-+ 00, which is attained in such 
a way that ,J1 (c5(v) - c5{ 00 ))-+const, for some f3 > O. 

(A3) There exist constants va' C > 0 such that, for 
v;;;. va' IA +(v,t )I/IA +(v,t) + vB +(v,t)1 < c, for 
-a' < t < a'. 

(A4) There exist constants CR , vh > 0 such that, for 
v;;;'vh,IReC+(v,t)1 <cR ImC+{v,t),for -a" <t<O. 

Assumption (A4) is implied by (A4'), apparently more 
innocent looking, and knowledge of the forward amplitude. 

(A4') The limit of the phase of C + (v,t ) exists at each 
fixed t, as V-+oo along the cut and the limit is uniform in 
t,O;;;. t;;;. - a. 

The facts that we used are 
(FO) The area of the isospin triangles is a known func

tion, including its sign, at each v and t in D. 
(Fl) There is no point in D where the isospin triangles 

reduce to points (we used in the text the weaker assumption 
that this occurs only in the physical region). 

(F2) There exists a constant ca and an energy sa such 
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that 
0"'0' (1T+p) + O"to,{1T-p) > cO', s;;;' So-' 
(F'2) There exist constants C +,vo, so that 

Ih +(v)1 ;;;. c+ lvi, for v;;;. Yo· 
(F3) There are no symmetrical zeros in the forward am

plitude C ± (v,t = 0). 
A stable construction of the amplitudes from the obser

vables, and thus a determination of the interval of validity of 
the analysis, a ;;;. t;;;. - a, can be done in the subclass de
fined by 

(SFl) There exist constants 0 < r < l,c_ > 0 such 
that Ih -(vII < c v r , for v;;;. V,h' 
0;;. t;;;. - to [or IA,(v)1 < CVr ,4,u2 > t;;;. 0]. 

(SF2) The zeros of h+,h_ are isolated in D [as are those 
of H ( ± wI]. 

(SF3) h+,h_ do not vanish at the same t value in D. 
(SAl) The phases of h ± (v,t) [and of H (v,t)] obey (A2). 
This list of assumptions and facts is sufficient for 

uniqueness and stability and by no means necessary. They 
are not all independent. The interval of validity of phase shift 
analysis in the class of amplitudes obeying the usual analy
ticity requirements in t and s, this list of assumptions and 
facts, and having the observables interpolated by Ref. 3, is 
"',u2 ~ t ~ - 0.5 GeV2 (see Sec. IX). 

We recall that the domain D contains unphysical 
points, and we assume it is possible to perform an extrapola
tion from data in the unphysical region to all of D, with finite 
errors. This may well be the weakest point of this approach, 
but the author does not see any alternative to it. 

One can wonder why the isospin constraint can help in 
the resolution of ambiguities of the analysis based on fixed t 
analyticity, whereas it is known II to be ineffective as a con
straint at fixed energy. The reason is mainly experimental; 
the ambiguity which is allowed by isospin in variance con
sists, namely, of coincident zeros of h + ,h - in the complex v 
plane, for large intervals of t; the forward amplitUdes 
C ± (v,t = 0) have no such coincident zeros and it is a very 
unlikely event that two of them appear through the cut on 
the physical sheet. In 1TN scattering, it does not happen. Posi
tivity and (A4) forbid these zeros to migrate from infinity. 

We point out that within the class of amplitudes defined 
by the assumptions and facts listed above, the uncertainty in 
the phase at a given point (s,t ),t;;;' - a, can be estimated 
explicitly according to Sec. V, if errors for the extrapolated 
observables are prescribed in the low energy unphysical re
gion. One expects the error of the phase at higher energies to 
be insensitive to reasonable variations of these prescriptions. 
However, it is clear that the errors thus obtained would be 
seriously overestimated because unitarity has been mostly 
ignored in the present treatment. 

Finally, we point out that the formulas of Sec. IV and V 
allow a construction of the 1TN scattering amplitUdes only in 
terms of a few parameters, which are the zeros and poles of 
h+lh _ orofH (w)IH ( - w)(itis a pieceofluck thatthereare 
so few of these). The computation involves otherwise only 
integrals (possibly with principal value) over known quanti
ties. The author will report elsewhere about the possible sim
plifications for practical phase shift analysis which might 
result from this. 
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APPENDIX A: COMPLEMENT TO SECTION IV 

We study the situation when K(t). Eq. (4.19). has zeros 
on (tth ,A. ). Let tl,t2.···,tn be those zeros [a finite number. 
according to (A2)). We part them into two classes: those of 
S,(t) and those of S,( - t). Knowledge of R (m). Eq. (4.14). 
does allow such a partition since, if R (m) gets infinite at some 
point mo of the cut. then necessarily S, (mo) = O. Indeed. we 
show in Sec. VI that, under assumption (AI), it follows from 
(B 1) that there exists an interval [0,0] of t values. so that 
S,(m), A,(m) do not simultaneously vanish in the complex m 
plane, including the cuts. So, let t ;, be the zeros of S (t ) and 
t;, those of S ( - t ). Assume first that, for any t;, there is no 
t}' so that t; = tj'. We define then the discontinuity of the 
phase tp(t ) of K(t ) as lying between 0 and 2rr at points t ; and 
between - 2rr and 0 at points t ;'. With this definition and 
the conventions tp(tth ) = 0 or rr, we can define by continuity 
the phase tp(t ) of K(t ) along all of [tth,A. ] (except for the 
points {;, for which we have given a prescription). We call 
tpK(t) = tp(t) if tp(tth) = 0 and tpK(t) = tp (t) - 11" if 
tp(t th) = rr. Let the absolute value of the discontinuities at 
t;' be a iii = 1, ···,n". We define then the functions 
tp2(t) = l:j~o aj on (t;',t;,+ I)' 
i = O,l, ... ,n",t;; = O,t: + I = A and 
tpl(t) = tpK(t) + tp2(t)· We construct 

!Jg) = exp [~ f' tp,g') dt'], (AI) 
rr "h t - t 

!J2(t) = exp [ ! f_-,("h t2~ '~ dt'l (A2) 

and, as in Sec. IV 

sg) =S(t)l(!J1(tJ!12(t)), (A3) 

Kg) = K(t)l(!Jg)!J2(t)!J 1( - t)!J2( - tIl. (A4) 

The function S, (t ) can still have zeros on(tth,A. ), 
( - A, - t th ), however, such that the phase can jump there 
only by multiples of 2rr, as we move along the cut. Further, 
the function K I (t ) has a constant sign on [tth,A. ] but can 
vanish there. Equation (4.22) is satisfied by sg). Let again 
tp ?(t) be the phase (defined by continuity, mod 2rr) ofa solu
tionS?(t) of (4.22) and let !Jo(t) be defined by (4.23). We 
conclude then, as in Sec. IV, that the function 

S2(t) = SI(t)(t -A )m/U],(t - tk) Jt,(t - ;;)2) 

(AS) 
is even in t. In (AS) we notice, in contrast to (4.26), the ap
pearance of n;~ I (t - ;;)2 corresponding to the known 
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jumps of the phase by 2rr at some of the points {; (n I of them). 
The further determination of S2(t) proceeds as in Sec. IV. 

If, for some t ;, there exists at}' so that t; = t}' = to, 
then we cannot find the discontinuity of the phase from 
knowledge of Kit). We can nevertheless find its magnitude 
(mod 2rr) from R (m), Eq. (4.14), by looking26 for the smallest 
value of a for which lim'----;o!J a (t )R (m(t )) is finite, where 
!Ja (t 1 is the analog of (AI) with 
tptito + 0) = tptito - 0) + a. 

APPENDIX B: USE OF THE IMAGINARY PART IN THE 
UNPHYSICAL REGION t<;O 

We denote by YI,Y2 the unphysical parts of the cuts of 
the complex v plane at fixed t, and by r l , r2 the physical 
region. Then, if we assume the imaginary parts of Band C 
are obtained at Ivl < Vit) from low energy phase shift analy
sis, and take into account that the roots in Eq. (2.6) are real, 
we have to solve the following problem: find all functions 
h + (v,t ), h _ (v,t ), holomorphic and polynomially bounded in 
the cut v plane, such that 

Ih+(v)lr,ur, =/+(v), Ih_(v)lr,ur, =/_(v), (B1l 
Imh+(v)lr,ur, =d+(v), Imh_(v)lr,ur, =d_(v), (B2) 

Ih+(v) - h_(v)lr,ur, =Io(v), (B3) 

where/+'!_'!o,d+,d_ are known continuous functions of 
v. Ifwe assume we know theareaF(v.t ), Eq. (3.5), then wecan 
determine the ratio R(v) = h+(v)/h_(v) for all von r, u r 2, 

by (5.2) and (5.3). The function R (v) is meromorphic in the 
cut v plane and can be extended analytically to Ylur2' Its 
knowledge there can be used to solve for a + = Re h + (v), 
a_ = Re h_(v). from 

Equations (B4) and (B5) yield an equation ofthe third order 
for a _. It reads 

G "a 3
_ + a 2

_ (G'd_ - d+) + G "d 2
_ a_ 

(B6) 

Standard algebraic tests reveal that if d_ =l=O,G" =1=0, 
this equation has just one real root. So, we can determine in 
principle h+,h_ completely on YI U Y2' independently of 
whether they have or not common zeros. Clearly, the analyt
iccontinuationofh+,h_ from Ylur2 to the whole ofrl ur2 is 
very unstable; it is not needed if h + ,h _ do not have common 
zeros. Indeed, in this case, their moduli are known on all 
YIU Y2Urlur2 and their zeros are the zeros and poles ofR (v). 
The situations d _ = 0, G" = 0 are discussed in Ref. 43. 

APPENDIX C: THE CONTINUITY OF THE AMPLITUDE 
AT POINTS OF THE PHYSICAL REGION 

We wish to show the following. If a function/(s,t) 
(a) is real holomorphic in s for - to <; t <; a in the s 

plane cut along (Sth' 00 ) and satisfies an unsubtracted disper
sion relation in s for every t in - to .;;; t .;;; a; 
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(b)/(s,t ) is continuous with respect to both Re sand Re t 
for s on the cuts and -i"o..;; t ..;; a; 

(c) Ilm/(s,t)1 ..;; g(s) < cSV, -i"o..;; t..;; a,s real, withg(s) 
continuous and such that G (s) = ft.. g(s')ds'/(s' - s) exists 
and is holomorphic in thes plane cut along (Sth' 00 ), then/(s,t ) 
is continuous with respect to Re s, 1m s, and Re t at points 
(so,to) with So lying on the cuts and 10 real. 

Let D I = ! s,t E R Is ;> Sth' - ~) ..;; t ..;; a J. We measure 
the distance between points (s,t) with 1m s#O and points 
(so,to) of D I by means of 
II(s,t) - (so,to)l12 = Re2 (s - so) + 1m2 (s - so) + (t - to)2. 

(CI) 

We show that, for any £ > 0 and any (so,to) in D I , there exists 
8 (£,so,to) such that, if II(s,t) - (so,to)11 ..;; 8, then 
I I(s,t) - I(so,to)I ..;; £. To this end let s be such that 
Is - sol..;; R. Clearly 

lI(s,t) - I(so,to)I ..;; I/(s,l) - I(s, to) I + I/(s,to) - I(so,to)I 

(C2) 

and 

I I(s,t) - l(s,/o) I ..;; Il.~ Is".<) ds' 1m (I(S;,! ~ ~ I(s' ,to)) I 

+ I i~,,,.) ds' I~(~';to) I 

+ I i:".<) ds' 1~~S~,t) I, 
where b (so,£) is chosen such that 

(C3) 

fbls" .• ) g(s')ds'/(s' - So + R ) ..;; (£18). In view of (c) above, the 
sum of the last two terms in (C3) is less than d4. But the 
function 

F(s,t) = (s - b ){I""') Im/(s',t ~,-=- ~m/(s"to) ds' (C4) 

is continuous with respect to sand t on the compact domain 
-i"o ..;; t ..;; aSth ..;; s ..;; b because of (b) and the fact that 

(s - b )fbl ,,, .• ) Im/(s',t) ds'/(s' - s) is itself continuous at 
these points [as a consequence of (c)]. Further,F(s,/o) = O. On 
the other hand, from the maximum modulus principle, we 
get 

IF(s,!)I..;; sup IF(s',!)I· (C5) 
Sn, \. s' <, b 

Since F(s',!) is continuous on a compact set, it is uniformly 
continuous and so we can choose 8 1(b (So,E),to) so that, for 
It - tol ..;; 8 1, IF (s',t II ..;; d4 for all Sth ..;; s' ..;; b [since 
F (s' ,to) = 0 for all such s'). Thus, for all ! in It - to I ..;; 0 1, 
I/(s,t) - I(s,to)I ..;; £/2,ls - sol";; R. 

We now turn to the second term in (C2). We map to this 
end the s plane cut along s ;> Sth onto the unit disk of a vari
able z. By writing a N times subtracted dispersion relation, 
we conclude that the imaginary part of 
j(z) = (I + Z)2N + 1(1 - z)/(4Z)N + 1(f(S(Z)) - PN(s(z)), where 
P N(S) is a polynomial in s, can be represented as a Poisson 
integral of a certain function, continuous on Izl = 1. It fol
lows that the real part can also be represented as a Poisson 
integral over its boundary values (Ref. 17, p. 54). But the 
values of such integrals converge to the boundary values 
Rej(e iiJ

), Imj(edi
) at all points of continuity of the latter 
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(Ref. 17, p.4). We still have to study z = l(s = Sth)' It is suffi
cient to notice that, by (a), lIz) j(z)/(z - 1) is continuous at 
z = 1 along Izl = 1 and therefore bounded in the whole unit 
disk (by Phragmen-Lindelof). Thenl(z) can be represented as 
a Poisson integral over its continuous boundary values and 
this proves our assertion completely. 

To generalize this statement to the case of a finite num
ber of subtractions and of a left hand cut, one derives bounds 
for 11m B ± 1,1 1m D ± I in terms of (a /at)( 1m D +(1 + zs))' 
1m D +(1 + zs)' respectively, calculated at t = a. This shows 
the continuity of all amplitudes with respect to Re s, 1m s, 
Re t at points of D. 
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Complete set of SU(5) monopole solutions 
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The manifestly nonsingular asymptotic forms of the most general possible pointlike SU(5) 
monopoles are found by using the magnetic symmetry introduced by Cho. New magnetic tensor 
representations greatly expedite the computations. These magnetic tensors explicitly exhibit the 
full homotopy class of the mappings classifying the arbitrary allowed magnetic charges. 

PACSnumbers: 14.80.Hv, 11.30.Ly, 02.40. + m 

The nontrivial topological structures I of the monopoles 
have been much studied in the gauge field theory. No regular 
monopole solutions exist for the abelian gauge group. How
ever for nonabelian SU(2) gauge group, Wu and Yang have 
explicitly found regular monopole solutions except the sin
gularity at the origin.2 The remaining singularity at the ori
gin was removed by 't Hooft to give regular solutions every
where with finite mass for the monopole.3 Monopoles in the 
minimal grand unified gauge group SU(5) get wide attention 
due to the cosmological implications.4 To suppress the pro
duction rate of monopoles, Guth and Tye5 and Langacker 
and Pi6 have introduced several different scenarios. In these 
circumstances, it would be very interesting to find a com
plete set of monopole solutions for the grand unified group 
SU(5). Wilkinson,? Bais and Weldon,8 Wilkinson and Bais,9 
Brandt and Neri, 10 Weinberg, II Daniel, Lazarides, and 
Shafi, 12 and Dokos and Tomaras 13 have studied monopoles 
in the nonabelian gauge group. 

Cho l4 has obtained all the monopole solutions for the 
SU(3) gauge group by examining the topological structure, 
instead of using the usual methods of solving the equations of 
motion. The magnetic symmetry, as a set of self-consistent 
Killing vector fields, plays a crucial role in finding a com
plete set of monopole solutions. Recently, we have obtained 
a complete set of monopole solutions in the SU(4) gauge 
group. 15 Cho and we have used the generators in adjoint 
representations, and the calculations become quite compli
cated for large SU(N) group. In this paper, we obtained the 
manifestly nonsingular asymptotic forms of the most general 
possible SU(5) monopoles by using 5 X 5 tensor representa
tion of SU(5) instead of the 24-dimensional representation 
for the Killing vectors. These tensor representations consid
erably expedite the computations. 

The monopole solutions are classified by the homotopy 
group, 16 and the nontrivial homotopy groups for SU(5) are 

1Tz[SU(5)/u(I) X U(I) X U( 1) X U( 1)] 

= 1TI[U(l)XU(I)xU(l)xU(I)] = Z xZ xZ XZ, (1) 

1TASU(5)/u(2)XU(1)XU(1)] 

= 1T1[U(2)XU(I)XU(I)] = Z xZ XZ, (2) 

"!Senior Fulbright Fellow. 

1T2 = [SU(5)/U(3)XU(I)] = 1T1[U(3)XU(I)] = Z XZ, (3) 

1T2 = [SU(5)1U(4)] = Z, (4) 

where U(I)XU(I)XU(I)XU(l), U(2)xU(I)XU(I), 
U(3) XU(I), and U(4) are subgroups associated withA3-, Ax-, 

A I5 -, and A24-like symmetry, respectively. Therefore the 
monopoles must now be classified by four, three, two, and 
one integers, respectively. 

The magnetic charges must satisfy the generalized 
quantization condition I? given by 

exp[41Tig(!A3 g I + !Ax g2 + !A15 g3 + !AZ4 g4)] = 1, (5) 

where A3, Ag, A15, and AZ4 are self-commuting generators of 
the SU(5) group. To satisfy the above condition, one can take 

gl =g-I(n l - !n2 - !n3 - !n4), (6) 

g2 =g-I!~3[ n2 + !(n 3 + n4 )], 

g3 =g-I(2/3)1/2[n3 + ,in4], 

g4 = g-I(101/z/4)n4, 

(7) 

(8) 

(9) 

where nl' n2 , n3, and n4 are arbitrary integers. The value of 
the magnetic charges depends on the topological configura
tions which are expressed in Eqs. (1)-(4). When n4 is set to 
zero, the monopole changes are reduced to the SU(4) case. 15 
Here additional zeroes for n3 would give SU(3) results. 14 Sub
sequent zeroes for n2 will finally give SU(2) results. 

To find a complete set of the monopole solutions for 
every set of integers nl' n2, n3, and n4, the Killing symmetry 
assumptions 14 introduced by Cho are required to be 

DJ.1m l = 0, DJ.1m2 = 0, DJ.1m3 = 0, and D1,m4 = 0, (10) 

where 

DJ.1 =JJ.1-ig[BJ.1' and BJ.1 =B~Aj/2. (11) 

The gauge potential that satisfies the above Killing 
symmetry assumption should be given by the following 
form: 

BJ.1 =A~ml +A!m2 +A!m3 +A!m4 

- ig- 1 [m 1,JJ.1 m l] - ig- 1 [m z,JJ.1 m21 

- ig- 1 [m3,JJ.1m31 - ig- 1 [m4 ,JJ.1 m4]' (12) 

where A ~, A !, A !, and A! are the components not fixed 
by the condition (10). 
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The magnetic tensors m I' m2' m3, and m4 are chosen to 
exhibit the full homotopy class of the mappings (1)-(3). 
These are found by the gauge transformation such that 

m l = U03 Ut, m2 = U0g ut, 

m3 = U015 Ut, and m4 = U!A24 Ut, (13) 

where 

U = exp I in4!t/J [03 - V"3IU g + (3/2)1/2AI5 
- 3/101/2A24]!exp( - qlU l9)exp Iin3!t/J [!A3 
- yj/Ug + (3/2)1/2A 15]! exp( - i!OA 10) exp {in2!t/J [!A3 

- yj/Ug]! exp( - i!OA7) exp[ - i!t/JA3(n l - !n2 
- !n3 - !n4)] exp( - i!OA2). (14) 

HereA i (i = 1, ... ,24) are the fundamental representations of 
the SU(5) generators. Explicit forms of magnetic tensors are 
shown in Table I. These m I' m2, m 3, and m4 represent the 
homotopic mappings (1), (2), (3), and (4), respectively. These 
magnetic tensors in Table I are regular except at the origin. 
Since the t/J part in the magnetic tensors accompanies sinO, 
their derivatives are also regular except at the origin. 

The magnetic tensors are invariant under the additional 
gauge transformation by the diagonal generators, i.e., 

m l = U! A3 Ut = U'!A3 U't, (15) 

m 2 = U~ AgUt = U'!As u,t, (16) 

(17) 

and 

(18) 

with 

U' = Uexp[ - i~(aA3 + PAs + YAI5 + OA. 24 )] (19) 

for arbitrary a, p, y, and o. 
Finally the unrestricted A ~, A !, A !, and A ~ in Eq. 

(12) are chosen to obtain the desired monopole solutions as 

A:, = - (l/g) { [(!n 2 + n3 + n4 ) + in4 cosO 1 

X sin20 all t/J + ~(n3 + n4 )t/JsinO all 0 L 
A! = (l/g)p/4sinO [n4 sinOall t/J + (2n3/3)t/J all 0 ], (20) 

A! = (l/g)(2/3)1/2(2n3 + n4 )t/JsinO all 0, 

A~=O 

with 

a = [ - !(n3 + n4 )cosO + (~n2 + n3 + n4)]t/J, 

p = - ~3[ in3cosO + (in3 + !n4 )1 t/J, 

y = [ (2/3)1 /2(2n3 + n4 )cosO + 61/2(in3 + ln4 )1 t/J, 

0= ( - 101/2/20)n4t/J. 

(21) 

Earlier results for Eqs. (20) and (21) in SU(4), SU(3), and 
SU(2) can be easily recovered by setting n4 , n3 , and n2 to zero 
subsequently. 

Since the magnetic Killing tensors in Table I, their de
rivatives, and the A I, A !, A !, and A ~ in Eq. (20) are 
smooth, the potential (12) is regular everywhere except at the 
origin. If the gauge potential (12) is expressed in terms of m I' 
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mz, m3, and m4 and of the pure gauge terms as 

BJ-l = (glm l +gzmz +g3m3 +g4m4) 

Xcosoa A. -lg' -Iu'a u't 
J.L '!' Ii' 

(22) 

the string singularity in the first term ofEq. (22) is cancelled 
by the second term. In theA gauge, the potential (22) reduces 
to the standard Dirac potential form with the string singu
larityas 

(gIA3/2 + g08/2 + g~15/2 + g,0.z~2)cosOa,.,.tP· (23) 

But it is to be emphasized that the potential (12) with the 
regular magnetic tensors in Table I and with Eq. (20) is regu
lar everywhere except at the origin. 

This potential B,.,. describes the desired solutions 

G,.,.v = - (glm l + gzmz + g3m3 + g4m4) 
X sinO (a,.,. oa .. tP - aVoaJ-l tP ), (24) 

using GJ-lv = aJ-l Bv - a y BJ-l - ig [BJ-l,Bv ]' The magnetic 
charges g~ , g;" , g~ , and g~ of the solutions can then be de
fined as 

g~ = 2 J dSJ-l'Tr(mIG,.,. .. ) = 41Tg- 1(n l - !nz - ~n3 - !n4), 

g;" = 2 J dS""~r(m2G,.,.v) = 41Tg-I(~3/2)(n2 + in3 + tn4)' 

g~ = 2 J dSI'~r(m3Gl'v) = 41Tg-I(2/3)112(n3 + in4), 

g~ =2 J dSI'~r(m4Gl'y)=41Tg-I(101/2/4)n4' 

(25) 

The potential (12) with magnetic tensors in Table I and with 
Eq. (20) indeed describes all the homotopically inequivalent 
pointlike SU(5) monopoles. 

At this point, it is appropriate to comment why we take 
such a long computation to find the gauge potential (22). To 
obtain the field tensor (24) for monopole, one would simply 
write down Eq. (23) with help of the generalized quantization 
condition (5). But there is no easy practical way to find the 
regular gauge potential (12) or (22) from the singular one (23). 
But the new method of magnetic tensor described in this 
paper is quite straightforward to generalize the regular 
gauge potential ofWu and YangZ in SU(2) for SU(N). The 
remaining singularity of gauge potential (22) at the origin can 
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be eliminated by introducing Higgs fields as in the SU(2) by 't 
Hoof~ and Polyakov.3 This is much more ambitious than we 
are aiming for in this paper. 
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Scattering of electromagnetic waves from random media with multiple 
scattering included 
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Closed-form results which include all orders of multiple scattering have been obtained for the 
field and intensity when an arbitrary electromagnetic wave is incident on a randomly 
inhomogeneous medium. In obtaining the results it is assumed that the magnitude of 
the permittivity fluctuations is small in comparison with unity and the spatial extent of the 
fluctuations is large in comparison with the wavelength. Simplified approximations, which are 
valid outside the backscatter cone, are then obtained. These approximations are found to depend 
only on the second moments of the field in the medium, and are valid if the mean free path 
between photon scatterings is large in comparison with the size of the inhomogeneities. 

PACS numbers: 42.20. - y 

I. INTRODUCTION 

It is conventional 1-10 when calculating the scattering of 
electromagnetic waves from randomly inhomogeneous me
dia to use the single scattering approximation (Born approxi
mation). It happens that in most cases encountered in prac
tice this approximation is acceptable, but there are some 
situations where it is not. For example, recent data 11-14 on 
1idar scattering from clouds has indicated that single scatter
ing theory is inadequate. Some effort has been made to use 
radiative transport theory to include the effect of multiple 
scattering but this effort has been limited primarily to simple 
planar geometries, 15-23 and results are not generally available 
for arbitrary geometries. In this paper we will attempt to 
partially remedy this deficiency by obtaining an expression 
for the scattered intensity which includes all orders of multi
ple scattering within the medium, provided the following 
conditions are satisfied: (1) The magnitude of the mean
square fluctuation in relative permittivity in the medium is 
small in comparison with unity; (2) the size of the random 
inhomogeneities is large in comparison with a wavelength so 
that most of the scattering is in the forward direction and 
depolarization is not important; and (3) the mean free path 
between (photon) scatterings is large in comparison with the 
spatial size of the random inhomogeneities. When the afore
mentioned conditions are satisfied, we will demonstrate that 
it is possible to obtain relatively simple expressions for the 
ensemble-averaged field and intensity scattered by an arbi
trary random medium. The expression for the scattered in
tensity reduces to the well-known Booker-Gordon formula 
(i.e., single scatter) when the spatial coherence length of the 
field inside the scattering medium is sufficiently large. 

II. ANALYTICAL PRELIMINARIES 

Consider an arbitrary field eo(r) incident along thez axis 
on a scattering volume V with a relative permittivity distri
bution given by E(r) = 1 + 17(r), where 17(r) is a random real 
function of the position r, with the property 1171< 1. Then by a 
straightforward extension of the analysis presented by Ta
tarski,4 it is readily shown that the electric field scattered by 

this medium is given, in the Fraunhofer zone, by 

"" 
Es(m) = 4:~ f f f d 3, 17(r){e(r) - m[moe(r)]} 

X exp ( - ikmor + ikR ), (1) 

where k is the vacuum wavenumber of the radiation, m is a 
unit vector directed towards the observer (see Fig. 1) from an 
arbitrary origin within the scattering medium, R is the dis
tance from the origin to the observer, and e(r) is the actual 
electric field inside the scattering medium. It can be demon
strated (see Appendix A) that the error made in using (1) is at 
most of order 172

, in comparison with (1). Note that we will 
not assume that e(r) is equal to the incident field eo(r); this 
assumption would lead to the usual Born approximation. 

We will now assume that the scale size (correlation 
length) of the random inhomogeneities is large in compari
son with the wavelength of the incident field. In this case any 
cross polarization of the field can be ignored, so that the field 
inside the scattering medium is polarized in the same direc
tion as the incident field. Consequently, if we assume that the 
incident field is linearly polarized along the x axis, we can 
rewrite (1) as 

"" 
Es (m) = k 2(X ~; cos t/J) I II d 3, 17(r)e(r) 

X exp (ikR - ikmor), (2) 

where e(r) is now a scalar, cos t/J = m·x and x is a unit vector 
along the x axis. From (2) we can readily obtain formal ex
pressions for the average field and average intensity scat
tered from a randomly inhomogeneous medium. These are 

"" 
k 2(X - m cos ./,) III (E. (m) =" 41TR Of' d 3, (17(r)e(r) 

X exp (ikR - ikmor), (3) 
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FIG. 1. Geometry for scattering by a randomly inhomogeneous volume. 

P.(m) = k4 sin 2! f .~. fd 3rd 3 r' 
(41TR) - ~ 

X (77(r)77(r')e(r)e*(r') 

X exp [ - ikm·(r - r')], (4) 

where () denotes an ensemble average andPs=(E.·E:). In 
order to evaluate Eqs. (3) and (4), we need to calculate 
(77(r)e(r) and (77(r)77(r')e(r)e*(r'). These averages can be 
computed using the Novikov-Furutsu theorem. This states 
that if 77(r) is a zero-mean, Gaussian random variable and 
[[77] is an arbitrary functional of 77, then 

(5) 

where 0 /o71(r') is a variational derivative. The proof of this 
theorem is presented in Refs. 9 and 24. 

If we set[[77] = e(r) and then apply Eq. (5) to (3), we 
obtain 

(E.) = - k 4(i ;;"Rm cos "') f ~~~f d 3rd 3r' (e(r')G (r,r') 

X (77(r)77(r') exp (ikR - ikm·r). (6) 

In obtaining (6) we have used the result, derived in Ap
pendix B, that 

De(r) __ k 2 (')G( ') - er r,r, 
°77(r') 

(7) 

where G (r, r') is the stochastic Green's function for the oper
ator, V2 + k 2(1 + 77). 

The average required in Eq. (4) is somewhat more diffi
cult to evaluate, and requires the application ofEq. (5) twice. 
We first set[[77] = 77(r')e(r)e*(r'). We then find using (5) that 
T1=(77(r)77(r')e(r)e*(r') is given by 

(8) 
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It is demonstrated elsewhere24 that 077(r)/o77(r') = 0 (r - r'), 
where 0 (r - r') is the three-dimensional Dirac delta func
tion. Also, oe/o77 can be evaluated using (6). Consequently, 
(8) becomes 

TI = (77(r)77(r') (e(r)e*(r') 
00 

-k
2
fffd

3
r2 (77(r)77(rz) 

X [ (77(r')G (r,r2)e(r2)e*(r') 

+ (77(r')e(r)G *(r',r2)e*(rZ)]' (9) 

We again use the result in Eq. (5) to evaluate each term with
in the integral on the right-hand side of (9). For example, we 
can evaluate T2=(77(r')G(r,r2)e(r2)e*(r') by setting 
[[71] = G (r, r2)e(r2)e*(r'), and then using (5). The result is 

If we now apply the result in (7) plus the relation, derived in 
Appendix B, that 

oG(r,r') = _ k 2G( ")G(" ') 
o77(r") r,r r ,r , (11) 

the evaluation of(10) is readily performed. The result is 
00 

T2 = - k 2f f fd3r3 (77(r')77(r3)(G(r,r2)e(r2)e*(r3)G *(r',r3) 

+ G (r,r2)G (r2,r3)e*(r')e(r3) 

+ e(r2)e*(r')G (r,r3)G (r3,r2)· (12) 

A similar procedure allows one to formally evaluate the sec
ond term within the integral on the right-hand side of (9). If 
we do this and then use (9) and (12) in (4), we obtain after 
considerable manipulation 

k4 sin 2", f 00 f p. (m) = 2 ... d 3rd 3r' b (r,r')F (r,r') 
(41TR) - 00 

k 8 sin 2", J 00 J X exp [ - ikm·(r - r'l] + 2'" d 3rd 3r l 
(41TR) - 00 

xd 3r2d 3r3b (r l ,r3)b (r,rz)exp [ - ikm·(r - rIll 
X {2Re( G (r,r2)G (r2,r3)e*(rl)e(r3) 
+ G (r,r3)G (r3,r2)e(r2)e*(rl) 
+ (G (r,r2)G *(r l,r3)e(r2)e*(r3) 
+ G (r,r3)G *(rl,r2)e(r3)e*(r2)), (13) 

whereF(r,r') = (e(r)e*(r') is the mutual coherence function 
of the field, b (r,r II = (77(r)77(r d) is the correlation function of 
the relative permittivity fluctuations, and Re denotes "real 
part of." Note that it can be shown that the right-hand side of 
(13) is purely real (as expected, because p. is a real quantity). 

Equation (13) is the general expression [or the scattered 
intensity and includes all orders o[ multiple scattering within 
the medium. However, it is still not in a really useful form, 
because it contains terms of the form (GGee*), which, be
cause G is a linear functional of e, implicitly involves the 
evaluation of the fourth moment of the stochostic Green's 
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function. All we have done so far is to decouple the fieldlike 
quantities (e and G ) from the scattering medium characteris
tics (1J). In the next section we will demonstrate that the 
quantities (ee*GG), etc., can also be decoupled if (1J2) is 
sufficiently small in comparison with unity. 

Before leaving this section, it should be noted that the 
form of the general result in (13) is considerably different 
from the approximate result obtained by deWolfls and Ito 
and Adachi20 for the special case of backscatter from a 
planar slab in the multiple-forward-scatter, single-backscat
ter limit. We have been unable to determine the condition~ 
under which (13) reduces to that limit. 

III. OECOUPLING OF THE AVERAGES 

It will now be demonstrated that if kl> 1 but 
k 2/2 (1J2) < 1, where 1 is the correlation length of the permit
tivity fluctuations, the averages (G (r, r2)G (r2' r3)e*(r tle(r3) 
can be decoupled into (G (r, r2)G (r2' r3)r (r3' rtl, wherer(r3, 
r l) = (e(r3)e*(rl) is the mutual coherence function of the 
electric field. Because the results are lengthy, we will not 
present this prooffor every term in (13), but only for a typical 
term. For example, let us consider the product in the second 
term of(13) which is of the form 

VI = (G (r,r2)G (r2,r3)e*(rl)e(r3)' (14) 

Now, becausekl> 1, it can be shown thatwemayexpresse(r) 
using the extended Huygens-Fresnel principle as2S-27 

e(r) = K f: ",,J d 2p eo( p, z = O)Go(r, p) 

Xexp[i¢ (r, pI], (15) 

where p==(x, y), eo( p, 0) is the incident field distribution in 
some reference plane (denoted by z = 0 in Fig. 1) outside the 
scattering medium, K is a constant, Go(r, p) is the vacuum 
Green's function for propagation from the point ( p, O)=(xo, 
Yo, 0) to the point r = (x, y, z) and ¢ (r, p) is the additional 
phase, due to the presence of the randomly inhomogeneous 
medium, of a spherical wave propagating from ( p, 0) to r. 
We assume that ¢ is real because, as shown elsewhere,28 its 
imaginary part does not contribute significantly to the field 
in a lossless medium. Note that (15) reduces to the standard29 

Huygens-Fresnel principle in the limit when ¢ = O. 
The stochastic Green's function which appears in (14) 

can be written as30 

(16) 

where Go(r, r2) is the vacuum Green's function, 
[41rlr - r211- lexp[ik Ir - r21], and ¢ (r, r2) is the additional 
random phase, due to inhomogeneities, of a spherical wave 
propagating from r2 = (X2' Y2, Z2) to r = (x, y, z). It can be 
demonstrated that (16) correctly includes multiple forward 
scatterings (of photons by inhomogeneities) but ignores indi
vidual backscatterings. Consequently, it is valid only for 
kl> 1, and would be inappropriate for kl < 1. 

We next assume ¢ is a zero-mean31 Gaussian random 
variable. If(15) and (16) are substituted into (14) and the 
ensemble average then performed, we obtain 

VI = (G (r, r2)G (r2' r3) IK 12 
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x f: 00 •• J d 2pd2 p' eo( p, O)e~( p', 0)GO(r3' p) 

xG~(rl' p')x(r3, p; r, p')Q(r3, p, r l, p', r2), (17) 

where 

X (r3' p; r, p') 

= exp{ - !([¢ (r3' p) - ¢ (r, p'W) J, 
Q = exp{ - ([¢ (r3' p) - ¢ (r, p')] 

X [¢(r, r2) + ¢(r2' r3)]) j. 

In obtaining (17) we have used the result 

(G (r, r2)G (r2' r3) = Go(r, r2)GO(r2, r3) 

(18) 

(19) 

Xexp{ -!([¢(r, r2) +¢(r2,r3W)j. 
(20) 

If it is recalled that 

(e(r3)e*(rl) 

= IK 12f: oo··J d 2
pd

2
p' 

Xeo( p, O)e~( p', 0)GO(r3' p)G~(rl' p')x(r3, p; r, p')(21) 

it is evident from (17) that if Q~ 1, we can rewrite VI as 

VI~(G(r, r2)G(r2' r3)r(r3, rt!. (22) 

It can be seen from (19) and (17) that Q~ 1 if 

I ([¢ (r3' p) - ¢ (r, p')][¢ (r, r2) + ¢ (r2' r3)]) I <1. (23) 

The condition expressed by (23) will be satisfied if each of the 
products, such as (¢ (r3' p)¢ (r, r2) in (23), is individually 
much less than 1/4 in magnitude. We will now determine the 
conditions when this is so. 

The phases ¢ in (23) can be estimated by employing the 
geometric optics approximation; this method yields valid re
sults for the real part of ¢, even though it gives poor results 
for its imaginary part except in the limit when the propaga
tion path is small in comparison with the Fresnel length of 
the smallest inhomogeneities. In the geometric optics ap
proximation we can write32 

¢ (r3' p)~!k f' ds 1J(t), (24) 

where 1J(t) is the relative permittivity fluctuation at the point 
t along the ray path s between p and r3. By using (24) we 
obtain 

(¢ (r3' p)¢ (r, r2) 

~ ~ [' dS[ dt b (t, T), (25) 
4 p r, 

whereb (t, T)==(1J(t)1J(T). When I (1J2)<1, it can be shown33 

that the actual ray paths in (25) can be approximated by 
straight lines. 

In order to estimate the magnitude of the right-hand 
side of (25), we now assume that the permittivity fluctuations 
are statistically stationary, sothatb (t, T) = b (t - T). We fur
ther assume, for purposes of estimating (25) only, that 
b (t - T) is of order of (1J2) for It - TI d and is negligibly 
small for It - TI > I, where 1 is the effective correlation 
length of the permittivity fluctuations. Then, we find that 

(¢ (r3' p)¢ (r, r2)~! k 2 (1J2)f2, (26) 
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One can readily convince oneself of the validity of (26) by 
assuming that the vectors r3 - P and r - r2 are arbitrarily 
directed straight lines, assuming 
b (; - -r) = (772 }exp[ - (; - T)2 / [2] and then actually per
forming the integrations in (25). Equation (26) is a good esti
mate of the magnitude of(25) except for the pathological case 
when the path r3 - P is parallel to r - r2 and both lines are 
overlapping, or nearly overlapping, over distances much 
greater than l. In this case one finds (t/> (r3' pIt/> (r, 
rz) - k 2( 77 2)LI 14, where L is the distance over which the 
paths r - r 2 and r3 - P are overlapping. Because kl>l, so 
that individual forward scatterings (of photons) by the inho
mogeneities are much more likely than individual backscat
terings, this special situation arises only when the observa
tion point is in the backscatter cone. That is, the field at an 
observation point outside the backscatter cone is highly like
ly to be the result of multiple forward scatterings [Fig. 2(A)], 
a situation where r 3 - P and r - r 2 are likely to overlap only 
for distances of order 1 [the segments r3 - p and r - r2 may 
each consist of a number of the individual scatterings in Fig. 
2(A)]. It is highly unlikely that this field is produced by mul
tiple forward scatterings plus two (or any even number) 
backscatterings. This situation is depicted in Fig. 2(B). How
ever, in the backscatter cone .dOB - (k[ )-1, it is possible that 
the field is due to either multiple forward scatterings or mul
tiple forward scatterings plus a single backscatter, as depict
ed in Fig. 2(C). In this latter case the paths (the forward 
scattering portion would correspond to r3 - P and the back
scattering portion to r - r2) may overlap over a distance of 
order of the size of the medium in the z direction. Conse
quently, for observation points in the backscatter cone, the 
phase correlation in (23) is of order k 1 (772)L/ /4, which may 
be large.34 Consequently, if the observation point lies in a 
cone of angle.d 0 B - (kl ) - I centered about the negativez axis, 
the phase correlation in (23) may be large and (26) is not a 
sufficient condition for decoupling the averages. In this case 
the general expression in (13) must be employed. 

Arguments similar to those in Eqs. (24)-(26) can be used 
to show that each of the other three terms in (23) is also of 
order k 2 (r/) 12/4, except in the backscatter cone. Conse
quently, ifk 2(772 }J2< 1, we may approximate Eq. (14) by (22) 
except in the backscatter cone. A similar proof may be ap
plied to the other terms in (13). Hence we find that if35 

k 2(r/)F<I, (27) 

then, except in the cone .d (J B centered about the negative z 
axis, we may approximate (13) by 

k 4sin
2
¢ foo I Ps (m) = 2 ... d 3rd 3r' b (r, r')F (r, r') 

(41TR) - 00 

1216 

X exp [ - ikm·(r - r') 1 

+ k Ssin2t f'" ···Id 3rd 3r .d 3r2d 3r3 b (rll r3) 
(41TR) - '" 

Xb(r, r 2)exp[ - ikm·(r - r.l]{2Re[ (G(r, T2) 

xG(r2' r3)}F(r3, r l ) + (G(r, r3)G(r3' r2)}F(r2, rIll 

+ (G(r, r2)G*(r l , r3)F(rz' r3) 

+ (G(r, r3)G*(r., r2)}F(rJ , r2ll. (28) 
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FIG. 2. Ray paths for some potential scattering events. 

Thus we have now expressed the scattered intensity in terms 
ofthe correlation and Green's functions ofthe scattering 
medium and the mutual coherence function 
F(r l ,r2)=(e(r l )e*(r2 ) of the field within the medium. Equa
tion (28) includes multiple scatter within the medium and is 
valid for the intensity scattered in any direction except the 
backscatter cone oJ 0B' Within the cone .d OB' the condition 
k 2(772)/2<1 is not a sufficient one to decouple the ensemble 
averages, and one must then use the exact results in (13), 
which involves the evaluation of the fourth moment 
(GGee*) rather than the second moment (GG ) (ee*). In the 
next section we will show that the first term in (28) dominates 
the scattering everywhere except in the backscatter cone, 
.d OB' and in a cone around the forward-scatter direction. We 
will also show that only the first and fourth terms in (28) are 
important for forward scatter. 

A similar analysis applied to the result in (6) shows that 
if k 2(172)/2/4< 1 we can approximate (6) by 

(Es) = - k 4(£ - m cos¢) foo ... I d 3rd 3r' b (r,r') 
4rrR - 00 

X (G(r,r')}(e(r')} exp( - ikm·r + ikR). (29) 

IV. SIMPLIFICATION OF EQUATION (28) 

In this section we will show that if k 2 (7]2) [2 < 1, the con
tribution from the first term in (28) dominates the intensity 
scattered in any direction except within the forward scatter-
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ing (and, as noted earlier, the backscatter cone..10B ). In order 
to prove this, we shall assume that b (r,r')=( 1](r)1](r') is lo
cally stationary (statistically) and can be written as 

b (r,r')~ (1]2) C ((r + r')/2) B (r - r'), (30) 

where B (r - r') changes significantly over distances Ir - r'l 
of order I, but C ((r + r')/2) changes significantly over dis
tances Ir + r'l which are very much larger than I. Also, 
C (O)=B (0)= 1. The mutual coherence function r (r,r') may 
also be written as a locally stationary function. In particular, 
we write 

r(r,r')~r((r + r')l2,r - r') exp[iho(r - r')], (31) 

where we have explicitly extracted the propagating portion 
ofr. 

Finally, for the purpose of estimating the relative sizes 
of the various terms in (28), we will use the approximation 

(G (r,r2)G (r2,r3)~( G (r,r2) (G (r2,r3) 

~Go(r - r2)GO(r2 - r3) exp( - Ir - r211 

Xp~ - Ir2 - r31Ip~). (32) 

It is demonstrated in Appendix C that this approximation 
may be used provided k 2(1]2)/ 2/4<1. 

If (30H32) are substituted into (28) and then a number 
of coordinate transformations are made, we obtain 

(71 2
) k 4 sin2¢ 

P (m) - ~'----:--'-
s - (41TR)2 

X [11(m) + 12(m) + 13(m) + 14(m) + 15(m)], (33) 

where, provided B ( - s) = B (S), we have 

00 00 

1,(m) = I II d 3UC (u) I I I d 3V B (v)r (u,v) exp( - ikaov), 

(34) 
00 

12(m) = 2(712
) k4 Re J-.J d 35d 3r B(T)Go(T)Go(S) 

Xexp[ - ikm°T + ik aoS] 
00 00 

X I II d 3
u C(u)C(u - v/2 + T/2 - S)I I I d 3v 

xB (v)r(u,v) exp( - ikaov), (35) 
00 

13(m) = 2(1]2) k 4 Re J-.J d 3sd 3rB (T + S/2) 

X Go(S)Go(T - S/2) exp[ - ikmo(T + Sl2)] 

xC (u + T/2 - Sl4)C (u + T/2 + v/2 + Sl4) 
00 

X I I I d 3vB(v + T - Sl2)r(u,v) exp( - ikaov), 

00 (36) 

14(m) = (T/2)k4 J-.J d 3sd 31" B(T)B (S)Go(T)G:(S) 
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00 

Xexp[ - ikmo(T - s)1 J-.J d 3ud 3V 

XC(u - v/2 + Sl2) 

XC(u + v/2 + T/2)r(u,v) exp( - ikaov) , (37) 
00 

15(m) = (T/2)k 4 J-.J d 3sd 3rGo(T)G ,~(S) 

00 

xexp[ik aOT + ik som] I I I d 3U C(u + s/2) 

00 

XC(u-rI2) III d 3vB(v-s)B(v-T) 

xr(u,v) exp( - ikaov) , (38) 

and a==m - i, a = m - 2£, and 
Go(u) = Go(u) exp( - ulp~). 

Now because C (T) varies much more slowly than B (T) 
and Go(T), we may approximate terms of the form 
C (u + T + S + v)B (s)B (V)Go(T) by C (u)B (s)B (V)Go(T). Fur
thermore, because C (T) is very slowly varying in comparison 
with the smaller of the medium correlation length I and the 
field correlation length, we see that [for purposes of estimat
ing the relative sizes ofthe terms in (33), but not for precise 
calculations] 

00 00 

I I I d 3U C
2
(u)F(u) I I I d 3

uC(u)F(u) , (39) 

where 
00 

F (u) = I I I d 3V B (v)r (u, v) exp( - ikaov) . (40) 

By using the aforementioned approximations we can esti
mate 12 to 15 as 

00 

12(m)-2(T/2)k 41,(m) Re J-.J d 3sd 31" 

XB(T)Go(T)Go(s) exp[ - ikm°T + ik aoS] , (41) 
00 

13(m)-2(T/2)k 4Re J-.J d3sd3rB(T+Sl2) 

X Go(S)Go(T - Sl2) exp[ - ikmo(T + Sl2)] 

00 00 

X I I I d 3U C (u) I I I d 3V B (v + T - Sl2) 

xr(u,v) exp( - ikaov) , (42) 
00 

lim)-k4(1]2) J-.J d 3
sd 3r B(T)B(S) 

x Go(T)G:(S) exp[ - ikmO(T - s)] 
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00 00 

x I II d 3U C(u) I II d 3V f(u,v) exp( - ikuov) , 

(43) 
00 

I~(m)_k4(1]2) J-.J d 35d 37 GO(T)G:~(S) 

xexp[ikfJoT + ikmoS] 

00 00 

XI I I d
3
u C(u) I II d

3
vB(v - s)B(v - 1') 

xf(u,v) exp( - ikuov). (44) 

We will now employ (41)-(44) to prove that I n III<1 (for 
n = 2,3,4,5) for all scattering directions except the forward 
scattering cone, provided k 2 (1]2) 12 < 1. 

We begin with an estimate of 121/1, In order to do this, 
we recall that Go(7) = (41T7)-1 exp(ik7 - T/p¢», where 
7 = 11'1, assume thatB (1') = exp( - 711) and then use the re
sults in Appendix D to calculate the integrals on d 35 and 
d 37 in (41). We obtain, after taking the real part 

12 _ 15[ 1 - cos e + 152/4 + (1]2)/32] 

II 4[(I-cose +15 2/4)2+15 2/4] , 
(45) 

where 

(46) 

From (45) it is evident that, for all values of the scattering 
angle e, the ratio 121/1 is of order 15 = (1]2) kl. Consequently, 
as long as (1]2)kl< 1, we may ignore 12 in comparison with II' 
Because kl> 1 the condition 15< 1 is automatically satisfied if 
our previous assumption that (1]2)k 2/2<1 holds. 

B. Ratio 1:/11 

The integrals in (42)-(45) are not as simple to evaluate as 
the one in (41) and to estimate the ratio IJII' for n = 3, 4, 
and 5 we will need to consider separately the limits when the 
coherence length Po of the mutual coherence function F is 
small and large in comparison with the correlation length 1 of 
the permittivity fluctuations. In the limit whenpo<l, we can 
approximateB(v + l' - Sl2)F(u,v)byB(T - Sl2)F(u,v),etc. 
Consequently, (42) can be approximated by 

00 

I3(m)~2(1]2)k4Il(m)ReJ-'J d 35d 3
7 

xB (1' + Sl2)B (1' - Sl2)O'o(s)O'o(T - s/2) 

xexp[ - ikmo(T + Sl2)] , (47) 

where 
00 00 

Il(m)~ J J J d 3u C(U)J J I d
3
vF(u, v) 

X exp( - ikuov). (48) 
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In the opposite limit when Po>1 we may approximate 
F(u,v + T)B (T)byF(u,v)B (1') andF(u,v)B (v)byF(u,O)B (v), 
etc. Consequently, in this limit, (42) becomes 

00 

I3(m)-2k4(1]2)Re J-.J d 35d 37 

xB (1' + (12)O'o(S)O'o(T - (/2) exp( - ik sos - ikToi) 

00 

X I J J d 3V B (v) exp( - ikuov), (49) 

where s = m - i/2. Also, when Po>l, (34) can be approxi
mated by 

00 00 

II(m)~ J J J d 3vB (v) exp( - ikuoV)I I Id 3uC(U).F(U,O). 

(50) 

We would now like to expressI3(m) in terms of II(m) in (49) so 
that we can estimate the ratio 131/1, Therefore, for purposes 
of estimation only we assume that F (u, v) can be written as 
F(u,v)~FI(U)T2(V). If this is done, we obtain from (49) and 
(50) the result 

00 

I3II1-2(1]2)e Re J-.J d 35d 37 

xB (1' + s/2)O'o(s)O'o(T - s/2) 

XF2(T - Sl2) exp( - ik sos - ikToi). (51) 

The integrals in (47) and (51) can be evaluated by substi
tutingB (s) = exp( - 5 II) ,0'0(7) = (41T7)-1 exp(ikT - 7IP¢», 
and then using the approximations in Appendix E. The de
tails are quite laborious so we present only the conclusion: 
For all values of e and for either Po<1 or Po>l, we find 

1131111 Sk 2(1]2)/2. (52) 

Consequently, when k 2(1]2)/2< 1 we may ignore I3(m) in 
comparison with II(m) for all scattering directions. 

C. Ratio 1,/11 

In estimating the magnitude of I 4(m), we again consider 
separately the limiting cases whenpo<1 andpo>l. IfPo<l, we 
readily obtain from (43) the result that 

00 2 

I4(m)III(m)~k4(1]2) I II d 37B(T)O'o(T) exp( - ikm°T) . 

(53) 

By using the results in Appendix D the integrals in (53) can 
be evaluated: we find for all values of e that 

II~III Sk 2 (1]2)/2. (54) 

The opposite limit when Po>1 is more difficult to evalu
ate, and we must consider separately the subcases when 
Po< V 1/3 and Po> V 1/3. The details of the analysis are fairly 
involved so we will only summarize the results. These are: 
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(i) If V 1/3>Po>1 and () > (kl )-1, then 
1/4/111- (r/) (kl)2(1 /Po)<k 2/2(1/2); 

(ii) if V 1/3>PO>1 and () < (kp)- I, then 
1/4/111-(kl)2(1/2)(poIl)2; 

(iii) if Po> V I/3 and (» (kV I/3 )-I, then 
1/4/111-(I/VI/3)(kVI/3)-4<1; 

(iv) ifpo>V I/3 and ()<{kV I/3)-I, then 
1/4/111- (1/2)(k 3V}(kl)- t. 

From the aforementioned results, along with (54), we 
see that if (1/ 2 )k 2[2< 1, we can ignore F 4(m) in comparison 
with It(m) in all directions except the forward-scatter cone. 
In the forward-scatter cone 14 may be much larger than I J• 

D. Ratio Is/I, 

In the limit when the field correlation length Po is much 
less than the index-of-refraction correlation length I, we may 
approximateP(u,v)B(v - s)B{v - r) by F(u,v)B( - s)B-
( - T) = F{u,v)B (s)B (T) in Eq. (44). Consequently, upon us
ing (48) for II(m), we may approximate Is(m) as 

00 

Is(m)/II(m)~k4(1/2) r·J d 3td 3rB(s)B(T) 

X Go(r)Go(s) exp[ik aOT + ikm°s]. (55) 

The integrals in (55) can be evaluated by using the results in 
Appendix D. It is found that for all () 

I/s/ldS(1/2 )k 2
/2. (56) 

We next consider the limit whenpo>l. If we make the 
coordinate transformation v = eI» + T, we may rewrite (44) as 

00 

Is(m) = k 4(1/2) r·J d 3td 3r Go(r)G~(t) 

X exp[ - iki'T + ik Som] 
00 00 

X f f f d 3
uC(u) f f f d3tPB (eI»)B (eI» + T - S) 

X F (u,eI» + T) exp( - ika°tP ). (57) 

Because Po>l, we may approximate 
B(eI»)B(eI» + T - s)F(u,eI» + T)byB (eI»)B (T - ilF(u,T).If,for 
purposes of estimation only, we again write F(U,T) 
= F J(u)F2(T) and use (50), it is possible to rewrite (57) as 

Is(m)//l(m) 
00 

_k4(1/2) r·J d3rd3tGo(r)G~(s)B(T - S)F2(T) 

X exp[ - iki'T + kmaSJ. (58) 

By using the results in Appendices D and E the integrals in 
(58) can be approximately evaluated. For all ()it is found that 

I/s/Id -k/ (1/2). (59) 

Because kl>l, so that kl (r/><k 2/2(1/2), we may therefore 
state that for both Po>1 and Po</ the term Is(m) will be negli
gible in comparison with I I (m) if (1/2 )k 2[2 < 1. 
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V. SUMMARY AND DISCUSSION 

The results presented in Eqs. (45H59) have demon
strated that if k/> 1 but 

k 2(1/2)/2<1, (60) 

we may ignore 12,/3,/4 , and Is in comparison with II in Eq. 
(33), provided that the observation point does not lie eitherin 
the backscattercone~()B orin the forward-scatter cone. The 
forward scatter cone is defined as () <~()r where 
~()r = (k V 1/3)-1 for the case when Po> V 1/3 and ~()r 
= (kpo) - I whenpo< V I 13. It is shown elsewhere that Eq. (60) 

is physically equivalent to the requirement that the mean 
free path between scatterings is large in comparison with the 
size of the random inhomogeneities. Therefore, when the 
aforementioned conditions are satisfied, we may use (33) to 
write the scattered intensity as 

00 

Ps(n) = [(1/2)e sin2 ¢/(41TR )2J r.J d 3ud 3v 

XC(u)B(v)F(u,v) exp( - ikaov), (61) 

provided the correlation function b (r,r') can be decomposed 
into the form ofEq. (30) and Fcan be written in the form of 
(31). When this is not possible, one must write 

00 

Ps (m) = [k 4 sin2 ¢/(41TR f 1 r·J d 3rd 3r' 

X b (r,r')F (r,r') exp[ - ikm·(r - r')]. (62) 

Within the forward-scatter cone, Eqs. (61) and (62) are 
not valid because 14(m) is then not negligible in comparison 
with II(m) in (33). However, 12, 13, and Is are still negligible, 
provided that k 2/2(1/2)<1. Consequently, inside the for
ward-scatter cone we must retain both the first and fourth 
terms in Eqs. (28) or (33). If we apply Eq. (32) to the fourth 
term in (28), we have (for () <.J()r) 

00 

Ps(m) = [k 4sin2¢/(41TR )21 r·Jd 3rd 3rl 

Xb (r,rIlF(r,rl)exp[ - ikm·(r - rIlJ 
00 

+ [k 8sin2¢/(41TR fl r·J d3rd3rld3r2d3r3 

Xb (r l,r3)b (r,r2 )(G (r,r2) 

X (G*(r l,r3)F(r2,r3)exp[ - ikmo(r - rd]. 

Equations (63) and (28) can also be used to compute the 
quantity.JPs = ([Es(m) - (Es) Y). The result is (for 
() <.J()rI 

00 

.JPs = [k4Sin2¢/(41TRflr·Jd3rd3rt 

Xb (r,rtlF(r,rtlexp( - ikm·(r - rln 
00 

+ [k 8sin2¢/(41TR )2] r.J d 3rd 3rt ,d 3r2d 3r3 

(63) 
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Xb (r,r2)b (r l ,r3)(G (r,r2) (G *(r l ,r3) 

x [r(r2,r3) - (e(r2)(e*(r3)] 

xexp[ - ikm-(r - r l )]. 

(64) 

Note that, in the limit when the field coherence length is 
large in comparison with I and V 1/3, we have 
r (r2,r3)~(e(r2) (e*(r3) so that the second term in (64) is 
negligible. 

Equations (61H64) include all orders of multiple scat
tering within the medium. That is, the results in (28) and (33) 
are equivalent to the sum of all terms in a Born series approxi
mation to the integral equations for scattering, and (61H64) 
are valid approximations to (28) and (33), provided that the 
observation point does not lie in the backscatter cone A () B' 

When the observation point lies in the backscatter cone, one 
must use the most general expression for the scattered inten
sity given by Eq. (I3). In order to evaluate (13), one must 
calculate fourth moments of the field quantities, as opposed 
to second moments for other scattering directions. 

It is sometimes convenient to express B (v) and r (u, v) as 
Fourier transforms. We therefore write 

00 

(r/)B (v) = Iff d 3K <P (K)exp(iK-V), (65) 

00 

r(u,v) = II fd 3
K f(u,K)exp(iK.V), (66) 

where <P (K) is the wavenumber spectrum of the relative per
mittivity fluctuations. Note that <P (K) = 4<P n (K), where <P n (K) 
is the wavenumber spectrum ofthe index-of-refraction fluc
tuations which is used by many authors. If (65) and (66) are 
used in (61), the result is 

00 

p. (a) = (1Tk 4sin2.p)/2R 2) r.J d 3ud 3K 

- 00 

xC (u)<P (ka - K)f (U,K). (67) 

The single-scatter limit can be recovered from (5J) by 
realizing that for sufficiently large correlation lengths r (U,K) 
will peak around K = O. Consequently, we may expand 
<P (ka - K) in a Taylor series around K = 0 as 

<P(ka - K) = <P(ka) - [(K-Vp)<P(P)]p=ka + .... (68) 

If (68) is used in (67), the result is 
00 

p. (a) = (1Tk 4sin2.p/2R 2)<P (ka) f If d 3U 

xC (u)r (u,O) + "', (69) 

where we have used (66) to replace S S Sd 3K f (U,K) by r (u,O). 
Consequently, we see that the usual l

-
5 single-scatter (Book

er-Gordon formula) result is simply the first term in a Tay
lor-series expansion of our more general result. 

Although we have discussed primarily continuum in
homogeneities, the generalization to the case of discrete par
ticles is straightforward. In this case the correlation length I 
is replaced by the particle size D, etc. 
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VI. AN EXAMPLE 

I t is interesting to examine the form of the results for the 
case when a plane wave is incident along the z axis on a 
volume V containing statistically homogeneous turbulence 
satisfying a Kolmogorov spectrum, 

<P(K)=0.132Cn2/~+ 1/L~)11/6. (70) 

Then it can be shown that the mutual coherence function is 
given by28 

r(r,rl)~r(u,v)exp[iki.(r - rlj], 

where 

r(u,v) = exp[ - PolvlIsI3uz - rlvz I], 

(71) 

(72) 

and u = (r + rtl/2, v = r - r l , Vi is the component ofv 
transverse to the z axis, Po = 1.46 k 2Cn2, 
r =0.39k 2Cn 2L0513, Cn 2 is the index-of-refractionstructure 
constant for the turbulence, and Lo is the outer scale size of 
the turbulent eddies. For Kolomogorov turbulence, the con
dition (1]2)k 2/2< 1 becomes k 2Cn 2Lo 8/3 < l. 1((72) is used in 
(61)and we make use of the factthat, becauser(u,v) is multi
plied by B (v), the term rlvz I in (69) is at most of order 
0.39k 2Cn2Lo 8/3 < 1 (because k 2( 1]2)/2 = 0.39k 2Cn2Lo 8/3 < 1 
by assumption), we find, provided that the observation point 
does not lie in either the forward-or backward-scatter cones, 

00 00 

P.(a) = (k 4sin2.p14R 2) J J J d 3UC(u)J J dKxdKy 

X<P(Kx,Ky,kaz)H(uz,IKl - kalil, (73) 

where 

H (uz.t) = 100 

v dv Jo(tv}exp( - Pouzv5/3) (74) 

and J o( ••• ) is the zero-order Bessel function. In a future paper, 
(73) will be evaluated and compared with the single scatter 
result in Eq. (69), for a variety of conditions. 

APPENDIX A 

Here we will derive the scattering formula in Eq. (1). 
The vector Maxwell-wave equation can be written as 

(V2 + k 2)e(r) = -1]k 2e(r) - V[(e-V1])/(I + 1])]. (AI) 

where the relative permittivity EI Eo = 1 + 1](r). Equation 
(AI) can be rewritten in integral form as 

v 

Xexp(ik Ir - r'I)llr - r'l· (A2) 

In the Fraunhofer zone of the scattering volume shown in 
Fig. 1, Eq. (A2) becomes 

E.(m) = (1!41TR)I I Id 3r[k 21]e + V[(e,V1])I(I + 1])] I 
Xexp(ikR - ikm-r), (A3) 

where m and R are shown in Fig. l. We now set 
u = (1 + 1])-le·V1] and v = exp( - ikm·r) and then use 
V(uv) = uVv + vVu, plus the theorem from vector integral 
calculus 
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I IV I V(uu)d 3r = I r uvn dS, (A4) 

V s 

where S is any surface enclosing the volume V and n is the 
unit normal to S. Upon using these results, along with the 
fact that 71(r) = 0 on S, we find that (A3) becomes 

Es (m) = (k 141TR ) I II d 3rl71ke + im [(e,V71)1(1 + 71)] j 

Xexp( - ikm'r + ikR). (A5) 

We next set w = e exp( - ikm'r) and I/J = In(1 + 71), and then 
use the vector identity V'(w I/J) = I/JV·w + w·VI/J along with 
Gauss'theorem 

I J I V·ad
3
r= I Ia.ndS. (A6) 

v s 

Upon applying these results to the second term in the square 
bracket is (A5), along with the fact that 71 = In( 1 + 71) = 0 on 
S, we obtain, after some manipulation, 

Es(m) = (kI41TR) II J d 3r 

X [71ke - kl/Jm(m·e) + imI/J(e'VI/J)] 
X exp( - ikm'r + ikR ). (A7) 

We next expand I/J = In(l + 71) in a Taylor series in 71<1 as 
I/J~71 - 71212 + .... If this is done, we obtain, after some dif
ferentiations, the result 

Es(m) = (k 2/41TR)I I Id3r71[e - m(m·e)] 

X exp( - ikm'r + ikR ) 

+ (ikm/81TR ) exp(ikR ) I I J d 3re·V 

X [712exp( - ikm·r)] 
+ terms of higher order in 71. (A8) 

If we apply the result in (A4), along with the fact that 71 = 0 
on S, to the last term in Eq. (A8) the result is 

Es(m) = (kI41TR) II Jd 3r 

X Ik71[e - m(m·e)] - !im712V'ej 

X exp( - ikm'r + ikR ) + .... (A9) 

Finally we use the Maxwell Equation V'Ee = 0 to rewrite 

V'e = (1 -71)-le·V71~e·V71. 

Therefore, Eq. (A9) becomes 

E.(m) = (k 2/41TR)I II d3r71(r)[e(r) - m(m·e)] 

X exp( - ikm'r + ikR ) 

+ (ikmI81TR ) I II d 3r 71
2
(r)e,V71 

X exp( - ikm·r + ikR ) + .... (AW) 

The second term in (AlO) is of order 712(kl )-1 in comparison 
with the first, where 1 is the spatial size of the permittivity 
fluctuations. Because 1711 < 1 we see that unless kl < 1, the sec
ond term in (AW) is negligible in comparison with the first 
term. Consequently, this is all that we have retained in Eq. 
(1). 
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APPENDIX B 

The scalar wave equation for propagation in a random
ly inhomogeneous medium is 

(V2 + k 2[1 + 71(r)])e(r) = 0, (BI) 

where e(r) is the field strength, k is the vacuum wavenumber, 
and 71(r) is the fluctuation in relative permittivity. Also, the 
Green's function for propagation in this medium satisfies 

I V2 + k 2[1 + 71(r)] j G (r,r') = 8(r - r'), (B2) 

where 8 (r - r') is the three-dimensional Dirac delta 
function. 

Now we operate on (BI) with the variational derivative 
8 1871(r'), and use the result that 

871(r) = 8 (r - r'). (B3) 
871(r') 

Then (B 1) becomes 

! V2 + k Z[ 1 + 71(r)]} 8e(r) = - k 2e(r)8 (r - r'). 
871(r') 

Upon comparing (B4) with (B2) it is evident that 

8e(r) = _ k 2e(r')G (r,r'). 
871(r') 

(B4) 

(B5) 

Similarly, we can take the variational derivative of (B2) 
to obtain 

IV2+k2[I + 71(r)]j 8G(r,r') = -k 2G(rr')8(r-r"). 
871(r") , 

(B6) 

Upon comparing (B6) with (B2), and using the fact that 
G (r,r')8 (r - r") = G (r" ,r')8 (r - r"), we see that 

_8_G-,-(r_,r-,-') = _ k 2G (r,r")G (r" ,r'). 
871(r") 

APPENDIXC 

(B7) 

By using (16) the quantity gl = (G (r,r2)G (rZ,r3) in (22) 
can be rewritten as 

gl = GO(r,r2)GO(r2,r3) 

X (exp[icP (r,r2) + icP (r2,r3)]). (CI) 

If cP is assumed to be a zero-mean Gaussian random variable, 
the ensemble average in (CI) can be performed to give 

gl = (G(r,r2)(G(rZ,r3) 

(C2) 

where 

(G (r,r2) = GO(r,r2)exp( - !(cP 2(r,r2)). (C3) 

The exponent in (C2) can be calculated by using the result in 
(26). We see that unless the path from r2 to r completely 
overlaps the path from r3 to r2 the quantity 
(cP (r,r2l<P (r2,r3)~k 2(712 )/2/4< 1. Consequently, 

gl = (G(r,r2)(G(r2,r3)· (C4) 

It is also desirable to calculate the average (cP 2(r,r2) 
which appears in (C3). By using (24) we find 
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(C5) 

Ifwe use {3~) in (CS) and assume C [(~ + T)/2] is nearly con
stant and equal to unity over distances of order of Ir - r21, 
we find 

(¢ 2(r,r2)~!k 2(7]2) Ir - r21 f: "" dsB (S) 

(C6) 

Consequently, if we define p", = 8 (k 2 (7]2) I) - I, we can write 

(G(r,r2) = GO(r,r2)exp( -Ir - r 2 1Ip",). (C7) 

Note that because k 2(7]2)/2 is assumed to be small in com
parison with unity, the exponential term in (C7) can be ap
proximated by unity when Ir - r21 is less than or of order of 
the correlation length I. 

APPENDIX 0 

Let us evaluate integrals of the form 

S = f f f d 3t Go{t )exp{ - yt + ikp·t). (Dl) 

By substituting Go{t ) = {41Tt )-'exp(ikt ) and letting p lie along 
the polar axis in a spherical coordinate system in 
d 3t = t 2 sinO dtdOd¢ space, we can rewrite (D 1) as 

S = ~ L"" t 2dt exp(ikt - yt ) L'" dO sinO exp(ikpt cosO ), (D2) 

wherep = Ipl. TheintegralsonOandtarereadilyperformed 
to give 

S=[y-ik(1 +p)]-'[y-ik(l-p)]-'. (D3) 

For Pi:- 1 and k>y, we have 

S~[k2(p2 - 1)]-1. (D4) 

For p = 1 and k>y, we get 

S~i(2yk)-'. (D5) 

APPENDIXE 

In order to evaluate (49) and (51), we are required to 
evaluate integrals of the form 

J = f f f d 3'1' exp( - Til - i2km°T) 

x f f f d 3t exp{ikt - til + ik 12T - tl)lt 12T - tl, 

(El) 

whereT = ITI andt = Itl. The integral in (El) cannot be eval
uated exactly, but its magnitude can be estimated by splitting 
the range of integration on dt into two domains: one from 
It I = Oto 12TI and the other from t = 12TI to infinity. If this is 
done and we approximate 12T - tl by 12TI for 0< It I < 12TI 
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and by t for It I > 12'1'1, we obtain 

"" 
J -417' f f f d 3'1' exp( - Til - i2km·T) 

X [fT (tdt 12T)exp(ikt - til + i2kT) 

+ l~ dt exp(i2kt - t 1/) 1· (E2) 

The integrations in (E2) are readily performed to give an 
order of magnitude estimate of the value of J. 
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Shift operator techniques for the classification of multipole-photon states. 
x. p r eigenstate and eigenvalue determination in G2 
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On account of previously derived relations between quadratic shift operator products in the 
group G2, part of the eigenvalue spectrum of the scalar shift operator P ~ is derived in closed 
form. The corresponding eigenstates which are closely related to the octupole-phonon states are 
defined in terms of angular momentum lowering shift operator actions upon the maximum 
angular momentum state. 

PACS numbers: 63.20.Dj, 02.20.Nq 

I. INTRODUCTION 

Previously we have established in two separate pa
persJ,2 (to be referred to as IV and IX, respectively) relations 
which connect quadratic products of the shift operators P ~ 
(Ik 1 <5) made up with G2 group generators. In IV we consid
ered scalar product operators of the form P 1-}k P t k 

Uk 1 <5) together with the G2 Casimir V*, whereas the nons
calar extension leading to 25 independent relations among 
products of the formP /j P l+k(lil,lk 1<5; - 1O<J + k<O) 
has been treated in IX. 

In the present paper we want to derive formulae ex
pressing the P? eigenvalues and eigenstates by appropriate 
use of both the scalar and the nonscalar relations. Exactly as 
for the R(5) case3 and the SU(3) case,4.S it is the latter type of 
relations which permits a step-by-step determination of con
secutive eigenvalues and eigenvectors, hence avoiding cum
bersome tree generation. Moreover, in the R(5) treatmene it 
has been shown that even the I-multiplicity of states can be 
obtained on account of shift operator calculations. Here, for 
the sake of brevity, we shall not complete the argumentation 
to that point and therefore we shall merely assume at each 
step that the precise number of degenerated states is known 
in advance. Also we shall be brief at those places where the 
reasoning is analogous to the one expounded in the context 
ofR(5).3 

Looking at the symmetric irreducible representations 
of G2, which are closely related to the nuclear octupole
phonon states, one is struck by the abundancy of I-degener
acies even for the higher angular momentum states. This fact 
necessitates a compact notation by which redundant repeti
tion in defining eigenstates from shift operator actions can be 
avoided. Therefore, let us introduce in a general way coeffi
cients a~1_ k [/,(11] by means of the following formula: 

pl-klv,/(i) = La~Ld/,(i)]lv,l-k,Ul) (0<k<5). (1.1) 
j 

Herein the states I v,l,(i) (I v,l - k,Ul) ) where i U) takes on 
integer values between one and the number indicating the 1-
mUltiplicity of states with seniority v and angular momen
tum I (I - k ), form a set of orthonormalized eigenstates of P ~ 

"Research Associate N.F.W.O. (Belgium). 
·'Research Assistant N.F.W.O. (Belgium). 

(P ~ _ k)' The additional label i between parentheses shall be 
omitted whenever Iv,l> is not degenerated. We also define 

P~lv,I,(i) = a~~llv,I,(i), (1.2) 

showing that a~~1 denotes the eigenvalue of P ~ with respect to 
the state I v,I,(i). As a consequence of Hermiticity properties 
of the shift operators it has been demonstrated by Hughes 
and Yadegar6 that 

L la~L d/,(IIW = (!3k,l- k)-I(V,I,(i)IP i~_kk P l-klv,I,(I) 
j 

with 

2/+ 1 
!3k,/ = 2/ + 2k + 1 

(1.3) 

(1.4) 

In the following sections we shall derive closed expres
sions for all eigenvalues a~~1 (3v - 5<1<3v) starting at the 
highest possible angular momentum I = 3v and proceeding 
thereafter by shifting downward the I-value. 

II. THE HIGH ANGULAR MOMENTUM STATES AND 
THEIR EIGENVALUES 

The determination of the eigenvalues a •. J • of the nonde
generate maximum angular momentum states Iv,3v) 
(v = 0,1,2, ... ) is straightforward if we assume that Iv,3v - 1) 
states are nonexistent. Indeed, when we let Eqs. (IV.3.2) and 
(IV.3.3) act upon Iv,3v), use the property that for all accept
able I-values (and possible i-values) 

V*lv,I,(i) = - v(v + 5)/3, (2.1) 

and mUltiply on the left by (v,3v I, we immediately obtain, on 
account of the normalization of states, a system of two qua
dratic equations in the unknown a.,3.' This yields as a 
unique solution the expression 

a •. J • = -, yj v(v + 1)(2v + 1)(3v + 1)(3v + 2)(6v + 5) 

(v>O). (2.2) 

The unambiguous derivation of a.,J. _ 2 eigenvalues is 
the first example where relations between nonscalar product 
operators playa significant role. The nondegenerate and 
normalized state Iv,3v - 2) is proportional to the action of 
P J~ 2 upon Iv,3v). Following (1.1), (1.3), and (1.4) thepropor
tionality factor a.,J. _ 2 [3v] satisfies 
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[ 
6v + 1 + 2 _ 2 ] 112 

la.,3._2[3v]l= 6V_3(V,3VIP 3.-2 P 3• Iv,3v) . (2.3) 

Next, applying Eq. (1X.2.6) on Iv,3v), we obtain after some 
cancellations 

[3(v + 1)(2v + 1)(3v + 2)(6v + 5)P~._ 2 P 3--;' 2 

- (2v - 7)(3v - 1)(3v + 1O)(6v + l)P 3--;' 2 P~v 

+ (23/7)yIj v(v + 1)(2v + 1)(3v - 1)(3v + 1) 

X (3v + 2)(6v - 1)(6v + 1)(6v + 5) P 3--;' 2] Iv,3v) = O. 
(2.4) 

Since p~.lv,3v) = a.,3v Iv,3v) and a v,3. is already known, it 
directly follows from Eq. (2.4) that 

a v,3v-2 = - (2y1j121)v(3v - 1)(3v + 1) 

X(6v + 1)(6v2 + 23v -74) (v:> 1). (2.5) 

Finally, the action ofEq. (IV.3.4) upon Iv,3v) delivers, after 
substitution of the expression for p~.lv,3v) and multiplica
tion on the left by (v,3vl, the matrix element 

(v,3vIP j!; =- 2 P 3--;' 2Iv,3v), i.e., 

(v,3vIP 3t=- 2 P 3--;' 2Iv,3v) = (2334/5)V4(V - 1) 

X(2v + W(3v - W(3v + 1)2(3v + 2)2(6v + 1) (v:> 1). 
(2.6) 

Hence, the normalization factor a.,3v _ 2 [3v] is in absolute 
value fully determined by (2.3) and (2.6). Ifwe impose the 
reality of coefficients, the choice of sign is arbitrary. So let us 
put 

a.,3._2 [3v] = + lav,3._2[3v]l· (2.7) 

For a fixed seniority number v:>2 the state Iv,3v - 3) is 
always nondegenerate. There are, however, two ways to ar
rive at this state by shift operator actions which lower the 
angular momentum. Indeed, we can either let P 3--;' 3 act upon 
Iv,3v) or P 3--;'~ 2 upon Iv,3v - 2). The corresponding nor
malization factors are easily seen from (1.3) and (1.4) to 
satisfy 

la.,3.- d3v] I 
= [6V+ 1 (v,3vIP 3t-=-3 P 3--;, 3I v,3V)] 112 , 

6v- 5 

la.,3.- 3 [3v - 2] I 

(2.8) 

= [6V- 3 (v,3v-2IP3t~3 P3--;'~2IV,3V_2)]1I2. 
6v- 5 

(2.9) 

The calculation of the eigenvalue expression for a.,3. _ 3 is 
straightforward and proceeds in exactly the same manner as 
for a v,3. _ 3' The relevant equation is now (IX.2.11), from 
which, on substitution of the expression for p~. 13v), it fol
lows that 

a.,3._3 = - (2V377)v(2v - 1)(6v - 1) 

X (9v3 - 18v2 + lIv - 282) (v> 2). (2.10) 

It suffices to substitute expression (2.10) and also consecu
tively (2.7), (2.3), and (2.6) into Eq. (IX.2.1O), acting upon 
Iv,3v), in order to obtain a linear homogeneous relation be
tween a.,3v _ 3 [3v] and a.,3. _ 3 [3v - 2], namely 

101
/
2a.,3._3 [3v] +3v(2v+ 1)(3v+ 1)(3v+2) 

X [(v - 1)(3v - 1)/(2v - 1)] 1/2 a.,3. _ 3 [3v - 2] = O. 
(2.11) 

It is clear from this relation that by making the choice 

a •. 3._ 3 [3v] = + la.,3.-3 [3v]l, (2.12) 

one necessarily has that 

a.,3.-3 [3v-2] = -la.,3.-3 [3v-2]1. (2.13) 

To complete the analysis of the Iv,3v - 3) states, there re
mains to determine the matrix elements occurring on the 
right-hand sides of(2.8) and (2.9). This can again be accom
plished by using relations among scalar product operators. 
More precisely, from the action ofEq. (IV.3.7) upon Iv,3v) it 
is straightforward to prove that 

(v,3vIP 3t-=-3 p 3--;,3I v,3v) 

= (2535/5)V4(V - 1 )(2v - 1 )(2v + W(3v - 1 )2(3v + 1)2 

X(3v - 2)2(6v + 1)(6v - 1), (2.14) 

whereas from the action ofEq. (IV.3.3) upon Iv,3v - 2) it 
follows that 

(v,3v - 21P3t~3 P3--;'~2Iv,3v - 2) 

= 2632v2(V - 2)(2v - 1)(3v - 1) 

X(3v - 2f(6v - 1)(6v + If (2.15) 

The reader can easily verify that the substitution of (2.14), 
(2.15), respectively, in (2.8), (2.9) leads, on account of the sign 
convention (2.12), (2.13), to expressions for a.,3._ 3 [3v] and 
a.,3. _ 3 [3v - 2] which satisfy Eq. (2.11). Also, it has to be 
noticed that the matrix elements in (2.14) and (2.15) vanish 
when v = 2, which shows thatthe particular state 12,3) does 
not exist. For this reason, v = 2 has been excluded already in 
formula (2.10). 

III. ANALYSIS OF THE I = 3v - 4 STATES 

It is known that for v > 3 there exist in general two inde
pendent orthonormal states Iv,3v - 4,(1) and Iv,3v - 4,(2). 
On the other hand, we can indicate three possible ways to 
generate linear combinations of these states by I-lowering 
shift operator actions, namely P 3--;' 4Iv,3v),P 3--;' =- 21v,3v - 2), 
andP3--;'~3Iv,3v - 3). Equation (IX.2.14) upon Iv,3v) pro
duces the following relationship among 
a~:3. _ 4' a~:3. _ 4 [3v], and a~\. _ 4 [3v - 2] for i = 1 and 
i= 2: 

[(6v -1)a~\._4 + (2v317)(3v - 1)(3v - 2)(6v - 5)(12v4 - 92v3 + 129v2 - 55v +426)] a~\V_4 [3v] 

+ 24335 v(2v - 1)(3v - 1)(3v - 2)(6v + 1)[2(v - 1)(3v - l)13.5(2v - 1)] 1/2 a~!3V-4 [3v - 2] = 0 (i = 1,2). (3.1) 

Similarly, a relation among a~:3v _ 4' a~)3v _ 4 [3v], and a~\. _ 4 [3v - 3] is obtained from the action of Eq. (IX.2.15) upon 
I v,3v), i.e., 
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[(6v-1)a~~3v_4 +(2v'3/7)(v-1)(3v-2)(v-2)(6v-1)(36v3-204v2-17v-225)]a~\v_4 [3v] 

+ 22335v2(3v - 1)(3v - 2)2(3v + 1)(6v + 1) 

X [2.3(v - l)(v - 2)(2v - 1)(6v - 1)/5(6v - 5)] 112 a~~3V -4 [3v - 3] = 0 (i = 1,2). (3.2) 

Finally, a third relation connecting the four unknowns is found either from the action ofEq. (IX.2.1) upon Iv,3v - 3) or from 
the action ofEq. (IX.2.6) upon Iv,3v - 2). Let us mention here the first of these: 

v2(3v - 1)(3v - 2)(3v + 1)(6v - 1)(6v + 1) 

X [a~~3v-4 + (2v'3/7))2v - 1)(6v - 5)(9v4 + 54v3 - 133v2 
- 194v - 1136)] 

xa~~3v_4 [3v - 3] - 255v(v - 1)(2v - 1)(3v - 1)(3v + 1)(3v + 5)(6v + 1) 

X [3(v - 2)(3v - 1)(6v - 1)(6v - 5)]1/2 

Xa~\V_4 [3v - 2] + 235(v - 1)(3v - 2)(4v + 3)(6v - 5) 

X [2.3(v - l)(v - 2)(2v - 1)(6v - 1)(6v - 5)/5] 112 a~\v_4 [3v] = 0 

(i = 1,2). (3.3) 

Equations (3.1), (3.2), and (3.3), which are homogeneous with respect to the a~\v _ /s for i = 1 or 2, yield as an eliminant a 
quadratic equation to be satisfied by both a~\v _ 4 'so Replacing Eq. (3.3) by the one obtained from Eq. (IX.2.6) reproduces the 
same eliminant, which reads 

(a~\v_4f+(4v'317)(3v-1)(3v-2)(12v4-16v3-147v2-54v-145)a~~3v_ 4 

+ ij (v - l)(v - 2)(2v - 1)(3v - 1)2(3v - 2)2(6v - 5)(12v4 + 20v3 - 851v2 

+ 1219v + 1980) = 0 (i = 1,2). 

Consequently, we find 

a~~3v-4 = - (2v'3/7)(3v - 1)(3v - 2)[(12v4 - 16v3 - 147v2 

- 54v - 145) + 7( - l)i- Ir 1/2J , 

r = 144v6 
- 1152v5 + 2568v4 - 216v3 - 839v2 

+ 1970 + 25 (i = 1,2) (v> 3). 

In order to obtain for each eigenvalue expression (3.5) the corresponding orthonormalization factors 

(3.4) 

(3.5) 

a~~3V -4 [3v - k ](k = 0,2,3) at leasttwo relations of the type (1.3) are needed. Hence, we must calculate matrix elements first. 
To this aim, we can again rely upon appropriate relations between scalar shift operator products. Without going into the 
details of the straightforward but lengthy calculations, we just mention the following results: 

(v,3vIP 3;;~ 4 p;.; 4Iv,3v) = (2437/5)V4(V - If(3v - If(3v - 2)3(3v + If(6v + 1)(6v - 1)(12v2 - 40v + 37), (3.6) 

(v,3v - 21P 3;;:'4 P 3-;' =- 21v,3v - 2) = (24 34/5)V2(V - 1)2(3v - 1)2(3v - 2f(6v - 1)(36v5 
- 156v4 

+ 157v3 - 4Ov2 - 237v + 730), (3.7) 

(v,3v - 3IP3;;~4 P3-;'~3Iv,3v - 3) 

= (2733/5)(v -If(2v - 1)(3v - 1)(3v - 2)(6v -If(18v4 - 48v3 + 8v2 - 43v - 60). (3.8) 

With these expressions we have in addition to the homogeneous equations (3.1)-(3.3) and the eigenvalue solutions (3.5), three 
relations of the form 

~Id') [3v-k]12 
""" v,3v ~ 4 

i 

= [(6v - 2k + 1)/(6v -7)] <v,3v - k IP~v--\ P~v-_4k Iv,3v - k) (k = 0,2,3). 

Hence we can calculate also expressions for the coefficients a~~3v _ 4 [3v - k ] (k = 0,2,3): 

la~~3v-4 [3v] 12 = (2337/5)V4(V -If(3v - 1)3(3v - 2f(3v + 1)2(6v + 1)(6v - l)l(6v - 7) 

X [(12v2 - 40v + 37) + ( - l)i-l( - 144v5 + 1056v4 - 2496v3 

+ 2756v2 - 1167v - 455)(r)-1/2], 

la~:3v-4 [3v - 2W = (2335/5)V2(V - W(2v - 1)(3v - 1)2(3v - 2f(6v - l)1(6v -7) 

[(36v5 
- 156v4 + 157v3 

- 4Ov2 - 237v + 730) 

+ (- l)i-I(432v8 - 3600v7 

+ 9768v6 
- 14 952v5 + 35 663v4 

- 64 029v3 + 56 573v2 - 35 905v -- 8450)(r)-1/2], 
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la~:3v-4 [3v - 3] 12 = (2633/5)(v - If(2v - 1)(3v - 1)(3v - 2)(6v - 1)2(6v - 5)1(6v - 7) 

X [(18v4 
- 48v3 + 8v2 - 43v - 60)] + (- 1)i-I(2I6v7 - I440v6 

+ 2598v5 
- 2238v4 + 5632v3 

- 3463v2 + 4345v 
+ 600)(r)-1/2], 

whereby rhas the same meaning as in (3.5). Again, thereisa 
choice of sign to be made for one of these coefficients. It is 
convenient to require that a~:3v _ 4 [3v] be positive, because 
then the signs of a~:3V _ 4 [3v - 2] and a~:3v _ 4 [3v - 3], re
spectively, follow from the homogeneous equations (3.1) and 
(3.2). 

In order to complete the discussion of the Iv,3v - 4) 
eigenstates of P ~v _ 4' we have to draw attention upon the 
fact that the coefficients a~:L_ 4 [3v - k ] (k = 0,2,3) vanish 
for v = 3. This shows that there is a unique nondegenerate 
13,5) state, the eigenvalue of which follows from formula 
(3.5) with i = 1, namely, 

(3.13) 

IV. ANALYSIS OF THE / = 3v - 5 STATES 

In case that v > 4 there exist two orthonormal states 
with 1= 3v - 5, which we denote Iv,3v - 5,(1) and 
Iv,3v - 5,(2). Five states with higher angular momentum 
value come into play for making combinations of the basis 
states by means of shift operator actions: Iv,3v), Iv,3v - 2), 
Iv,3v - 3), Iv,3v - 4,(1), and Iv,3v - 4,(2). Hence, at first 
sight one could imagine the normal way to proceed being to 
set up five independent homogeneous equations in the un-

(3.12l 

I 
knowns a~!3v _ 5 [3v - k ] (k = 0,2,3) and 
a~!3"_ 5 [3v - 4,(J)](J = 1,2), where itakes either the value 1 
or 2. Since the coefficients in these equations can contain the 
unknown a~!3v _ 5 at most linearly, the eliminant is of degree 
5 or less with respect to a~\v _ 5 • Unless this equation reduces 
to a quadratic equation, parasitic solutions are expected, and 
these should be ruled out by verifying which solutions corre
spond to a zero eigenvector. The method outlined is rigorous 
and straightforward, but calculations are likely to become 
extremely tedious. However, things turn out to be much less 
involved, since it appears that we may forget completely 
about any knowledge concerning the eigenvalues and the 
construction of the two Iv,3v - 4) states. As a consequence, 
the analysis of Iv,3v - 5) states is quite analogous to that of 
the Iv,3v - 4) states in Sec. III. The three relations connect
ing nonscalar product operators which playa role here are 
(IX.2.17), (IX.2.19), and (IX.2.11). For the first two the ac
tion upon 1 v,3v) is considered, and for the last one the action 
upon Iv,3v - 2). In this way we end up with three linear 
homogeneous equations with respect to the three unknowns 
a~\v_ 5 [3v - k ](k = 0,2,3) and i = lor i = 2) and the con
sistency relation is only quadratic in the eigenvalue a~:3" _ 5 

(i = 1 or i = 2)! Performing the necessary calculations, we 
thus arrive at the result 

a~\" _ 5 = - (2v'3/3.7)(6v - 5)[(54v5 
- 63v4 

- 1275v3 + 175v2 - 109v - 42) + 5.7( - l)i - IV 1/1 ], (4.1) 

1/1 = 81v6 
- 2160v5 + 24 l38v4 

- 51 396v3 + 47 689v2 - 20 228v + 3172 (v> 4). 
On the other hand, the relations between scalar product operators permit us again to calculate the relevant matrix elements 
which when substituted into equations of the type (1.3) provide us with nonhomogeneous but quadratic equations with respect 
to the a~\v _ 5 'so For the sake of completeness, we list the main results: 

(v,3vIP3~-=-5 P 3-;;5Iv,3v) 

= 2438v4(V - 1)3(v - 2)(2v - 1)(3v - 1)3(3v - 2)2(3v - 4)2(6v - 1)(6v + 1)(6v - 5)(I8v2 - 51v + 41), (4.2) 

(v,3v - 21P L~- 5 P 3-;;!.- 2 Iv,3v - 2) 

= (26 33/5)(v - W(v - 2)(2v - 1)(3v - 1)2(3v - 2)2(3v - 4)2(6v - 1)(6v - 5)(18v5 
- 123v4 + 251v3 

- l36v2 + l31v + 84), 
(4.3) 

(v,3v - 31P 3~: 5 P 3-;;:3 Iv,3v - 3) 

= (2334 /5)(v - W(2v - 1)2(3v - 1)(3v - 4)2(6v - 5)(81v7 + 81v6 
- 3015v5 + 4707v4 + 5158v3 - 5204v2 + 7576v + 416), 

(4.4) 

la~\v_ 5 [3v] 12 = [233V(v - W(v - 2)(2v - 1)(3v - 1)3(3v - 2)2(3v - 4)2(6v + 1)2(6v - 1)(6v - 5)1(2v - 3)] 

X [(l8v2 - 51v + 41) + ( - 1)i(162v5 
- 3267v4 + 11 259v3 - 15 699v2 + 10 163v - 2330)(1/1)-1/2] (i = 1,2), (4.5) 

la~\v_ 5 [3v - 2] 12 = [2S33(v - 1)2(v - 2)(2v - 1)2(3v - W(3v - 2)2(3v - 4)2(6v - 1){6v - 5)/5(2v - 3)J 

X [(18v5 
- 123v4 + 25lv3 - l36v2 + l31v + 84) + (- l)i-1 

X(162v8 
- 4725v7 + 31 860v6 -74 766v5 + 62 999v4 

- 22 725v3 + 6681v2 - 12 794v + 5208){1/I)-1/2] (i = 1,2), 
(4.6) 

la~:3V- 5 [3v - 3] 12 = [2233(v - 1)2(2v - 1)2(3v - 1)(3v - 4)2(6v - 5)2/5(2v - 3)] 

X [(81v7 + 81v6 
- 3015v5 + 4707v4 + 5158v3 

- 5204v2 + 7576v + 416) + ( - 1);- 1(729vlO - 8991v9 + 6966v8 + 54486v7 

+ 687897v6 - 3 407 511 V S + 4 480 648v4 
- 2 663 904v3 + 589 44Ov2 - 171 600v + 79 040)(11') - 1/2] (i = 1,2), (4.7) 
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where IJIhas been defined in (4.1). To finish the analysis of all 
I v,3v - 5) states we have still to consider the two particular 
cases v = 3 and v = 4. Normally we should distinguish the 
treatment of both cases on account of the fact that there is 
only one 13,5) state and two 14,8) states. But all the results 
(4.2H4.7) have been derived without reference to Iv,3v - 4) 
states, and hence these formulae hold for v = 4 as well as for 
v = 3. It is then only a matter of direct numerical verification 
to check that 

la~~ [9 - k] I = la~~ [9 - k] I = 0 (k = 0,2,3), 
(4.8) 

showing that the respective eigenvalues are a~~~u _ 4 (v = 3,4), 
or 

aM = 26.5(13)11/3, 

a 4•7 = - 235(13)(19)V3. 

v. DISCUSSION 

(4.9) 

(4.10) 

By suitable combination of relations between scalar and 
nonscalar shift operator products, we have succeeded in set
ting up closed expressions for part of the eigenvalue spec
trum of the scalar shift operator P ~ , and in defining the 
corresponding eigenstates in terms of shift operator actions. 
It is not without reasons, however, that in the present paper 
we stopped our treatment at the case I = 3v - 5. First of all, 
for I = 3v - 5 we have come already dangerously close to 
the limits of the calculation possibilities on a pocket calcula
tor. Secondly, for I = 3v - 5 there is general threefold de
generacy. In doing most of the calculations to find the 
a~!3u _ 6 eigenvalues, we noticed that, as in the case of 
SU(3),4,5 we would end up with an equation of third degree 
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for which it would not be possible to write the solutions in 
simple form. Of course, for the particular cases whereby the 
I-multiplicity is 1 or 2, serious simplifications arise. As ex
amples we quote 

a 3,3 = 25.3.52v'3/7, 

a~~6 = 23.3.5v'J[ - 9 + ( - l)i- 1(13 953)1/2}(i = 1,2). 

The present study concerning the symmetric irreduci-
ble representations of G2 should be viewed as an intermedi
ate step for the classification of nuclear octupole--phonon 
states which are connected to the symmetric representations 
of R(7). In fact, our next concern is to find also part of the 
eigenvalue spectrum of the R(3) scalar shift operator O~ 
built with the R(7) group generators. Since O~ and P~, al
though they do not commute, are related in many different 
ways, the present results will undoubtedly show their full 
significance in future contributions. 
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Bounds for the effective conductivity 0'* are derived using two standard variational principles 
established by Beran and the finite element method. We divide a two-dimensional material into 
triangular finite elements, use a linear local function as a trial function for each element, and 
apply the function to the variational principles. As a result a very simple method of computing 
the bounds is derived. As a numerical example, we apply the method to a model for 
heterogeneous materials and obtain very narrow gaps between bounds for 0'*. 

PACS numbers: n.W.Bg, 02.60. + y, 02.70. + d 

I. INTRODUCTION 

The variational method has been used to obtain the ex
pressions for an upper and a lower bound of the effective 
physical constants or bulk modulus of heterogeneous mate
rials. After Wiener's research for the bounds 1 Rashin and 
Shtrikman2 derived the most restrictive bounds that can be 
given in terms of the phase properties and volume fractions 
with the aid of some variational principles. To improve Ra
shin and Shtrikman's (RS) bounds, one must take into con
sideration some phase geometries. Beran3

,4 developed the 
bounds on the effective bulk modulus of two-phase solids by 
two three-point correlation functions for material proper
ties. To evaluate the Beran bounds, Mille..-s·6 used the cell 
model for the phase geometries, and Corson determined the 
three-correlation functions by experimental methods. 7 

Roris expressed the bounds in terms of many-point correla
tion functions of the spatial variation of the material proper
ty, but it is difficult to concretely calculate all the correlation 
functions. 

The purpose of this paper is to derive an upper and a 
lower bound on the effective physical constants of some ran
dom heterogeneous materials by the finite element method 
(FEM), which is a sort of variational principle. In the ordi
nary variational method a global trial function with a few 
variational parameters is used, and it is hard to select a trial 
function with a concrete form for problems with a compli
cate structure such as heterogeneous materials, while, in the 
FEM, local trial functions with a simple form and many 
variational parameters are used and it is easy to apply the 
FEM to the problems with a complicated structure. In a word, 
the FEM is a variational method for computers and the vari
ational method is applied in a very simple and clear form. 

In Sec. II we apply the FEM to the standard variational 
principle established by Beran3 and derive expressions for 
the bounds on the effective physical constants of heteroge
neous materials. In Sec. III we apply the method in Sec. II to 
a model for random media and compute the bounds for the 
effective conductivity. We compare the result with the HS 
bounds and the effective conductivity derived by the effec
tive medium theory.9-14 

In this paper we use only the term of the electric con
duction but the obtained result holds for the thermal con
ductivity, permittivity, permeability, and diffusion constant. 

II. UPPER AND LOWER BOUNDS FOR EFFECTIVE 
CONDUCTIVITY OF A HETEROGENEOUS MATERIAL 

The conductivity a of a heterogeneous material is a 
function of position and the effective conductivity or the ob
served conductivity 0'* is given by 

[J] = O'*[E] , (1 ) 

where the brackets [ ] denote the spatial average 

[ ] = ~ f f f dv for 30 , 

(2) 

= ~ f f ds for 20. 

And also 0'* is given by 

[O'E2] ( Jf 
0'* = --- = ---'"-,--:'--

[Ef [J2/0'1' 
(3) 

with the equations 

E= -gradU (4) 

and 

J = rotA, (5) 

where U and A are a scalar and a vector potential, respective
ly. Ifwe treat only a 20 problem for simplicity, A is 

A=(O 0 A). (6) 

If U' and A' are trial functions for U and A, bounds for 0'* are 
derived by the variational principle from (3J-(5f: 

[a(gradU'f] * [ Jf (7) -=--=---:-2-'-":"" >0' > _---0-__ _ 

[E] [(rotA')2/O'J 

We divide a two-dimensional material into triangular 
finite elements and assign nodal numbers iJ,k in the counter
clockwise order to the three vertexes of the nth element. If it 
is supposed that U' and A ' are linear in the element, they are 
determined by the three nodal values U;o ~,Uk and 
Ai' A j , A k • Then we obtain 

U'=NiUi +Nj~ +NkUk , 

A'=N,Ai +~Aj +NkAk' 

where 

(8) 

(9) 

N m = {l/2sn )(am +bmx+cmy) (m=i,j,k); (10) 
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Sn is the area of the nth element and 

a; =XjYk -xkYj' b; =Yj -Yk' C; =Xk -xj ,(11) 

aj,bj,Cj,ak,bk ,Ck being obtained by the rotation of i,j,k in 
(11). 

Let 

PI = [O'{gradU'f] (12) 

and 

P2 = [(rot A ')2/0'] (13) 

and substitute (8) and (9) into (12) and (13), respectively, as
suming that 0' is uniform within an element. And then we 
have 

and 

PI = J.. L (O'n/sn)[(b; U; + bj ~ + bk ud 
4 n 

+ (c;U; +cj ~ +CkUkf] 

P2 = J.. L (1/snO'n )[(b; A; + bjAj + bkAk)2 
4 n 

(14) 

+ (c;A; + cjAj + CkAk)2] , (15) 

where Un is the conductivity of the nth element. 
For a node p on a section of the boundary where a Dir

ichlet condition is specified, 

Up =gp' Ap = hp, (16) 

wheregp and hp are constants. But the Neumann condition 
cannot be satisfied. Substituting (16) into (14) and (15) and 
minimizing PI and P2 with respectto all unknown U; and A i> 

we obtain two simultaneous equations: 

[G]u = i (17a) 

and 

[G']a = i' (17b) 

where [G] and [G'] are positive definite symmetrical band 
matrices, u and a are columns of unknown U; and A;, and i 
and i' are known vectors. By the solutions of(17a) and (17b), 
(14), (15), and (7), bounds for 0'* can be calculated. 

III. NUMERICAL EXAMPLE 

For simplicity we use a square material with unit length 
and give boundary conditions 

U = 0 and A = 0 on x = 0 , 

(18) 

U = 1 and A = 1 on x = 1 , 

FIG. I. Structure of a model for heterogeneous materials. 
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FIG. 2. Bounds of 0'* /0'1 against the volume fraction x for 0'2/0'1 = 0.1. 

and 

au __ aA __ 0 0 d 1 ony= an y= . ay ay (19) 

The Dirichlet conditions (18) are taken by substituting nodal 
values on the boundary into (14) and (15), while the Neu
mann conditions (19) cannot be satisfied. From (18) we 
obtain 

[E]2 = 1 and [ J]2 = 1 . (20) 

As a model for random heterogeneous materials we use 
a material with a structure as shown in Fig. 1 and assign 0'1 
and 0'2 (0'1> 0'2) to the conductivity of each cell at random. 
Each cell is divided into eight equal triangular finite ele
ments. We compute bounds for 0'* /0'1 of the model with 900 
cells by the method in Sec. II and plot them against the vol
ume fraction x, taking 0'2/0' I as a parameter, in Figs. 2, 3, and 
4. Also in these figures we show the two-dimensional HS 
bounds2

•
15 and the results of the effective medium theory 

(EM),9-14 and designate the upper and lower bounds by UB 
and LB, respectively. We give the two-dimensional HS 
bounds and the EM in (21) and (22): 

I-x 
0'1 + >0'* 

1/(0'2 - 0'1) + x/20'1 

x 
>0'2 + , 

1/(0'1 - 0'2) + (1 - x)/2u2 
(21) 

1.0 
(52 =0.01 

r 
I (5\ HS UB I 

0.8 I I \// I 
(5' I 

HS LB I 
I 

(5\ 0.6 I 
I 

EM and UB / I 
I 

\ I 
I 

0.4 I 
I 
I 

'" \ I 
,-./ 

\LB)/ 0.2 
" 
/. 

,," 
" '" ,," " ~,. 

0 
,. -------

0.2 0.4 0.6 0.8 1.0 
X 

FIG. 3. Bounds of 0'*/0'1 against the volume fraction x for 0'2/0'1 = 0.01. 
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FIG. 4. Bounds of 0'*/0'1 against the volume fraction x for 0'2/0'1 = 10- 5. 

* * 0'(-0' (I )0'2-0'_0 
X + -X - • 

0'( + 0'* 0'2 + 0'* 
(22) 

As shown in Figs. 2, 3, and 4, we can obtain very narrow gaps 
between the bounds for 0'* of a heterogeneous material with 
a definite structure. The upper bounds are very close to the 
results of the EM. If a concrete geometrical configuration of 
materials is determined, the bounds for u* are computed by 
a very simple method in this paper. In the conventional vari
ational method it is hard to take into account definite geo
metrical configurations. Even if one of them is given, it is 
difficult to select a trial function or to concretely evaluate 
many-point correlation functions. We can properly take spa-
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tial fluctuations of physical properties into the FEM because 
local trial functions are used in the FEM. 

With the increase of the capacity of computers it is no 
more laborious to construct (17a) and (17b) and to solve them 
than to execute algebraic calculations in the conventional 
variational method. 
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VI. MATRIX REPRESENTATIONS AND LIE ALGEBRAS: 

The construction in this section was done explicitly for 
the Clifford algebras in Riemannian spaces of dimensions 
one to five. However, the properties of Clifford algebras in 
higher dimensions, as given by Eqs. (19H25), should follow 
instead from the expressions given here. 

Theorem 8: The matrix representation space of each 
Clifford algebra is 

N2k _ 1 ;::::R(2k ), 

N2k ;::::H(2k
-

1
), 

Sk;::::C(2k
), 

fl2k _ 1 ;::::O(2k);::::R(2k) Ell R(2k
), 

fl2kZ(O®H)(2k-l)zH(2k-l)EIlH(2k-I). 

Theorem 9: The Lie algebra corresponding to every 
Clifford algebra of Table I is given as 

NZk _ 1 - SL(2k;R), 

N2k - SL(2k - l;H), 

Sk -SL(2k;C), 

fl2k _ I - SL(2k;O) Z SL(2k;R) Ell SL(2k;R), 

fl2k - SL(2k - 1;0 ® H) Z SL(2k - I;H) Ell SL(2k - I;H). 

Therefore, the recursion relations for Lie algebras [Eq 
(25)] should read in general as 

SL(2k;R) ® SL( I;H) Z SL(2k - I;H) ® SL(2;R) z SL(2k;H), 

SL(2k;R) ® SL(2;R)zSL(2k -1;H) ® SL(1;H)zSL(2k + I;R). 

Erratum: Adjoints of nondensely defined Hilbert space operators 
[J. Math. Phys. 22,1619 (1981)] 

Peter Pfeifer 
Laboratory of Physical Chemistry, ETH Zurich, CH-B092 Zu'rich, Switzerland 

(Received 27 January 1981; accepted for publication 20 March 1981) 
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(1) The last expression in line 3 of the proof of Theorem 

2 should read P p TP T • 

(d) T· is bounded. (d') 3f1(T·) = ...!V(T)l n .@(T). 
(4) The expression in the last line of Sec. 3 should be at 

the end of line 6 of Remark 7. 

1231 

(2) The first three lines of Theorem 4 should read 
Theorem 4: Let TE.Y(J¥'). Then 

...!V(T·) = 3f1(T)\ 3f1(T·) = 5( Pp T )In .@(T) .(6) 

.@(T·) = {!~~ TtPn I(¢'n):= I is a sequence in .@(T) .... 

(3) Line 6 of Theorem 6 should read 

J. Math. Phys. 23(6), June 1982 

(5) Line 2 of Theorem 7 should start: .@(T·)n 3f1(T), 
denoted by .... 

(6) Eq. (12)in Theorem 7 should start: 3f1((T-I).) = .... 
(7) Line 2 of the proof of Theorem 7 should start: Since 

«(T-J)·~ IT¢') = .... 
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